Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mutifocal image scanning microscopy based on double-helix point spread function engineering

Li Si-Wei Lin Dan-Ying Zou Xiao-Hui Zhang Wei Chen Dan-Ni Yu Bin Qu Jun-Le

Citation:

Mutifocal image scanning microscopy based on double-helix point spread function engineering

Li Si-Wei, Lin Dan-Ying, Zou Xiao-Hui, Zhang Wei, Chen Dan-Ni, Yu Bin, Qu Jun-Le
PDF
HTML
Get Citation
  • Confocal laser scanning microscopy (CLSM) is a powerful imaging tool providing high resolution and optical sectioning. In its standard optical configuration, a pair of confocal pinholes is used to reject out-of-focus light. The diffraction limited resolution can be broken by reducing the confocal pinhole size. But this comes at the cost of extremely low signal-to-noise ratio (SNR). The limited SNR problem can be solved by image scanning microscopy (ISM), in which the single-point detector of a regular point-scanning confocal microscopy is substituted with an array detector such as CCD or CMOS, thus the two-fold super-resolution imaging can be achieved by pixel reassignment and deconvolution. However, the practical application of ISM is challenging due to its limited image acquisition speed. Here, we present a hybrid microscopy technique, named multifocal refocusing after scanning using helical phase engineering microscopy (MRESCH), which combines the double-helix point spread function (DH-PSF) engineering with multifocal structured illumination to dramatically improve the image acquisition speed. In the illumination path, sparse multifocal illumination patterns are generated by a digital micromirror device for parallel imaging information acquisition. In the detection path, a phase mask is introduced to modulate the conventional PSF to the DH-PSF, which provides volumetric information, and meanwhile, we also present a digital refocusing strategy for processing the collected raw data to recover the wild-filed image from different sample layers. To demonstrate imaging capabilities of MRESCH, we acquire the images of mitochondria in live HeLa cells and make a detailed comparison with those from the wide-field microscopy. In contrast to the conventional wide-field approach, the MRESCH can expand the imaging depth in a range from –1 μm to 1 μm. Next, we sample the F-actin of bovine pulmonary artery endothelial cells to characterize the lateral resolution of the MRESCH. The results show that the MRESCH has a better resolution capability than the conventional wide-field illumination microscopy. Finally, the proposed image scanning microscopy can record three-dimensional specimen information from a single multi-spot two-dimensional scan, which ensures faster data acquisition and larger field of view than ISM.
      Corresponding author: Yu Bin, yubin@szu.edu.cn ; Qu Jun-Le, jlqu@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975131, 61775144, 61835009, 11774242), the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A030313362), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2019A1515110412), the Basic Research Project of Shenzhen, China (Grant Nos. JCYJ20170818141701667, JCYJ20170818144012025, JCYJ20170412105003520, JCYJ20170818142804605), and the Science and Technology Development Foundation of Guangdong Academy of Sciences, China (Grant Nos. 2018GDASCX-0804, 2020GDASYL-20200103144)
    [1]

    Pawley J B 2006 Handbook of Biological Confocal Microscopy (USA: Springer) p16

    [2]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73Google Scholar

    [3]

    Yan J, Zhang Q L, Lin D Q, Yao S J 2016 Curr. Biochem. Eng. 3 56Google Scholar

    [4]

    Sheppard C J R 1988 Optik 80 53

    [5]

    Müller C B, Enderlein J 2010 Phys. Rev. Lett. 104 198101Google Scholar

    [6]

    Ward E N, Pal R 2017 J. Microsc. 266 221Google Scholar

    [7]

    Sheppard C J R, Mehta S B, Heintzmann R 2013 Opt. Lett. 38 2889Google Scholar

    [8]

    Castello M, Sheppard C J R, Diaspro A, Vicidomini G 2015 Opt. Lett. 40 5355Google Scholar

    [9]

    Jesacher A, Ritschmarte M, Piestun R 2015 Optica 2 210Google Scholar

    [10]

    Roider C, Heintzmann R, Piestun R 2016 Opt. Express 24 15456Google Scholar

    [11]

    Roider C, Piestun R, Jesacher A 2017 Optica 4 1373Google Scholar

    [12]

    Wang Z J, Cai Y N, Liang Y S, Zhou X, Yan S H, Dan D, Bianco P R, Lei M, Yao B L 2017 Biomed. Opt. Express 8 5493Google Scholar

    [13]

    Li S W, Wu J J, Li H, Lin D Y, Yu B, Qu J L 2018 Opt. Express 26 23585Google Scholar

