Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual control of magnetism in LaMnO3/BaTiO3 superlattice by epitaxial strain and ferroelectric polarization

Chen Dong Yu Ben-Hai

Citation:

Dual control of magnetism in LaMnO3/BaTiO3 superlattice by epitaxial strain and ferroelectric polarization

Chen Dong, Yu Ben-Hai
PDF
HTML
Get Citation
  • The controlling of magnetism of perovskite oxides is scientifically interesting and technically important for numerous functionalities in spintronic devices and next-generation magnetic memories. The experimenally prepared superlattices often contain strain, polarization, oxygen vacancy and other factors, which can affect their magnetic properties. The magnetism of superlattice materials, controlled by using both epitaxial strain and ferroelectric polarization, is not only close to the real state of the material, but also can induce rich physical properties. In this work, we demonstrate a strong magnetoelectric coupling that appears in the LaMnO3/ BaTiO3 superlattice. First-principles calculations reveal that the reversible transitions among ferromagnetism, ferrimagnetism and anti-ferromagnetism are achieved by precisely controlling the magnitude and spin-direction of the magnetic moments of the Mn ions. A maximal change can be achieved to be 100.1% of the net magnetization by switching the ferroelectric polarization, which is much higher than the previous value 93.9%. The half-metallicity is demonstrated in the MnO2 layer, and accompanied by the spin polarization of the superlattice varying from 100% to 0. In addition, we realize the coexistence of ferroelectric polarization and metallicity, i.e. “ferroelectric metal”. Neither of the strong covalent Mn—O bond and La—O bond acts as an obstacle that prevents the ferroelectric polarization from penetrating the LMO layer. The Jahn-Teller effect, the tilt and rotation of oxygen octahedron, and the charge transfer of the superlattice are systemically analyzed. The variation of strain and re-orientation of polarization lead the electrons to transfer between the eg and t2g orbitals of Mn, which determines the magnetism of our system. Our purpose-designed LMO/BTO superlattice with robust intrinsic magnetoelectric coupling is a particularly interesting model system that can provide guidance for developing the spintronics for future applications.
      Corresponding author: Chen Dong, chchendong2010@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61475132) and the Key Projects of the Higher Education Institutions of Henan Province (Grant No. 16A140033)
    [1]

    Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046Google Scholar

    [2]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519Google Scholar

    [3]

    王春雷, 易晓磊, 姚超, 张谦君, 林鹤, 王栋梁, 马衍伟 2015 物理学报 64 117401Google Scholar

    Wang C L, Yi X L, Yao C, Zhang Q J, Lin H, Wang D L, Ma Y W 2015 Acta Phys. Sin. 64 117401Google Scholar

    [4]

    Yin H, Liu C, Zheng G P, Wang Y, Ren F 2019 Appl. Phys. Lett. 114 192903Google Scholar

    [5]

    Dong S, Yamauchi K, Yunoki S, et al. 2009 Phys. Rev. Lett. 103 127201Google Scholar

    [6]

    Zhou P X, Dong S, Liu H M, Ma C Y, Yan Z B, Zhong C G, Liu J M 2015 Sci. Rep. 5 13052Google Scholar

    [7]

    Feng M H, You S, Cheng N, Du J H 2019 Electrochim. Acta 293 356Google Scholar

    [8]

    Sun Z Z, Feng S, Gu C, Cheng N, Liu J 2019 Phys. Chem. Chem. Phys. 21 15206Google Scholar

    [9]

    Chen M, Zha R H, Yuan Z Y, et al. 2017 Chem. Eng. J. 313 791Google Scholar

    [10]

    倪利红 2012 博士学位论文 (杭州: 浙江大学)

    Ni L H 2012 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [11]

    Zhou Y J, Rabe K M 2013 Phys. Rev. B 88 094416Google Scholar

    [12]

    Zhong C, Lu X, Wan Y, Min Y, Zhao Z, Zhou P, Dong Z, Liu J 2018 J. Magn. Magn. Mater. 466 406Google Scholar

