-
Electrostatic capacitors based on dielectrics delivering an ultrahigh power density, low loss and high operating voltage, are widely used in energy storage devices for modern electronic and electrical systems. Dielectric polymers, especially ferroelectric polymers, are preferable for an energy storage medium in film capacitors due to their superiority in ultrahigh breakdown strength, low mass density, flexibility, and easy fabrication process. Ferroelectric polymer nanocomposites combining the advantageous properties of ferroelectric polymer matrix and high dielectric constant of ceramic fillers, show great potential applications in achieving superior energy storage performances and have aroused substantial academic interest. This review focuses on the recent research progress of high-energy-density ferroelectric polymer nanocomposites. First, the synthesis and properties of PVDF-based ferroelectric polymers are introduced. Second, the effects of nanofillers, composite structures and interfaces on the dielectric and energy storage properties of ferroelectric polymer nanocomposites are summarized. Third, the underline mechanism of dielectric and energy storage behaviors in ferroelectric nanocomposites are discussed in the aspect of phase-field simulation. Last, the existing challenges and future directions of ferroelectric polymer nanocomposites with high energy storage density are summarized and prospected.
-
Keywords:
- ferroelectric polymer /
- nanocomposite /
- energy storage density /
- dielectric material
[1] Li Q, Chen L, Gadinski M R, Zhang S H, Zhang G Z, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q 2015 Nature 523 576Google Scholar
[2] Prateek, Thakur V K, Gupta R K 2016 Chem. Rev. 116 4260Google Scholar
[3] 成桑, 李雨抒, 梁家杰, 李琦 2020 高分子学报 51 469Google Scholar
Chen S, Li Y S, Liang J J, Li Q 2020 Acta Polym. Sin. 51 469Google Scholar
[4] Barshaw E J, White J, Chait M J, Cornette J B, Rabuffi M 2007 IEEE Trans. Magn. 43 223Google Scholar
[5] Chen Q, Shen Y, Zhang S, Zhang Q M 2015 Annu. Rev. Mater. Res. 45 433Google Scholar
[6] Laihonen S J, Gafvert U, Schutte T, Gedde U 2007 IEEE Trans. Dielectr. Electr. Insul. 14 275Google Scholar
[7] Rabuffi M, Picci G 2002 IEEE Trans. Plasma Sci. 30 1939Google Scholar
[8] Kawa H 1969 Jpn. J. Appl. Phys. 8 975Google Scholar
[9] Lovinger A J 1983 Science 220 1115Google Scholar
[10] Martins P, Lopes A C, Lanceros-Mendez S 2014 Prog. Polym. Sci. 39 683Google Scholar
[11] Zhu L, Wang Q 2012 Macromolecules 45 2937Google Scholar
[12] Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749Google Scholar
[13] Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103Google Scholar
[14] Li Z, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79Google Scholar
[15] Forsythe J S, Hill D 2000 Prog. Polym. Sci. 25 101Google Scholar
[16] Chu B, Zhou X, Neese B, Zhang Q M, Bauer F 2006 IEEE Trans. Dielectr. Electr. Insul. 13 1162Google Scholar
[17] Xu H, Cheng Z Y, Olson D, Mai T, Zhang Q M, Kavarnos G 2001 Appl. Phys. Lett. 78 2360Google Scholar
[18] Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar
