Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic response and control of neuros based on electromagnetic field theory

An Xin-Lei Qiao Shuai Zhang Li

Citation:

Dynamic response and control of neuros based on electromagnetic field theory

An Xin-Lei, Qiao Shuai, Zhang Li
PDF
HTML
Get Citation
  • The time-varying electric fields generated by continuously pumping and transmitting calcium, potassium and sodium ions in cells not only affect the discharge activity of neurons, but also induce time-varying magnetic fields to further regulate the fluctuation of ions. According to the Maxwell's electromagnetic field theory, time-varying electric field and magnetic field can stimulate each other in the electrophysiological environment inside and outside the cells to produce electromagnetic field. In order to explore the discharge rhythm transition of neurons under the influence of electromagnetic fields, a five-dimensional (5D) HR neuron model (EMFN model for short) is established by introducing magnetic flux variable and electric field variable into a three-dimensional (3D) Hindmarsh-Rose (HR) neuron model. Firstly, the equilibrium distribution and global bifurcation properties of EMFN model are analyzed by Matcont software, then the existence of subcritical Hopf bifurcation, hidden discharge, coexistence of periodic discharge and resting state are found and analyzed. Secondly, by using the tools of two-parameter and one-parameter bifurcation, ISI bifurcation and the maximum Lyapunov exponent for numerical simulation, the period-adding bifurcation with and without chaos, mixed mode discharge and coexistence mode discharge in the EMFN model are analyzed in detail. At the same time, the transition law of discharge rhythm with the influence of electric field and magnetic field intensity is revealed. Finally, the Washout controller is used to convert the subcritical Hopf bifurcation into supercritical Hopf bifurcation, so the topological structure of EMFN model near the bifurcation point is changed for eliminating the hidden discharge. The research results of this paper confirm that the novel neuron model has rich discharge rhythm, which will affect the information transmission and coding, and provide some ideas for improving the neuron models, revealing the influence of electromagnetic field on biological nervous system, and exploring the pathogenic mechanism of some neurological diseases.
      Corresponding author: An Xin-Lei, anxin1983@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11962012) and the China Postdoctoral Science Foundation (Grant No. 2018M633649XB)
    [1]

    Varona P, Levi R, Arshavsky Y I, Rabinovich M I, Selverston A I 2004 Neurocomputing 58 549Google Scholar

    [2]

    Kato R, Yamanaka M, Kobayashi M 2018 J. Pharmacol. Sci. 136 172Google Scholar

    [3]

    Kayasandik C, Guo K H, Labate D 2019 J. Comput. Appl. Math. 349 482Google Scholar

    [4]

    丁学利, 贾冰, 李玉叶 2019 物理学报 68 180502Google Scholar

    Ding X L, Jia B, Li Y Y 2019 Acta Phys. Sin. 68 180502Google Scholar

    [5]

    Nielsen B F 2017 J. Math. Neurosci. 7 6Google Scholar

    [6]

    Shim Y, Husbands P 2018 Adapt. Behav. 26 165Google Scholar

    [7]

    Otsuka S, Omori T 2019 Neural Netw. 109 137Google Scholar

    [8]

    杨永霞, 李玉叶, 古华光 2020 物理学报 69 040501Google Scholar

    Yang Y X, Li Y Y, Gu H G 2020 Acta Phys. Sin. 69 040501Google Scholar

    [9]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 116 473Google Scholar

    [10]

    Morris C, Lecar H 1981 Biophys. J. 35 193Google Scholar

    [11]

    Chay R T 1983 J. Phys. Chem. 87 2935Google Scholar

    [12]

    Hindmarsh J L, Rose R M 1984 P. Roy. Soc. B-Biol. Sci. 221 87Google Scholar

    [13]

    Izhikevich E M 2003 IEEE T. Neural Networ. 14 1569Google Scholar

    [14]

    FitzHugh R 1961 Biophys. J. 1 445Google Scholar

    [15]

    Cassidy A S, Merolla P, Arthur J V, Esser S K, Jackson B, Alvarez-Icaza R, Datta P, Sawada J, Wong T M, Feldman V, Amir A, Rubin D B, Akopyan F, McQuinn E, Risk W P, Modha D S 2013 The 2013 International Joint Conference on Neural Networks Dallas, USA, August 4–9, 2013 p1

    [16]