    [14]

    York A G, Parekh S H, Nogare D D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749Google Scholar

    [15]

    Pavani S R P, Greengard A, Piestun R 2009 Appl. Phys. Lett. 95 021103Google Scholar

    [16]

    Grover G, Pavani S R P, Piestun R 2010 Opt. Lett. 35 3306Google Scholar

    [17]

    Grover G, Quirin S, Fiedler C, Piestun R 2011 Biomed. Opt. Express 2 3010Google Scholar

    [18]

    于斌, 李恒, 陈丹妮, 牛憨笨 2013 物理学报 62 154206Google Scholar

    Yu B, Li H, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 154206Google Scholar

    [19]

    Pavani S R P, Piestun R 2008 Opt. Express 16 3484Google Scholar

    [20]

    Grover G, DeLuca K, Quirin S 2012 Opt. Express 20 26681Google Scholar

    [21]

    Roider C, Jesacher A, Bernet S 2014 Opt. Express 22 4029Google Scholar

    [22]

    李恒, 于斌, 陈丹妮, 牛憨笨 2013 物理学报 62 144201Google Scholar

    Li H, Yu B, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 144201Google Scholar

  • 图 1  (a) MRESCH的光路; (b) DH-PSF在不同轴向位置的强度分布; (c) DH-PSF旋转角度与对应轴向位置的关系曲线

    Figure 1.  (a) Optical configuration of MRESCH; (b) intensity distribution of the DH-PSF at different positions along z-axis; (c) relationship between the two lobe rotation angles of the DH-PSF and position of z-axis.

    图 2  (a) DMD上载入的投影模式; (b) 激发罗丹明染料样品探测到的荧光点阵分布; (c) 存在相位片的条件下, 激发罗丹明染料样品探测到的双螺旋荧光点阵分布

    Figure 2.  (a) Project pattern of DMD; (b) the fluorescence image of the excitation foci in a uniform solution of Rhodamine 6G at the sample plane; (c) the fluorescence image of the excitation foci in a uniform solution of Rhodamine 6G at the sample plane with DH phase mask.

    图 3  MRESCH的成像原理(FT, 傅里叶变换)

    Figure 3.  Imaging principle of MRESCH (FT, Fourier transform).

    图 4  (a) MRESCH的原始图像数据; (b) 附上数字针孔后的双螺旋点; (c) MRESCH的图像重构过程

    Figure 4.  (a) Raw images of MRESCH; (b) the pinholed DH-PSF; (c) principle of MRESCH wide-field image reconstruction.

    图 5  宽场照明和MRESCH对纤维状肌动蛋白的成像结果比较 (a) 纤维状肌动蛋白的宽场照明成像结果; (b) MRESCH的成像结果; (c) 图(a)和图(b)中白色方块区域的放大; (d)图(a)和图(b)中划线位置的横切面强度图(半高宽分别为: 宽场(WF)照明图像374 nm、MRESCH图像 277 nm)

    Figure 5.  Comparison of F-actin imaging results with wide-field illumination and MRESCH: (a) Wide-field image of F-actin; (b) MRESCH image of F-actin; (c) magnification of white box region in panels (a) and (b); (d) plots of intensity along the colored lines in panels (a) and (b); the FWHM values are 374 nm and 277 nm for wide-field (WF) and MRESCH, respectively.

    图 6  宽场照明和MRESCH对海拉细胞线粒体成像结果比较 (a) 线粒体在z = –1000 nm位置的宽场成像结果; (b) 线粒体在z = 0 nm位置的宽场成像结果; (c) 线粒体在z = 1000 nm位置的宽场成像结果; (d) 线粒体在z = –1000 nm位置的MRESCH成像结果; (e) 线粒体在z = 0 nm位置的MRESCH成像结果; (f) 线粒体在z = 1000 nm位置的MRESCH成像结果

    Figure 6.  Comparison of mitochondrial imaging results of HeLa cells with wide-field illumination and MRESCH: (a) Wide-field image of mitochondria at z = –1000 nm; (b) wide-field image of mitochondrion at z = 0 nm; (c) wide-field image of mitochondria at z = 1000 nm; (d) image obtained via MRESCH at z = –1000 nm; (e) image obtained via MRESCH at z = 0 nm; (f) image obtained via MRESCH at z = 1000 nm.