    [13]

    Renshaw Wang X, Li C J, et al. 2015 Science 349 716Google Scholar

    [14]

    Burton J D, Tsymbal E Y 2009 Phys. Rev. B 80 174406Google Scholar

    [15]

    Dong S, Dagotto E 2013 Phys. Rev. B 88 140404RGoogle Scholar

    [16]

    Cui B, Song C, Mao H, Wu H, Li F, Peng J, Wang G, Zeng F, Pan F 2015 Adv. Mater. 27 6651Google Scholar

    [17]

    Mishina E D, Buryakov A M, Sherstyuk N E, Sigov A S, Rasing T 2016 Ferroelectrics 500 37Google Scholar

    [18]

    Weng Y K, Huang X, Yao Y G, Dong S 2015 Phys. Rev. B 92 195114Google Scholar

    [19]

    Chen L Y, Chen C L, Jin K X, Wu T 2014 J. Appl. Phys. 116 074102Google Scholar

    [20]

    Lysogorskii Y V, Piyanzina I I, Lenotyev A V, et al. 2019 Ferroelectrics 541 74Google Scholar

    [21]

    Chen D, Zhang G B, Cheng Z X, Dong S, Wang Y X 2019 IUCrJ 6 189Google Scholar

    [22]

    Weng Y K, Lin L F, Dagotto E, Dong S 2016 Phys. Rev. Lett. 117 037601Google Scholar

    [23]

    Callori S J, Gabel J, Su D, Sinsheimer J, Fernandez-Serra M V, Dawber M 2012 Phys. Rev. Lett. 109 067601Google Scholar

    [24]

    Zhou P X, Liu H M, Yan Z B, Dong S, Liu J M 2014 J. Appl. Phys. 115 17D710Google Scholar

    [25]

    Wei L Y, Lian C, Meng S 2017 Phys. Rev. B 95 184102Google Scholar

    [26]

    Cheng X R, Shen M R 2007 Solid State Commun. 141 587Google Scholar

    [27]

    Zhang H M, Weng Y K, Yao Y X, Dong S 2015 Phys. Rev. B 91 195145Google Scholar

    [28]

    赵润, 杨浩 2018 物理学报 67 156101Google Scholar

    Zhao R, Yang H 2018 Acta Phys. Sin. 67 156101Google Scholar

    [29]

    Sheng J M, Kan X C, Ge H, et al. 2020 Chin. Phys. B 29 057503Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467Google Scholar

    [32]

    Lee J H, Delaney K T, Bousquet E, Spaldin N A, Rabe K M 2013 Phys. Rev. B 88 174426Google Scholar

    [33]

    Broyden C G 1969 AMS Notices 16 670Google Scholar

    [34]

    Ciucivara A, Sahu B, Kleinman L 2008 Phys. Rev. B 77 092407Google Scholar

    [35]

    Hashimoto T, Ishibashi S, Terakura K 2010 Phys. Rev. B 82 045124Google Scholar

    [36]

    Betancourt J, Paudel T R, Tsymbal E Y, Velev J P 2017 Phys. Rev. B 96 045113Google Scholar

    [37]

    He J, Borisevich A, Kalinin S V, Pennycook S J, Pantelides S T 2010 Phys. Rev. Lett. 105 227203Google Scholar

    [38]

    Sun W, Wang W X, Chen D, Cheng Z X, Wang Y X 2019 Nanoscale 11 9931Google Scholar

    [39]

    An M, Weng Y K, Zhang H M, Zhang J J, Zhang Y, Dong S 2017 Phys. Rev. B 96 235112Google Scholar

    [40]

    Aruta C, Adamo C, Galdi A, et al. 2009 Phys. Rev. B 80 140405RGoogle Scholar

    [41]

    Song G, Zhang W Y 2014 Sci. Rep. 4 4564Google Scholar

    [42]

    Liu C, Wang W H, Gong S, Zhang H B, Guo W 2017 Sci. Rep. 7 3856Google Scholar

    [43]

    Lee J, Sai N, Cai T, Niu Q, Demkov A A 2010 Phys. Rev. B 81 144425Google Scholar

  • 图 1  LaMnO3/BaTiO3超晶格的结构示意图(± P铁电极化的方向如箭头所示)

    Figure 1.  Schematic structure of the LaMnO3/BaTiO3 superlattice. (The arrows denote the directions of ferroelectric polarization).

