-
The large volume change during lithiation/delithiation leads the silicon electrodes in lithium-ion batteries to severely degrade the mechanical performance and the silicon electrodes in lithium-ion batteries to further deteriorate electrochemical properties, which limits the commercial applications of silicon electrodes. After several year’s studies, the whole process of fracture for crystalline silicon anodes has been almost understood. However, the relationship between fracture behaviors and the lithiation depth has not been sufficiently studied. In this work, the in-situ observations of morphological changes (e.g., volume expansion, crack initiation, propagation, and debonding of lithiated silicon) during lithiation at the different current densities are reported for silicon micropillars fabricated by standard photolithography and a deep reactive ion etching process. Also, this work focuses on the relative depth of lithiation of silicon electrodes at the moment of crack initiation, which is one of the crucial parameters representing the utilization of active materials with no crack. The results show that the silicon micropillars are broken faster (i.e., crack initiation and pulverization in a shorter lithiation time) and more seriously at a large current density, exhibiting more prominent symmetry of morphology. However, the relative depths of lithiation at the different current densities have just a slight difference (i.e., 18%–22%), when cracks are initiated. Here in this work, a silicon micropillar fracture is confirmed by the optical observation, while the relative depth of lithiation is calculated according to the capacity data recorded by the charge/discharge battery test system. The small fluctuation of the relative depth of lithiation with the large wave of current density can be ascribed to the dominant role of local stress concentration caused by anisotropic volume change in fracture behavior, which is validated by the results obtained by the finite element model (i.e., the depth of lithiation predicted by numerical simulations is ~ 22.6%). Therefore, the relationship between fracture behavior and the lithiation kinetics is established, providing an effective strategy for estimating the utilization of active materials under crack-free operation. With the help of the theoretical mechanics model considering both volume change and concurrent movement of reaction front, the stress state in the lithiated silicon at the moment of crack initiation is given, showing the tensile hoop stress near the reaction front. Consequently, these results suggest that the fracture behaviors depend on the current density, but the position of crack initiation (i.e., the depth of lithiation with no crack) is unrelated to current density (at least in a relatively broad range) for large micron-sized crystalline silicon electrodes, thereby shedding light on the fracture mechanisms and the design of alloy anodes (e.g., size and structure) in lithium-ion batteries.
-
Keywords:
- lithium-ion battery /
- silicon electrode /
- fracture behavior /
- current density
[1] Kim U H, Ryu H H, Kim J H, Mücke R, Kaghazchi P, Yoon C S, Sun Y K 2019 Adv. Energy Mater. 9 1803902Google Scholar
[2] Uxa D, Jerliu B, Hüger E, Dörrer L, Horisberger M, Stahn J, Schmidt H 2019 J. Phys. Chem. C 123 22027Google Scholar
[3] Ryu J, Bok T, Kim S, Park S 2018 ChemNanoMat 4 319Google Scholar