[19] Zhou X, Chu B, Neese B, Lin M, Zhang Q 2007 IEEE Trans. Dielectr. Electr. Insul. 14 1133Google Scholar
[20] Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S H, Zhang Q M 2009 Appl. Phys. Lett. 94 162901Google Scholar
[21] Guan F, Yang L, Wang J, Guan B, Han K, Wang Q, Zhu L 2011 Adv. Funct. Mater. 21 3176Google Scholar
[22] Guan F X, Wang J, Yang L Y, Tseng J K, Han K, Wang Q, Zhu L 2011 Macromolecules 44 2190Google Scholar
[23] Terzic I, Meereboer N L, Acuautla M, Portale G, Loos K 2019 Nat. Commun. 10 601Google Scholar
[24] Li J, Tan S, Ding S, Li H, Yang L, Zhang Z 2012 J. Mater. Chem. 22 23468Google Scholar
[25] Bornand V, Vacher C, Collet A, Papet P 2009 Mater. Chem. Phys. 117 169Google Scholar
[26] Kim E J, Kim K A, Yoon S M 2016 J. Phys. D: Appl. Phys. 49 075105Google Scholar
[27] Okabe Y, Murakami H, Osaka N, Saito H, Inoue T 2010 Polymer 51 1494Google Scholar
[28] Aid S, Eddhahak A, Khelladi S, Ortega Z, Chaabani S, Tcharkhtchi A 2019 Polym. Test. 73 222Google Scholar
[29] Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236Google Scholar
[30] Meng N, Ren X, Santagiuliana G, Ventura L, Bilotti E 2019 Nat. Commun. 10 4535Google Scholar
[31] Yu K, Niu Y, Zhou Y, Bai Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar
[32] Hao Y, Wang X, Bi K, Zhang J, Li L 2017 Nano Energy 31 49Google Scholar
[33] Thakur Y, Zhang T, Iacob C, Yang T, Bernholc J, Chen L Q, Runt J, Zhang Q M 2017 Nanoscale 9 10992Google Scholar
[34] Zhang T, Chen X, Thakur Y, Lu B, Zhang Q Y, Runt J, Zhang Q M 2020 Sci. Adv. 6 eaax6622Google Scholar
[35] Huang X, Sun B, Zhu Y, Li S, Jiang P 2019 Prog. Mater. Sci. 100 187Google Scholar
[36] Zhang H, Marwat M A, Xie B, Ashtar M, Ye Z G 2019 ACS Appl. Mater. Interfaces 12 1Google Scholar
[37] Tang H X, Lin Y R, Sodano H A 2012 Adv. Energy Mater. 2 469Google Scholar
[38] Wang G, Huang X, Jiang P 2015 ACS Appl. Mater. Interfaces 7 18017Google Scholar
[39] Zhang X, Jiang J Y, Shen Z H, Dan Z K, Shen Y 2018 Adv. Mater. 30 1707269Google Scholar
[40] Li H, Ai D, Ren L L, Yao B, Han Z B, Shen Z H, Wang J J, Chen L Q, Wang Q 2019 Adv. Mater. 31 1900875Google Scholar
[41] Bao Z W, Hou C M, Shen Z H, Sun H Y, Zhang G Q, Luo Z, Dai Z Z, Wang C M, Chen X W, Li L B, Yin Y W, Shen Y, Li X G 2020 Adv. Mater. 32 1907227Google Scholar
[42] Jiang Y D, Zhang X, Shen Z H, Li X H, Yan J J, Li B W, Nan C W 2020 Adv. Funct. Mater. 30 1906112Google Scholar
[43] Jiang J Y, Shen Z H, Cai X K, Qian Z K, Dan Z K, Lin Y H, Liu B L, Nan C W, C, Chen L Q, Shen Y 2019 Adv. Energy Mater. 9 1803411Google Scholar
[44] Luo S B, Yu J Y, Yu S H, Sun R, Cao L Q, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204Google Scholar
[45] Wang Y F, Chen J, Li Y, Niu Y J, Wang Q, Wang H 2019 J. Mater. Chem. 7 2965Google Scholar
[46] Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H 2015 Adv. Mater. 27 6658Google Scholar
[47] Liu F H, Li Q, Cui J, Li Z Y, Yang G, Liu Y, Dong L J, Xiong C X, Wang H, Wang Q 2017 Adv. Funct. Mater. 27 1606292Google Scholar
[48] Jiang J Y, Shen Z H, Qian J F, Dan Z K, Guo M F, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220Google Scholar