    图 2  (a)−(n) LaMnO3/BaTiO3超晶格的磁序随着外延应变(–3%−3%)和极化方向的变化示意图 (蓝色代表自旋向上的Mn原子, 红色代表自旋向下的Mn原子); (o) 不同应变对应的最稳定结构的能量

    Figure 2.  (a)−(n) Schematic diagram of the magnetic configuration variation with the epitaxial strain (–3%−3%) and the direction of ferroelectric polarization in the LaMnO3/BaTiO3 superlattices (The blue and red balls represent the spin-up and spin-down Mn atoms, respectively); (o) the total energies of the ground-state superlattices under different strains.

    图 3  LaMnO3/BaTiO3超晶格的态密度: (a)–P极化和–3%外延应变时的总态密度和BaTiO3层的分层态密度; (b) +P极化和–3%外延应变时的总态密度和BaTiO3层的分层态密度; (c)–P极化和–3%外延应变以及(d) +P极化和–3%外延应变时的LaMnO3层的分层态密度和Mn原子的eg/t2g轨道的态密度

    Figure 3.  The total density of states (TDOS) and layer-resolved DOS of the BaTiO3 part of the LaMnO3/BaTiO3 superlattice: (a) for the –P case with –3% epitaxial strain; (b) for the +P case with –3% strain. The Mn-eg/t2g DOS and the layer-resolved DOS of the LaMnO3 part (c) for the –P case with –3% epitaxial strain; (d) for the +P case with –3% strain.

    图 4  LaMnO3/BaTiO3超晶格的态密度: (a) –P极化和3%外延应变时的总态密度和BaTiO3层的分层态密度; (b) +P极化和3%外延应变时的总态密度和BaTiO3层的分层态密度; (c) –P极化和3%外延应变以及(d) +P极化和3%外延应变时的LaMnO3层的分层态密度和Mn原子的eg/t2g轨道的态密度

    Figure 4.  The total density of states (TDOS) and layer-resolved DOS of the BaTiO3 part of the LaMnO3/BaTiO3 superlattice: (a) for the –P case with 3% epitaxial strain; (b) for the +P case with 3% strain. The Mn-eg/t2 g DOS and the layer-resolved DOS of the LaMnO3 part (c) for the –P case with 3% strain; (d) for the +P case with 3% strain.

    图 5  LaMnO3/BaTiO3超晶格在 (a) –P极化和–3%外延应变; (b) –P极化和3%外延应变; (c) +P极化和–3%外延应变和(d) +P极化和3%外延应变条件下的差分电荷密度图(等值面的数值为0.01 e/bohr3)

    Figure 5.  Charge density difference of the LaMnO3/BaTiO3 superlattices for the (a) –P polarization and –3% epitaxial strain; (b) –P polarization and 3% strain; (c) +P polarization and –3% strain; and (d) +P polarization and 3% strain. The isosurface value is set to be 0.01 e/bohr3.

    表 1  计算得到的LaMnO3/BaTiO3超晶格的基态性质: m1m2 (μB)是Mn原子的平均磁矩, M (μB)是超晶格的净磁化强度, 导电性, LaMnO3层的Jahn-Teller畸变Q2, Q3(nm), 氧八面体倾斜角θ和旋转角φ

    Table 1.  The calculated ground-state properties of the LaMnO3/BaTiO3 superlattice at different strains: m1 and m2 (μB) are the local magnetic moment for the Mn atoms, M (μB) is the net magnetization, the conductivity, the Jahn-Teller distortions Q2, Q3 (nm), the octahedral tilt angle θ and rotation angle φ (degree) of the LaMnO3 layers.