    徐泠风, 李传东, 陈玲 2016 物理学报 65 240701Google Scholar

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701Google Scholar

    [17]

    Barrio R, Lefranc M, Martínez M A, Serrano S 2015 Europhyslett. Lett. 109 20002Google Scholar

    [18]

    Yang S M, Wang J, Li S, Li H Y, Wei X L, Yu H T, Deng B 2015 Neurocomputing 177 274Google Scholar

    [19]

    Babacan Y, Kaçar F, Gürkan K 2016 Neurocomputing 203 86Google Scholar

    [20]

    Bao B C, Huang A H, Bao H 2018 Complexity 2018 1Google Scholar

    [21]

    Usha K, Subha P A 2019 Biosystems 5 1Google Scholar

    [22]

    Zhao Y, Sun X Y, Liu Yang, Kurths J 2018 Nonlinear Dyn. 93 1315Google Scholar

    [23]

    Pham V T, Jafari S, Vaidyanathan S, Vilos C, Wang X 2016 Sci. China Technol. Sci. 59 358Google Scholar

    [24]

    Ma J, Tang J 2015 Sci. China Technol. Sci. 58 2038Google Scholar

    [25]

    Lü M, Wang C N, Ren G D, Ma J, Song X L 2016 Nonlinear Dyn. 85 1479Google Scholar

    [26]

    Wu F Q, Wang C N, Jin W Y Ma J 2017 Physica A 469 81Google Scholar

    [27]

    Kafraja M S, Parastesha F, Jafariba S 2020 Chaos, Soliton. Fract. 137 109782Google Scholar

    [28]

    安新磊, 张莉 2020 力学学报 52 1174Google Scholar

    An X L, Zhang L 2020 Chin. J. Theor. Appl. Mech. 52 1174Google Scholar

    [29]

    Ma J, Zhang G, Hayat T, Ren G D 2019 Nonlinear Dyn. 95 1585Google Scholar

    [30]

    Du L, Cao Z L, Lei Y M, Deng Z C 2019 Sci. China Technol. Sci. 62 1141Google Scholar

    [31]

    Wang C N, Tang J, Ma J 2019 Eur. Phys. J-Spec. Top. 228 1907Google Scholar

    [32]

    Oliveira L B, Filanovsky I M, Allam A, Fernandes J R 2008 IEEE International Symposium on Circuits and Systems Washington, USA, May 18–21, 2008 p2322

    [33]

    Xu Y M, Yao Z, Hobiny A, Aatef H, Ma J 2019 Front. Inform. Tech. El. 20 571Google Scholar

    [34]

    Ma J, Lv M, Zhou P, Xu Y, Hayat T 2017 Appl. Math. Comput. 307 321Google Scholar

    [35]

    Qin H L, Ma J, Ren G D, Zhou P 2018 Int J. Mod. Phys. B 32 1850298Google Scholar

    [36]

    An X L, Zhang L 2018 Nonlinear Dyn. 94 2995Google Scholar

    [37]

    Varshney V, Sabarathinam S, Prasad A 2018 Int. J. Bifurcat. Chaos 28 1850013Google Scholar

    [38]

    Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N, Leonov G, Prasad A 2016 Phys. Rep. 637 1Google Scholar

    [39]

    Gallas J A C 2015 Mod. Phys. Lett. B 29 1530018Google Scholar

    [40]

    Rosa L A S, Prebianca F, Hoff A, Manchein C, Albuquerque H A 2020 Int. J. Bifurcat. Chaos 30 118Google Scholar

    [41]

    Rao X B, Chu Y D, Chang Y X, Zhang J G, Tian Y P 2017 Nonlinear Dyn. 88 2347Google Scholar

    [42]

    Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Hinke M O, Wechselberger M 2012 SIAM Rev. 54 211Google Scholar

    [43]

    Kousaka T, Ogura Y, Shimizu K, Asahara H, Inaba N 2017 Physica D 27 48Google Scholar

    [44]

    Wang Q Q, Yu Y, Zhang Z D, Han X J 2019 J. Low Freq. Noise. V. A. 38 377Google Scholar

    [45]

    Rotstein H G 2014 Encyclopedia of Computational Neuroscience 2 1Google Scholar

    [46]

    孙常春, 陈仲堂, 侯祥林 2017 振动与冲击 36 220

    Sun C C, Chen Z T, Hou X L 2017 J. Vib. Shock 36 220

  • 图 1  EMFN模型(2)在$x \in [ - 20, 20]$时的吸引域

    Figure 1.  The attractive basins of EMFN model (2) when $x \in [ - 20, 20]$.