[49] Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202Google Scholar
[50] Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669Google Scholar
[51] Peng S M, Yang X, Yang Y, Wang S J, Zhou Y, Hu J, Li Q, He J L 2019 Adv. Mater. 31 e1807722Google Scholar
[52] Borgani R, Pallon L K H, Hedenqvist M S, Gedde U W, Haviland D B 2016 Nano Lett. 16 5934Google Scholar
[53] Zhang X, Li B-W, Dong L J, Liu H X, Chen W, Shen Y, Nan C W 2018 Adv. Mater. Interfaces 5 1800096Google Scholar
[54] Pourrahimi A M, Olsson R T, Hedenqvist M S 2018 Adv. Mater. 30 1703624Google Scholar
[55] Huang X Y, Jiang P K 2015 Adv. Mater. 27 546Google Scholar
[56] Xie L, Huang X, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. 2 5244Google Scholar
[57] Zhang T, Guo M F, Jiang J Y, Zhang X Y, Lin Y H, Nan C W, Shen Y 2019 RSC Adv. 9 35990Google Scholar
[58] Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar
[59] Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217Google Scholar
[60] Chen L Q 2008 J. Am. Ceram. Soc. 91 1835Google Scholar
[61] Wang J J, Wang B, Chen L Q 2019 Annu. Rev. Mater. Res. 49 127Google Scholar
[62] Wang Y U, Tan D Q 2011 J. Appl. Phys. 109 104102Google Scholar
[63] Wang Y U, Tan D Q, Krahn J 2011 J. Appl. Phys. 110 034115
[64] Shen Z H, Wang J J, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Mater. 30 1704380Google Scholar
[65] Shen Z H, Wang J J, Jiang J Y, Huang S X, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nat. Commun. 10 1843Google Scholar
[66] Shen Z H, Shen Y, Cheng X X, Lin H X, Chen L Q, Nan C W 2020 J. Materiomics 6 573Google Scholar
[67] Shen Z H, Wang J J, Zhang X, Lin Y H, Nan C W, Chen L Q, Shen Y 2017 Appl. Phys. Lett. 111 092901Google Scholar
-
图 4 (a) PVDF和P(VDF-CTFE)-g-PS接枝共聚物的极化机制示意图; (b) P(VDF-CTFE)和P(VDF-CTFE)-g-PS接枝共聚物的D-E曲线[21]; (c) PVDF的压折工艺图解; (d) 压折和拉伸PVDF薄膜储能性能的比较[30]
Figure 4. (a) Schematic models of polarization mechanisms for PVDF and P(VDF-CTFE)-g-PS; (b) D-E loops for the hot-pressed and stretched films of P(VDF-CTFE) and P(VDF-CTFE)-g-PS graft copolymers[21]; (c) schematic demonstration of pressed-and-folding technique for PVDF; (d) a comparison of electric energy storage properties of pressed-and-folded and stretched films[30].
图 5 (a) PEI中超细纳米颗粒的体积分数与介电常数的关系[33]; (b) 不同取向的纳米纤维填料对介电常数的影响[37]; (c) 不同维度的Al2O3与c-BCB复合后的击穿场强与温度稳定性[40]; (d) PVDF/Ca2Nb3O10复合材料的击穿场强和储能密度[41]
Figure 5. (a) Relationship between volume fraction of ultrafine nanoparticles and dielectric constant in PEI[33]; (b) influence of nanofiber fillers with different orientations on dielectric constant[37]; (c) breakdown field strength and temperature stability of Al2O3 with different dimensions and c-BCB composites[40]; (d) breakdown field strength and energy storage density of PVDF/Ca2Nb3O10 composites[41].
图 6 (a) P(VDF-HFP)/BaTiO3复合材料中不同梯度分布的示意图[42]; (b) BNNS和BZT填料互穿结构的示意图[43]; (c) BN和BT共混填料的制备过程和电镜图[44]
Figure 6. (a) Schematic diagram of different gradient distributions in P(VDF-HFP)/BaTiO3 composites[42]; (b) schematic diagram of interpenetrating structure of BNNS and BZT fillers[43]; (c) preparation process and electron micrograph of BN and BT blend filler[44].