    应变极化磁序m1m2M导电性θ1θ2φ1φ2Q2Q3
    +FM3.563.5614.65金属5.76.64.45.30.00150.0259
    FiM23.38–3.766.41金属6.57.85.17.10.00170.0172
    +FiM23.41–3.866.34金属7.28.24.56.90.00160.0198
    FM3.593.5914.76金属7.58.75.37.80.00260.0199
    +FiM13.60–3.726.78金属8.810.03.96.90.00190.0229
    FiM33.55–3.597.20半金属9.310.44.15.8–0.00070.0347
    0+A-AFM3.24–3.55金属1.71.211.71.20.00100.0139
    0FM3.673.6715.28半金属7.19.19.30.80.00470.0042
    1%+A-AFM3.66–3.68金属9.39.97.56.40.04490.0272
    1%A-AFM3.46–3.92半金属11.512.44.48.00.00710.0286
    2%+G-AFM3.31–3.95绝缘体11.911.16.17.00.05070.0165
    2%FiM4-3.783.667.24半金属12.511.13.38.80.00130.0114
    3%+A-AFM3.71–3.72绝缘体12.212.26.37.4–1.03080.0967
    3%FM3.753.7515.17半金属13.713.35.08.90.02080.0324
    DownLoad: CSV

    表 2  不同外延应变和极化条件下LaMnO3/BaTiO3超晶格的Mn-3d轨道(含eg和t2g)的电子数

    Table 2.  Number of electrons for the Mn-3d orbitals (both eg and t2g) in the LaMnO3/BaTiO3 superlattice at different conditions.

    应变极化磁序eg轨道t2g轨道3d轨道
    –3%PFiM21.773.154.92
    +PFM1.683.264.94
    0PFM1.913.034.94
    +PA-AFM1.753.164.91
    3%PFM1.803.024.81
    +PA-AFM1.603.264.87
    DownLoad: CSV
  • [1]

    Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046Google Scholar

    [2]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519Google Scholar

    [3]

    王春雷, 易晓磊, 姚超, 张谦君, 林鹤, 王栋梁, 马衍伟 2015 物理学报 64 117401Google Scholar

    Wang C L, Yi X L, Yao C, Zhang Q J, Lin H, Wang D L, Ma Y W 2015 Acta Phys. Sin. 64 117401Google Scholar

    [4]

    Yin H, Liu C, Zheng G P, Wang Y, Ren F 2019 Appl. Phys. Lett. 114 192903Google Scholar

    [5]

    Dong S, Yamauchi K, Yunoki S, et al. 2009 Phys. Rev. Lett. 103 127201Google Scholar

    [6]

    Zhou P X, Dong S, Liu H M, Ma C Y, Yan Z B, Zhong C G, Liu J M 2015 Sci. Rep. 5 13052Google Scholar

    [7]

    Feng M H, You S, Cheng N, Du J H 2019 Electrochim. Acta 293 356Google Scholar

    [8]

    Sun Z Z, Feng S, Gu C, Cheng N, Liu J 2019 Phys. Chem. Chem. Phys. 21 15206Google Scholar

    [9]

    Chen M, Zha R H, Yuan Z Y, et al. 2017 Chem. Eng. J. 313 791Google Scholar

    [10]

    倪利红 2012 博士学位论文 (杭州: 浙江大学)

    Ni L H 2012 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [11]

    Zhou Y J, Rabe K M 2013 Phys. Rev. B 88 094416Google Scholar

    [12]

    Zhong C, Lu X, Wan Y, Min Y, Zhao Z, Zhou P, Dong Z, Liu J 2018 J. Magn. Magn. Mater. 466 406Google Scholar