[4] Mukanova A, Jetybayeva A, Myung S, Kim S, Bakenov Z 2018 Mater. Today Energy 9 49Google Scholar
[5] Li P, Zhao G, Zheng X, Xu X, Yao C, Sun W, Dou S X 2018 Energy Storage Mater. 15 422Google Scholar
[6] Franco Gonzalez A, Yang N, Liu R 2017 J. Phys. Chem. C 121 27775Google Scholar
[7] Zhang S 2017 npj Comput. Mater. 3 7Google Scholar
[8] Jin Y, Zhu B, Lu Z, Liu N, Zhu J 2017 Adv. Energy Mater. 7 1700715Google Scholar
[9] He Y, Yu X, Li G, Wang R, Li H, Wang Y, Gao H, Huang X 2012 J. Power Sources 216 131Google Scholar
[10] Zhang X, Song W, Liu Z, Chen H, Li T, Wei Y, Fang D 2017 J. Mater. Chem. A 5 12793Google Scholar
[11] Shi F, Song Z, Ross P N, Somorjai G A, Ritchie R O, Komvopoulos K 2016 Nat. Commun. 7 11886Google Scholar
[12] Lee S W, Lee H, Ryu I, Nix W D, Gao H, Cui Y 2015 Nat. Commun. 6 7533Google Scholar
[13] Lee S W, McDowell M T, Berla L A, Nix W D, Cui Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 4080Google Scholar
[14] Pharr M, Zhao K, Wang X, Suo Z, Vlassak J J 2012 Nano Lett. 12 5039Google Scholar
[15] McDowell M T, Ryu I, Lee S W, Wang C, Nix W D, Cui Y 2012 Adv. Mater. 24 6034Google Scholar
[16] Ryu I, Choi J W, Cui Y, Nix W D 2011 J. Mech. Phys. Solids 59 1717Google Scholar
[17] Lee S W, McDowell M T, Choi J W, Cui Y 2011 Nano Lett. 11 3034Google Scholar
[18] Goldman J L, Long B R, Gewirth A A, Nuzzo R G 2011 Adv. Funct. Mater. 21 2412Google Scholar
[19] Jia Z, Li T 2015 J. Power Sources 275 866Google Scholar
[20] Zhao K, Pharr M, Wan Q, Wang W L, Kaxiras E, Vlassak J J, Suo Z 2012 J. Electrochem. Soc. 159 A238Google Scholar
[21] Cui Z, Gao F, Qu J 2012 J. Mech. Phys. Solids 60 1280Google Scholar
[22] Di Leo C V, Rejovitzky E, Anand L 2015 Int. J. Solids Struct. 67-68 283Google Scholar
[23] 孙凤楠, 冯露, 卜家贺, 张静, 李林安, 王世斌 2019 物理学报 68 120201Google Scholar
Sun F N, Feng L, Bu J H, Zhang J, Li L A, Wang S B 2019 Acta Phys. Sin. 68 120201Google Scholar
[24] 彭劼扬, 王家海, 沈斌, 张静, 李浩亮, 孙昊明 2019 物理学报 68 090202Google Scholar
Peng J Y, Wang J H, Shen B, Zhang J, Li H L, Sun H M 2019 Acta Phys. Sin. 68 090202Google Scholar
[25] An Y, Wood B C, Ye J, Chiang Y, Wang Y M, Tang M, Jiang H 2015 Phys. Chem. Chem. Phys. 17 17718Google Scholar
[26] Ryu I, Lee S W, Gao H, Cui Y, Nix W D 2014 J. Power Sources 255 274Google Scholar
[27] Ye J C, An Y H, Heo T W, Biener M M, Nikolic R J, Tang M, Jiang H, Wang Y M 2014 J. Power Sources 248 447Google Scholar
[28] Yang H, Fan F, Liang W, Guo X, Zhu T, Zhang S 2014 J. Mech. Phys. Solids 70 349Google Scholar
[29] Tian R, Park S, King P J, Cunningham G, Coelho J, Nicolosi V, Coleman J N 2019 Nat. Commun. 10 1933Google Scholar
[30] Pharr M, Suo Z, Vlassak J J 2014 J. Power Sources 270 569Google Scholar
[31] Soni S K, Sheldon B W, Xiao X, Bower A F, Verbrugge M W 2012 J. Electrochem. Soc. 159 A1520Google Scholar
[32] Boles S T, Thompson C V, Kraft O, Mönig R 2013 Appl. Phys. Lett. 103 263906Google Scholar
[33] Berla L A, Lee S W, Cui Y, Nix W D 2015 J. Power Sources 273 41Google Scholar
[34] Jia Z, Liu W K 2016 Appl. Phys. Lett. 109 163903Google Scholar
-
图 6 (a) 不同电流密度下硅电极起裂时相对嵌锂深度; (b) 有限元模拟所得的应力云图; (c) 不同相边界移动速度下不同r/R (红色箭头标示)处径向应力分布
Figure 6. (a) Relative lithiation depth for crack initiation of silicon electrodes at different current density; (b) hoop stress contour of Si micropillars obtained by finite element method; (c) hoop stress along the radial direction at different moving velocity of phase interfaces.