图 7 (a) 三明治结构复合薄膜的示意图和断面电镜图[46]; (b) 分别掺有BNNS和BST的叠层结构示意图和电镜图[47]; (c) 多层复合材料的制备流程图和示意图[48]
Figure 7. (a) Schematic diagram and sectional electron microscope of sandwich composite film[46]; (b) schematic diagram and electron micrograph of laminated structure doped with BNNS and BST respectively[47]; (c) preparation flow chart and schematic diagram of multilayer composite materials[48].
图 8 (a) GMA功能化PVDF-HFP的流程图[56]; (b) PTFEMA, PHFBMA和PDFHM原位聚合的示意图和电镜图[57]; (c) BaTiO3@TiO2多级结构的电镜图[58]; (d) BaTiO3@TiO2@Al2O3同轴纤维的电镜图和示意图[59]
Figure 8. (a) Flow chart of GMA functionalized PVDF-HFP[56]; (b) schematic diagram and electron micrograph of in-situ polymerization of PTFEMA, PHFBMA and PDFHM[57]; (c) electron micrograph of BaTiO2@TiO2 multilevel structure[58]; (d) electron micrograph and schematic diagram of BaTiO3@TiO2@Al2O3 coaxial fiber[59].
图 9 (a) 颗粒填料取向分布与介电常数的关系[62]; (b) 多物理场协同击穿的路径演化及能量分布[65]; (c) 不同填料种类的体积分数与击穿场强的关系[64]; (d) 空间电荷分布的示意图[67]
Figure 9. (a) Relationship between orientation distribution of particulate filler and dielectric constant[62]; (b) path evolution and energy distribution of multi-physical field cooperative breakdown[65]; (c) the relationship between the volume fraction of different fillers and the breakdown field strength[64]; (d) schematic diagram of space charge distribution[67].
-
[1] Li Q, Chen L, Gadinski M R, Zhang S H, Zhang G Z, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q 2015 Nature 523 576Google Scholar
[2] Prateek, Thakur V K, Gupta R K 2016 Chem. Rev. 116 4260Google Scholar
[3] 成桑, 李雨抒, 梁家杰, 李琦 2020 高分子学报 51 469Google Scholar
Chen S, Li Y S, Liang J J, Li Q 2020 Acta Polym. Sin. 51 469Google Scholar
[4] Barshaw E J, White J, Chait M J, Cornette J B, Rabuffi M 2007 IEEE Trans. Magn. 43 223Google Scholar
[5] Chen Q, Shen Y, Zhang S, Zhang Q M 2015 Annu. Rev. Mater. Res. 45 433Google Scholar
[6] Laihonen S J, Gafvert U, Schutte T, Gedde U 2007 IEEE Trans. Dielectr. Electr. Insul. 14 275Google Scholar
[7] Rabuffi M, Picci G 2002 IEEE Trans. Plasma Sci. 30 1939Google Scholar
[8] Kawa H 1969 Jpn. J. Appl. Phys. 8 975Google Scholar
[9] Lovinger A J 1983 Science 220 1115Google Scholar
[10] Martins P, Lopes A C, Lanceros-Mendez S 2014 Prog. Polym. Sci. 39 683Google Scholar
[11] Zhu L, Wang Q 2012 Macromolecules 45 2937Google Scholar
[12] Cheng Z Y, Zhang Q M, Bateman F B 2002 J. Appl. Phys. 92 6749Google Scholar
[13] Bharti V, Zhang Q M 2001 Phys. Rev. B 63 184103Google Scholar
[14] Li Z, Arbatti M D, Cheng Z Y 2004 Macromolecules 37 79Google Scholar
[15] Forsythe J S, Hill D 2000 Prog. Polym. Sci. 25 101Google Scholar