    [13]

    Renshaw Wang X, Li C J, et al. 2015 Science 349 716Google Scholar

    [14]

    Burton J D, Tsymbal E Y 2009 Phys. Rev. B 80 174406Google Scholar

    [15]

    Dong S, Dagotto E 2013 Phys. Rev. B 88 140404RGoogle Scholar

    [16]

    Cui B, Song C, Mao H, Wu H, Li F, Peng J, Wang G, Zeng F, Pan F 2015 Adv. Mater. 27 6651Google Scholar

    [17]

    Mishina E D, Buryakov A M, Sherstyuk N E, Sigov A S, Rasing T 2016 Ferroelectrics 500 37Google Scholar

    [18]

    Weng Y K, Huang X, Yao Y G, Dong S 2015 Phys. Rev. B 92 195114Google Scholar

    [19]

    Chen L Y, Chen C L, Jin K X, Wu T 2014 J. Appl. Phys. 116 074102Google Scholar

    [20]

    Lysogorskii Y V, Piyanzina I I, Lenotyev A V, et al. 2019 Ferroelectrics 541 74Google Scholar

    [21]

    Chen D, Zhang G B, Cheng Z X, Dong S, Wang Y X 2019 IUCrJ 6 189Google Scholar

    [22]

    Weng Y K, Lin L F, Dagotto E, Dong S 2016 Phys. Rev. Lett. 117 037601Google Scholar

    [23]

    Callori S J, Gabel J, Su D, Sinsheimer J, Fernandez-Serra M V, Dawber M 2012 Phys. Rev. Lett. 109 067601Google Scholar

    [24]

    Zhou P X, Liu H M, Yan Z B, Dong S, Liu J M 2014 J. Appl. Phys. 115 17D710Google Scholar

    [25]

    Wei L Y, Lian C, Meng S 2017 Phys. Rev. B 95 184102Google Scholar

    [26]

    Cheng X R, Shen M R 2007 Solid State Commun. 141 587Google Scholar

    [27]

    Zhang H M, Weng Y K, Yao Y X, Dong S 2015 Phys. Rev. B 91 195145Google Scholar

    [28]

    赵润, 杨浩 2018 物理学报 67 156101Google Scholar

    Zhao R, Yang H 2018 Acta Phys. Sin. 67 156101Google Scholar

    [29]

    Sheng J M, Kan X C, Ge H, et al. 2020 Chin. Phys. B 29 057503Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467Google Scholar

    [32]

    Lee J H, Delaney K T, Bousquet E, Spaldin N A, Rabe K M 2013 Phys. Rev. B 88 174426Google Scholar

    [33]

    Broyden C G 1969 AMS Notices 16 670Google Scholar

    [34]

    Ciucivara A, Sahu B, Kleinman L 2008 Phys. Rev. B 77 092407Google Scholar

    [35]

    Hashimoto T, Ishibashi S, Terakura K 2010 Phys. Rev. B 82 045124Google Scholar

    [36]

    Betancourt J, Paudel T R, Tsymbal E Y, Velev J P 2017 Phys. Rev. B 96 045113Google Scholar

    [37]

    He J, Borisevich A, Kalinin S V, Pennycook S J, Pantelides S T 2010 Phys. Rev. Lett. 105 227203Google Scholar

    [38]

    Sun W, Wang W X, Chen D, Cheng Z X, Wang Y X 2019 Nanoscale 11 9931Google Scholar

    [39]

    An M, Weng Y K, Zhang H M, Zhang J J, Zhang Y, Dong S 2017 Phys. Rev. B 96 235112Google Scholar

    [40]

    Aruta C, Adamo C, Galdi A, et al. 2009 Phys. Rev. B 80 140405RGoogle Scholar

    [41]

    Song G, Zhang W Y 2014 Sci. Rep. 4 4564Google Scholar

    [42]