    图 2  EMFN模型(2)的时间响应图和吸引子 (a) ${P_1}$附近的共存振荡; (b) 图(a)中蓝色放大图; (c)${P_1}$附近的周期2极限环; (d) ${P_2}$附近的共存振荡; (e) 图(d)中蓝色放大图; (f) ${P_2}$附近的周期2极限环; (g)${P_3}$附近的共存振荡; (h) 图(g)中蓝色放大图; (i)${P_3}$附近的周期1极限环

    Figure 2.  Time responses and attractors of EMFN model (2): (a) Coexistence oscillation near ${P_1}$; (b) enlargement of the blue in (a); (c) limit cycle with period-2 near ${P_1}$; (d) coexistence oscillation near ${P_2}$; (e) enlargement of the blue in (d); (f) limit cycle with period-2 near ${P_2}$; (g) coexistence oscillation near ${P_3}$; (h) enlargement of the blue in (g); (i) limit cycle with period-1 near ${P_3}$.

    图 3  EMFN模型(2)的吸引域 (a), (c)和(e)是外界刺激电流分别取${I_{\rm{1}}}, \;{I_2}, \;{I_3}$x-y上的吸引域; (b), (d)和(f)是外界刺激电流分别取${I_{\rm{1}}}, \;{I_2}, \;{I_3}$x-ϕ上的吸引域

    Figure 3.  The attractive basins of EMFN model (2): (a), (c) and (e) are the attractive basins in x-y plane under ${I_{\rm{1}}}, \;{I_2}, \;{I_3}$, respectively; (b), (d) and (f) are the attractive basins in x-ϕ plane under ${I_{\rm{1}}}, \;{I_2}, \;{I_3}$, respectively.

    图 4  EMFN模型(2)关于x的双参数分岔图 (a) $I$$b$对应的分岔图; (b) $I$$d$对应的分岔图; (c) $c$$d$对应的分岔图; (d) $I$$r$对应的分岔图; (e) $s$$r$对应的分岔图; (f) ${\chi _0}$$r$对应的分岔图; (g) $I$${k_1}$对应的分岔图; (h) $I$${\chi _0}$对应的分岔图; (i) $I$$s$对应的分岔图

    Figure 4.  Two-parameter bifurcation diagrams of EMFN model (2) versus x: (a) Bifurcation diagram versus $I$ and $b$; (b) bifurcation diagram versus $I$ and $d$; (c) bifurcation diagram versus $c$ and $d$; (d) bifurcation diagram versus $I$ and $r$; (e) bifurcation diagram versus $s$ and $r$; (f) bifurcation diagram versus ${\chi _0}$ and $r$; (g) bifurcation diagram versus $I$ and ${k_1}$; (h) bifurcation diagram versus $I$ and ${\chi _0}$; (i) bifurcation diagram versus $I$ and $s$.

    图 5  关于$I$的ISI分岔图和单参分岔图 (a) ISI 分岔图; (b) 单参分岔图

    Figure 5.  ISI bifurcation and one-parameter bifurcation versus I : (a) ISI bifurcation; (b) one-parameter bifurcation.

    图 6  对应于图5的最大 Lyapunov 指数图

    Figure 6.  The largest Lyapunov diagram corresponding to Fig.5.

    图 7  EMFN模型(2)关于$I$$b$的时间响应图 (a) $I = 2.389, b = 3.239$时的周期3簇放电; (b) $I = 2.577, b = 3.173$时的周期4簇放电; (c) $I = 2.733, b = 3.134$时的周期5簇放电; (d) $I = 2.898, b = 3.093$时的周期6簇放电

    Figure 7.  Time response diagram of EMFN model (2) versus $I$ and $b$: (a) Bursting with period-3 when $I = 2.389, b = 3.239$; (b) bursting with period-4 when $I = 2.577, b = 3.173$; (c) bursting with period-5 when $I = 2.733, b = 3.134$; (d) bursting with period-6 when $I = 2.898, b = 3.093$.

    图 8  EMFN模型(2)关于${k_0}$$d$的双参数分岔图

    Figure 8.  Two-parameter bifurcation diagram of EMFN model (2) corresponding to ${k_0}$ and $d$.