[16] Chu B, Zhou X, Neese B, Zhang Q M, Bauer F 2006 IEEE Trans. Dielectr. Electr. Insul. 13 1162Google Scholar
[17] Xu H, Cheng Z Y, Olson D, Mai T, Zhang Q M, Kavarnos G 2001 Appl. Phys. Lett. 78 2360Google Scholar
[18] Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q M 2006 Science 313 334Google Scholar
[19] Zhou X, Chu B, Neese B, Lin M, Zhang Q 2007 IEEE Trans. Dielectr. Electr. Insul. 14 1133Google Scholar
[20] Zhou X, Zhao X, Suo Z, Zou C, Runt J, Liu S, Zhang S H, Zhang Q M 2009 Appl. Phys. Lett. 94 162901Google Scholar
[21] Guan F, Yang L, Wang J, Guan B, Han K, Wang Q, Zhu L 2011 Adv. Funct. Mater. 21 3176Google Scholar
[22] Guan F X, Wang J, Yang L Y, Tseng J K, Han K, Wang Q, Zhu L 2011 Macromolecules 44 2190Google Scholar
[23] Terzic I, Meereboer N L, Acuautla M, Portale G, Loos K 2019 Nat. Commun. 10 601Google Scholar
[24] Li J, Tan S, Ding S, Li H, Yang L, Zhang Z 2012 J. Mater. Chem. 22 23468Google Scholar
[25] Bornand V, Vacher C, Collet A, Papet P 2009 Mater. Chem. Phys. 117 169Google Scholar
[26] Kim E J, Kim K A, Yoon S M 2016 J. Phys. D: Appl. Phys. 49 075105Google Scholar
[27] Okabe Y, Murakami H, Osaka N, Saito H, Inoue T 2010 Polymer 51 1494Google Scholar
[28] Aid S, Eddhahak A, Khelladi S, Ortega Z, Chaabani S, Tcharkhtchi A 2019 Polym. Test. 73 222Google Scholar
[29] Zhang X, Shen Y, Shen Z H, Jiang J Y, Chen L Q, Nan C W 2016 ACS Appl. Mater. Interfaces 8 27236Google Scholar
[30] Meng N, Ren X, Santagiuliana G, Ventura L, Bilotti E 2019 Nat. Commun. 10 4535Google Scholar
[31] Yu K, Niu Y, Zhou Y, Bai Y, Wang H 2013 J. Am. Ceram. Soc. 96 2519Google Scholar
[32] Hao Y, Wang X, Bi K, Zhang J, Li L 2017 Nano Energy 31 49Google Scholar
[33] Thakur Y, Zhang T, Iacob C, Yang T, Bernholc J, Chen L Q, Runt J, Zhang Q M 2017 Nanoscale 9 10992Google Scholar
[34] Zhang T, Chen X, Thakur Y, Lu B, Zhang Q Y, Runt J, Zhang Q M 2020 Sci. Adv. 6 eaax6622Google Scholar
[35] Huang X, Sun B, Zhu Y, Li S, Jiang P 2019 Prog. Mater. Sci. 100 187Google Scholar
[36] Zhang H, Marwat M A, Xie B, Ashtar M, Ye Z G 2019 ACS Appl. Mater. Interfaces 12 1Google Scholar
[37] Tang H X, Lin Y R, Sodano H A 2012 Adv. Energy Mater. 2 469Google Scholar
[38] Wang G, Huang X, Jiang P 2015 ACS Appl. Mater. Interfaces 7 18017Google Scholar
[39] Zhang X, Jiang J Y, Shen Z H, Dan Z K, Shen Y 2018 Adv. Mater. 30 1707269Google Scholar
[40] Li H, Ai D, Ren L L, Yao B, Han Z B, Shen Z H, Wang J J, Chen L Q, Wang Q 2019 Adv. Mater. 31 1900875Google Scholar
[41] Bao Z W, Hou C M, Shen Z H, Sun H Y, Zhang G Q, Luo Z, Dai Z Z, Wang C M, Chen X W, Li L B, Yin Y W, Shen Y, Li X G 2020 Adv. Mater. 32 1907227Google Scholar