-
[1] Kim U H, Ryu H H, Kim J H, Mücke R, Kaghazchi P, Yoon C S, Sun Y K 2019 Adv. Energy Mater. 9 1803902Google Scholar
[2] Uxa D, Jerliu B, Hüger E, Dörrer L, Horisberger M, Stahn J, Schmidt H 2019 J. Phys. Chem. C 123 22027Google Scholar
[3] Ryu J, Bok T, Kim S, Park S 2018 ChemNanoMat 4 319Google Scholar
[4] Mukanova A, Jetybayeva A, Myung S, Kim S, Bakenov Z 2018 Mater. Today Energy 9 49Google Scholar
[5] Li P, Zhao G, Zheng X, Xu X, Yao C, Sun W, Dou S X 2018 Energy Storage Mater. 15 422Google Scholar
[6] Franco Gonzalez A, Yang N, Liu R 2017 J. Phys. Chem. C 121 27775Google Scholar
[7] Zhang S 2017 npj Comput. Mater. 3 7Google Scholar
[8] Jin Y, Zhu B, Lu Z, Liu N, Zhu J 2017 Adv. Energy Mater. 7 1700715Google Scholar
[9] He Y, Yu X, Li G, Wang R, Li H, Wang Y, Gao H, Huang X 2012 J. Power Sources 216 131Google Scholar
[10] Zhang X, Song W, Liu Z, Chen H, Li T, Wei Y, Fang D 2017 J. Mater. Chem. A 5 12793Google Scholar
[11] Shi F, Song Z, Ross P N, Somorjai G A, Ritchie R O, Komvopoulos K 2016 Nat. Commun. 7 11886Google Scholar
[12] Lee S W, Lee H, Ryu I, Nix W D, Gao H, Cui Y 2015 Nat. Commun. 6 7533Google Scholar
[13] Lee S W, McDowell M T, Berla L A, Nix W D, Cui Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 4080Google Scholar
[14] Pharr M, Zhao K, Wang X, Suo Z, Vlassak J J 2012 Nano Lett. 12 5039Google Scholar
[15] McDowell M T, Ryu I, Lee S W, Wang C, Nix W D, Cui Y 2012 Adv. Mater. 24 6034Google Scholar
[16] Ryu I, Choi J W, Cui Y, Nix W D 2011 J. Mech. Phys. Solids 59 1717Google Scholar
[17] Lee S W, McDowell M T, Choi J W, Cui Y 2011 Nano Lett. 11 3034Google Scholar
[18] Goldman J L, Long B R, Gewirth A A, Nuzzo R G 2011 Adv. Funct. Mater. 21 2412Google Scholar
[19] Jia Z, Li T 2015 J. Power Sources 275 866Google Scholar
[20] Zhao K, Pharr M, Wan Q, Wang W L, Kaxiras E, Vlassak J J, Suo Z 2012 J. Electrochem. Soc. 159 A238Google Scholar
[21] Cui Z, Gao F, Qu J 2012 J. Mech. Phys. Solids 60 1280Google Scholar
[22] Di Leo C V, Rejovitzky E, Anand L 2015 Int. J. Solids Struct. 67-68 283Google Scholar
[23] 孙凤楠, 冯露, 卜家贺, 张静, 李林安, 王世斌 2019 物理学报 68 120201Google Scholar
Sun F N, Feng L, Bu J H, Zhang J, Li L A, Wang S B 2019 Acta Phys. Sin. 68 120201Google Scholar
[24] 彭劼扬, 王家海, 沈斌, 张静, 李浩亮, 孙昊明 2019 物理学报 68 090202Google Scholar
Peng J Y, Wang J H, Shen B, Zhang J, Li H L, Sun H M 2019 Acta Phys. Sin. 68 090202Google Scholar
[25] An Y, Wood B C, Ye J, Chiang Y, Wang Y M, Tang M, Jiang H 2015 Phys. Chem. Chem. Phys. 17 17718Google Scholar
[26] Ryu I, Lee S W, Gao H, Cui Y, Nix W D 2014 J. Power Sources 255 274Google Scholar
[27] Ye J C, An Y H, Heo T W, Biener M M, Nikolic R J, Tang M, Jiang H, Wang Y M 2014 J. Power Sources 248 447Google Scholar
[28] Yang H, Fan F, Liang W, Guo X, Zhu T, Zhang S 2014 J. Mech. Phys. Solids 70 349Google Scholar
[29] Tian R, Park S, King P J, Cunningham G, Coelho J, Nicolosi V, Coleman J N 2019 Nat. Commun. 10 1933Google Scholar
[30] Pharr M, Suo Z, Vlassak J J 2014 J. Power Sources 270 569Google Scholar
[31] Soni S K, Sheldon B W, Xiao X, Bower A F, Verbrugge M W 2012 J. Electrochem. Soc. 159 A1520Google Scholar
[32] Boles S T, Thompson C V, Kraft O, Mönig R 2013 Appl. Phys. Lett. 103 263906Google Scholar
[33] Berla L A, Lee S W, Cui Y, Nix W D 2015 J. Power Sources 273 41Google Scholar
[34] Jia Z, Liu W K 2016 Appl. Phys. Lett. 109 163903Google Scholar
Catalog
Metrics
- Abstract views: 6470
- PDF Downloads: 94
- Cited By: 0