  • [1]

    Pawley J B 2006 Handbook of Biological Confocal Microscopy (USA: Springer) p16

    [2]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73Google Scholar

    [3]

    Yan J, Zhang Q L, Lin D Q, Yao S J 2016 Curr. Biochem. Eng. 3 56Google Scholar

    [4]

    Sheppard C J R 1988 Optik 80 53

    [5]

    Müller C B, Enderlein J 2010 Phys. Rev. Lett. 104 198101Google Scholar

    [6]

    Ward E N, Pal R 2017 J. Microsc. 266 221Google Scholar

    [7]

    Sheppard C J R, Mehta S B, Heintzmann R 2013 Opt. Lett. 38 2889Google Scholar

    [8]

    Castello M, Sheppard C J R, Diaspro A, Vicidomini G 2015 Opt. Lett. 40 5355Google Scholar

    [9]

    Jesacher A, Ritschmarte M, Piestun R 2015 Optica 2 210Google Scholar

    [10]

    Roider C, Heintzmann R, Piestun R 2016 Opt. Express 24 15456Google Scholar

    [11]

    Roider C, Piestun R, Jesacher A 2017 Optica 4 1373Google Scholar

    [12]

    Wang Z J, Cai Y N, Liang Y S, Zhou X, Yan S H, Dan D, Bianco P R, Lei M, Yao B L 2017 Biomed. Opt. Express 8 5493Google Scholar

    [13]

    Li S W, Wu J J, Li H, Lin D Y, Yu B, Qu J L 2018 Opt. Express 26 23585Google Scholar

    [14]

    York A G, Parekh S H, Nogare D D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A, Shroff H 2012 Nat. Methods 9 749Google Scholar

    [15]

    Pavani S R P, Greengard A, Piestun R 2009 Appl. Phys. Lett. 95 021103Google Scholar

    [16]

    Grover G, Pavani S R P, Piestun R 2010 Opt. Lett. 35 3306Google Scholar

    [17]

    Grover G, Quirin S, Fiedler C, Piestun R 2011 Biomed. Opt. Express 2 3010Google Scholar

    [18]

    于斌, 李恒, 陈丹妮, 牛憨笨 2013 物理学报 62 154206Google Scholar

    Yu B, Li H, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 154206Google Scholar

    [19]

    Pavani S R P, Piestun R 2008 Opt. Express 16 3484Google Scholar

    [20]

    Grover G, DeLuca K, Quirin S 2012 Opt. Express 20 26681Google Scholar

    [21]

    Roider C, Jesacher A, Bernet S 2014 Opt. Express 22 4029Google Scholar

    [22]

    李恒, 于斌, 陈丹妮, 牛憨笨 2013 物理学报 62 144201Google Scholar

    Li H, Yu B, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 144201Google Scholar