[42] Jiang Y D, Zhang X, Shen Z H, Li X H, Yan J J, Li B W, Nan C W 2020 Adv. Funct. Mater. 30 1906112Google Scholar
[43] Jiang J Y, Shen Z H, Cai X K, Qian Z K, Dan Z K, Lin Y H, Liu B L, Nan C W, C, Chen L Q, Shen Y 2019 Adv. Energy Mater. 9 1803411Google Scholar
[44] Luo S B, Yu J Y, Yu S H, Sun R, Cao L Q, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204Google Scholar
[45] Wang Y F, Chen J, Li Y, Niu Y J, Wang Q, Wang H 2019 J. Mater. Chem. 7 2965Google Scholar
[46] Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y Y, Wang H 2015 Adv. Mater. 27 6658Google Scholar
[47] Liu F H, Li Q, Cui J, Li Z Y, Yang G, Liu Y, Dong L J, Xiong C X, Wang H, Wang Q 2017 Adv. Funct. Mater. 27 1606292Google Scholar
[48] Jiang J Y, Shen Z H, Qian J F, Dan Z K, Guo M F, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220Google Scholar
[49] Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202Google Scholar
[50] Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669Google Scholar
[51] Peng S M, Yang X, Yang Y, Wang S J, Zhou Y, Hu J, Li Q, He J L 2019 Adv. Mater. 31 e1807722Google Scholar
[52] Borgani R, Pallon L K H, Hedenqvist M S, Gedde U W, Haviland D B 2016 Nano Lett. 16 5934Google Scholar
[53] Zhang X, Li B-W, Dong L J, Liu H X, Chen W, Shen Y, Nan C W 2018 Adv. Mater. Interfaces 5 1800096Google Scholar
[54] Pourrahimi A M, Olsson R T, Hedenqvist M S 2018 Adv. Mater. 30 1703624Google Scholar
[55] Huang X Y, Jiang P K 2015 Adv. Mater. 27 546Google Scholar
[56] Xie L, Huang X, Yang K, Li S T, Jiang P K 2014 J. Mater. Chem. 2 5244Google Scholar
[57] Zhang T, Guo M F, Jiang J Y, Zhang X Y, Lin Y H, Nan C W, Shen Y 2019 RSC Adv. 9 35990Google Scholar
[58] Zhang X, Shen Y, Xu B, Zhang Q H, Gu L, Jiang J Y, Ma J, Lin Y H, Nan C W 2016 Adv. Mater. 28 2055Google Scholar
[59] Pan Z B, Zhai J W, Shen B 2017 J. Mater. Chem. A 5 15217Google Scholar
[60] Chen L Q 2008 J. Am. Ceram. Soc. 91 1835Google Scholar
[61] Wang J J, Wang B, Chen L Q 2019 Annu. Rev. Mater. Res. 49 127Google Scholar
[62] Wang Y U, Tan D Q 2011 J. Appl. Phys. 109 104102Google Scholar
[63] Wang Y U, Tan D Q, Krahn J 2011 J. Appl. Phys. 110 034115
[64] Shen Z H, Wang J J, Lin Y H, Nan C W, Chen L Q, Shen Y 2018 Adv. Mater. 30 1704380Google Scholar
[65] Shen Z H, Wang J J, Jiang J Y, Huang S X, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nat. Commun. 10 1843Google Scholar
[66] Shen Z H, Shen Y, Cheng X X, Lin H X, Chen L Q, Nan C W 2020 J. Materiomics 6 573Google Scholar
[67] Shen Z H, Wang J J, Zhang X, Lin Y H, Nan C W, Chen L Q, Shen Y 2017 Appl. Phys. Lett. 111 092901Google Scholar
Catalog
Metrics
- Abstract views: 14702
- PDF Downloads: 686
- Cited By: 0