    Liu C, Wang W H, Gong S, Zhang H B, Guo W 2017 Sci. Rep. 7 3856Google Scholar

    [43]

    Lee J, Sai N, Cai T, Niu Q, Demkov A A 2010 Phys. Rev. B 81 144425Google Scholar

  • [1] Zhang Jiang-Lin, Wang Zhong-Min, Wang Dian-Hui, Hu Chao-Hao, Wang Feng, Gan Wei-Jiang, Lin Zhen-Kun. First principles study of V/Pd interface interactions and their hydrogen absorption properties. Acta Physica Sinica, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [2] Sun Shi-Yang, Chi Zhong-Bo, Xu Ping-Ping, An Ze-Yu, Zhang Jun-Hao, Tan Xin, Ren Yuan. First-principles study of formation and performance of diamond (111)/Al interface. Acta Physica Sinica, 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [3] Lin Qiao-Lu, Li Gong-Ping, Xu Nan-Nan, Liu Huan, Wang Cang-Long. A first-principles study on magnetic properties of the intrinsic defects in rutile TiO2. Acta Physica Sinica, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [4] Hou Qing-Yu, Li Yong, Zhao Chun-Wang. First-principles study of Al-doped and vacancy on the magnetism of ZnO. Acta Physica Sinica, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [5] Pan Feng-Chun, Xu Jia-Nan, Yang Hua, Lin Xue-Ling, Chen Huan-Ming. Ferromagnetism of undoped anatase TiO2 based on the first-principles calculations. Acta Physica Sinica, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [6] Liu En-Hua, Chen Zhao, Wen Xiao-Li, Chen Chang-Le. Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film. Acta Physica Sinica, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [7] Yan Song-Ling, Tang Li-Ming, Zhao Yu-Qing. First-principles study of the electronic properties and magnetism of LaMnO3/SrTiO3 heterointerface with the different component thickness ratios. Acta Physica Sinica, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [8] Li Cong, Zheng You-Jin, Fu Si-Nian, Jiang Hong-Wei, Wang Dan. First-principle study of the magnetism and photocatalyticactivity of RE(La/Ce/Pr/Nd) doping anatase TiO2. Acta Physica Sinica, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [9] Hou Qing-Yu, Zhao Chun-Wang. A first-principle study of the effect of W-doping on physical properties of anatase TiO2. Acta Physica Sinica, 2015, 64(24): 247201. doi: 10.7498/aps.64.247201
    [10] Rao Xue, Wang Ru-Zhi, Cao Jue-Xian, Yan Hui. First-principles calculation of doped GaN/AlN superlattices. Acta Physica Sinica, 2015, 64(10): 107303. doi: 10.7498/aps.64.107303
    [11] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [12] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [13] Lu Jin-Lian, Cao Jue-Xian. A first-principles study of capacity and mechanism of a single titanium atom storing hydrogen. Acta Physica Sinica, 2012, 61(14): 148801. doi: 10.7498/aps.61.148801
    [14] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [15] Shi Li-Bin, Xiao Zhen-Lin. Origin of ferromagnetic properties in Ni doped ZnO by the first principles study. Acta Physica Sinica, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [16] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [17] Jiang Xue-Fan, Luo Li-Jin, Jiang Qing, Zhong Chong-Gui, Tan Zhi-Zhong, Quan Hong-Rui. First-principle prediction of magnetic shape memory effect of Heusler alloy Mn2NiGe. Acta Physica Sinica, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [18] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [19] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] TONG LIU-NIU, HE XIAN-MEI, LU MU. EFFECT OF ANNEALING ON THE MAGNETIC PROPERTIES OF Ni80Co20 THIN FILMS WITH IMPURITY LAYERS. Acta Physica Sinica, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
Metrics
  • Abstract views:  6717
  • PDF Downloads:  140
  • Cited By: 0
Publishing process
  • Received Date:  03 June 2020
  • Accepted Date:  20 July 2020
  • Available Online:  14 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回