  • [1] Ma Guang-Peng, Gong Zhen-Quan, Nie Meng-Jiao, Cao Hui-Qun, Qu Jun-Le, Lin Dan-Ying, Yu Bin. Multifocus double-helix point spread function microscopy for 3D single particle tracking. Acta Physica Sinica, 2024, 73(10): 108701. doi: 10.7498/aps.73.20240271
    [2] Wei Qian-Yi, Ni Jie-Lei, Li Ling, Zhang Yu-Quan, Yuan Xiao-Cong, Min Chang-Jun. Research progress of ultra-high spatiotemporally resolved microscopy. Acta Physica Sinica, 2023, 72(17): 178701. doi: 10.7498/aps.72.20230733
    [3] Pan Bin-Xiong, Gong Cheng, Zhang Peng, Liu Zi-Ye, Pi Peng-Jian, Chen Wang, Huang Wen-Qiang, Wang Bao-Ju, Zhan Qiu-Qiang. Advances in high spatiotemporal resolution fluorescence microscopic imaging technique based on point scanning. Acta Physica Sinica, 2023, 72(20): 204201. doi: 10.7498/aps.72.20230912
    [4] Gao Zhao-Lin, Liu Rui-Hua, Wen Kai, Ma Ying, Li Jian-Lang, Gao Peng. Phase/fluorescence dual-mode microscopy imaging based on structured light illumination. Acta Physica Sinica, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [5] Yu Bo, Zhuang Shu-Lei, Wang Zheng-Xin, Wang Man-Shi, Guo Lan-Jun, Li Xin-Yu, Guo Wen-Rui, Su Wen-Ming, Gong Cheng, Liu Wei-Wei. Nano-printing technology based double-spiral terahertz tunable metasurface. Acta Physica Sinica, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [6] Zhang Yi-Yi, Wu Jia-Chen, Hao Ran, Jin Shang-Zhong, Cao Liang-Cai. Digital holographic microscopy for red blood cell imaging. Acta Physica Sinica, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [7] Wang Mei-Chang, Yu Bin, Zhang Wei, Lin Dan-Ying, Qu Jun-Le. Digital line scanning fluorescence microscopy based on digital micromirror device. Acta Physica Sinica, 2020, 69(23): 238701. doi: 10.7498/aps.69.20200908
    [8] Li Si-Wei, Wu Jing-Jing, Zhang Sai-Wen, Li Heng, Chen Dan-Ni, Yu Bin, Qu Jun-Le. Design and numerical simulation demonstration of multi-functional holographic phase plate for large depth of field single molecular localization microscopy. Acta Physica Sinica, 2018, 67(17): 174202. doi: 10.7498/aps.67.20180569
    [9] An Sha, Peng Tong, Zhou Xing, Han Guo-Xia, Huang Zhang-Xiang, Yu Xiang-Hua, Cai Ya-Nan, Yao Bao-Li, Zhang Peng. Observation of particle manipulation with axial plane optical microscopy. Acta Physica Sinica, 2017, 66(1): 010702. doi: 10.7498/aps.66.010702
    [10] Zhao Guang-Yuan, Zheng Cheng, Fang Yue, Kuang Cui-Fang, Liu Xu. Progress of point-wise scanning superresolution methods. Acta Physica Sinica, 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [11] Wang Guang-Hua, Zhang Ze-Xin. Application of video microscopy in experimental soft matter physics. Acta Physica Sinica, 2016, 65(17): 178705. doi: 10.7498/aps.65.178705
    [12] Qiu Jun-Peng, Liang Run-Fu, Peng Xiao, Li Ya-Hui, Liu Li-Xin, Yin Jun, Qu Jun-Le, Niu Han-Ben. Experimental study on multicolor two-photon excited fluorescence microscopy. Acta Physica Sinica, 2015, 64(4): 048701. doi: 10.7498/aps.64.048701
    [13] Li Heng, Yu Bin, Chen Dan-Ni, Niu Han-Ben. Design and experimental demonstration of high-efficiency double-helix point spread function phase plate. Acta Physica Sinica, 2013, 62(12): 124201. doi: 10.7498/aps.62.124201
    [14] Yu Bin, Li Heng, Chen Dan-Ni, Niu Han-Ben. Design, fabrication, and experimental demonstration of a diffractive optical element with long depth of field for nanoscale three-dimensional multi-molecule tracking. Acta Physica Sinica, 2013, 62(15): 154206. doi: 10.7498/aps.62.154206
    [15] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [16] Yang Yu-Ping, Shi Yu-Lei, Yan Wei, Xu Xin-Long, Ma Shi-Hua, Wang Li. A new microscopy for THz radiation. Acta Physica Sinica, 2005, 54(9): 4079-4083. doi: 10.7498/aps.54.4079
    [17] Li Quan-Xiang, Yang Jin-Long, Yuan Lan-Feng, Hou Jian-Guo, Zhu Qing-Shi. . Acta Physica Sinica, 2002, 51(3): 609-615. doi: 10.7498/aps.51.609
    [18] HUANG JING, LIANG RUI-SHENG, SITU DA, ZHANG KUN-MING, TANG ZHI-LIE. THE OPTICAL TRANSFER FUNCTION OF CONFOCAL SCANNING LASER MICROSCOPY WITH GAUSS SOURCE. Acta Physica Sinica, 1998, 47(8): 1289-1295. doi: 10.7498/aps.47.1289
    [19] JIA JIN-FENG, GAI ZHENG, YANG WEI-SHENG, K.INOUE, Y.HASEGAWA, T.SAKURAI. LOCAL WORK FUNCTION MEASURED WITH SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 1997, 46(8): 1552-1558. doi: 10.7498/aps.46.1552
    [20] YU HONG-BIN, GAO BO, GAI ZHENG, YANG WEI-SHENG. OBSERVATION OF BIAS VOLTAGE INDUCED ATOMIC DIFFUSION ON A GOLD STM TIP. Acta Physica Sinica, 1997, 46(4): 679-687. doi: 10.7498/aps.46.679
Metrics
  • Abstract views:  7380
  • PDF Downloads:  163
  • Cited By: 0
Publishing process
  • Received Date:  30 April 2020
  • Accepted Date:  04 September 2020
  • Available Online:  16 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回