    图 9  EMFN模型(2)的时间响应图 (a) 周期2放电; (b) 周期${2^1}$放电; (c) 周期3放电; (d) 周期${3^1}$放电; (e) 周期4放电; (f) 周期${{\rm{4}}^{\rm{2}}}$放电

    Figure 9.  Time response diagrams of EMFN model (2): (a) Discharge with period-2; (b) discharge with period-${2^1}$; (c) discharge with period-3; (d) discharge with period-${3^1}$; (e) discharge with period-4; (f) discharge with period-${4^2}$.

    图 10  EMFN模型(2)的共存吸引域 (a)$({k_0}, d) = (0.6587, 4.2596)$时关于x-ϕ的吸引域; (b)$({k_0}, d) = (0.6587, 4.2596)$时关于x-E的吸引域; (c)$({k_0}, d) = (0.7032, 4.3758)$时关于x-ϕ的吸引域; (d)$({k_0}, d) = (0.7032, 4.3758)$时关x-E于的吸引域; (e) $({k_0}, d) = (0.7{\rm{123}}, 4.{\rm{5032}})$时关于x-ϕ的吸引域; (f) $({k_0}, d) = (0.7{\rm{123}}, 4.{\rm{5032}})$时关于x-E的吸引域

    Figure 10.  The coexisting attraction domains of EMFN model (2): (a) Attractive basins of x-ϕ plane when $({k_0}, d) = (0.6587, 4.2596)$; (b) attractive basins of x-E plane when $({k_0}, d) = (0.6587, 4.2596)$; (c) attractive basins of x-ϕ plane when $({k_0}, d) = (0.7032, 4.3758)$; (d) attractive basins of x-E plane when $({k_0}, d) = (0.7032, 4.3758)$; (e) attractive basins of x-ϕ plane when $({k_0}, d) = (0.7123, 4.5032)$; (f) attractive basins of x-E plane when $({k_0}, d) = (0.7123, 4.5032)$.

    图 11  关于${k_0}$的ISI分岔图和单参分岔图 (a) ISI 分岔图; (b) 单参分岔图

    Figure 11.  ISI bifurcation and one-parameter bifurcation versus ${k_0}$: (a) ISI bifurcation; (b) one-parameter bifurcation.

    图 12  对应于图11的最大 Lyapunov 指数图

    Figure 12.  The largest Lyapunov diagram corresponding to Fig.11.

    图 13  膜电压的发放数关于参数${k_0}$变化图

    Figure 13.  The change of spike count of membrane voltage versus parameter ${k_0}$.

    图 14  EMFN模型(2)关于${k_0}$${k_1}$的双参数分岔图

    Figure 14.  Two-parameter bifurcation diagram of EMFN model (2) corresponding to ${k_0}$ and ${k_1}$.

    图 15  EMFN模型(2)的时间响应图 (a) 周期6放电; (b) 周期${6^3}$放电; (c) 周期7放电; (d) 周期${7^3}$放电; (e) 周期8放电; (f) 周期${8^3}$放电

    Figure 15.  Time response diagrams of EMFN model (2): (a) Discharge with period-6; (b) discharge with period-${6^3}$; (c) discharge with period-7; (d) discharge with period-${7^3}$; (e) discharge with period-8; (f) discharge with period-${8^3}$.

    图 16  关于${k_0}$的 ISI 分岔图和单参分岔图

    Figure 16.  ISI bifurcation and one-parameter bifurcation versus ${k_0}$.

    图 17  膜电压的发放数关于参数${k_0}$变化图

    Figure 17.  The change of spike count of membrane voltage versus parameter ${k_0}$.

    图 18  EMFN模型(2)关于I${k_4}, \;{k_5}$的双参数分岔图

    Figure 18.  Two-parameter bifurcation diagram of EMFN model (2) corresponding to I and ${k_4}, \;{k_5}$.

    图 19  $I \in [3.1, \;4], \;{k_4} = 0.4556 I - 1.4122\;$时, EMFN模型(2)的 ISI 分岔图(a)和单参分岔图(b)

    Figure 19.  (a) ISI bifurcation and (b) one-parameter bifurcation of EMFN model (2) when $I \in [3.1, \;4], \;{k_4} = 0.4556 I - 1.4122$.

    图 20  $I \in [2.9, \;3.7], \;{k_5} = - 0.9659 I + 3.7897$时, EMFN模型(2)的 ISI 分岔图(a)和单参分岔图(b)

    Figure 20.  (a) ISI bifurcation and (b) one-parameter bifurcation of EMFN model (2) when $I \in [2.9, \;3.7], \;{k_5} = - 0.9659 I + 3.7897$.

    图 21  反馈增益$m$对受控系统(7)的放电影响  (a) 当$I = {I_2}$时, 受控系统(7)放电演化图; (b) 当$I = {I_3}$时, 受控系统(7)放电演化图

    Figure 21.  The discharge influence of feedback gain $m$ to controlled system (7): (a) Discharge evolution of the controlled system (7) when $I = {I_2}$; (b) Discharge evolution of the controlled system (7) when $I = {I_3}$.

  • [1]

    Varona P, Levi R, Arshavsky Y I, Rabinovich M I, Selverston A I 2004 Neurocomputing 58 549Google Scholar

    [2]

    Kato R, Yamanaka M, Kobayashi M 2018 J. Pharmacol. Sci. 136 172Google Scholar

    [3]

    Kayasandik C, Guo K H, Labate D 2019 J. Comput. Appl. Math. 349 482Google Scholar

    [4]

    丁学利, 贾冰, 李玉叶 2019 物理学报 68 180502Google Scholar

    Ding X L, Jia B, Li Y Y 2019 Acta Phys. Sin. 68 180502Google Scholar

    [5]

    Nielsen B F 2017 J. Math. Neurosci. 7 6Google Scholar

    [6]

    Shim Y, Husbands P 2018 Adapt. Behav. 26 165Google Scholar

    [7]

    Otsuka S, Omori T 2019 Neural Netw. 109 137Google Scholar

    [8]

    杨永霞, 李玉叶, 古华光 2020 物理学报 69 040501Google Scholar

    Yang Y X, Li Y Y, Gu H G 2020 Acta Phys. Sin. 69 040501Google Scholar

    [9]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 116 473Google Scholar

    [10]

    Morris C, Lecar H 1981 Biophys. J. 35 193Google Scholar

    [11]

    Chay R T 1983 J. Phys. Chem. 87 2935Google Scholar

    [12]

    Hindmarsh J L, Rose R M 1984 P. Roy. Soc. B-Biol. Sci. 221 87Google Scholar

    [13]

    Izhikevich E M 2003 IEEE T. Neural Networ. 14 1569Google Scholar

    [14]

    FitzHugh R 1961 Biophys. J. 1 445Google Scholar

    [15]

    Cassidy A S, Merolla P, Arthur J V, Esser S K, Jackson B, Alvarez-Icaza R, Datta P, Sawada J, Wong T M, Feldman V, Amir A, Rubin D B, Akopyan F, McQuinn E, Risk W P, Modha D S 2013 The 2013 International Joint Conference on Neural Networks Dallas, USA, August 4–9, 2013 p1

    [16]

    徐泠风, 李传东, 陈玲 2016 物理学报 65 240701Google Scholar

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701Google Scholar

    [17]

    Barrio R, Lefranc M, Martínez M A, Serrano S 2015 Europhyslett. Lett. 109 20002Google Scholar

    [18]

    Yang S M, Wang J, Li S, Li H Y, Wei X L, Yu H T, Deng B 2015 Neurocomputing 177 274Google Scholar

    [19]

    Babacan Y, Kaçar F, Gürkan K 2016 Neurocomputing 203 86Google Scholar

    [20]

    Bao B C, Huang A H, Bao H 2018 Complexity 2018 1Google Scholar

    [21]

    Usha K, Subha P A 2019 Biosystems 5 1Google Scholar

    [22]

    Zhao Y, Sun X Y, Liu Yang, Kurths J 2018 Nonlinear Dyn. 93 1315Google Scholar

    [23]

    Pham V T, Jafari S, Vaidyanathan S, Vilos C, Wang X 2016 Sci. China Technol. Sci. 59 358Google Scholar

    [24]

    Ma J, Tang J 2015 Sci. China Technol. Sci. 58 2038Google Scholar

    [25]

    Lü M, Wang C N, Ren G D, Ma J, Song X L 2016 Nonlinear Dyn. 85 1479Google Scholar

    [26]

    Wu F Q, Wang C N, Jin W Y Ma J 2017 Physica A 469 81Google Scholar

    [27]

    Kafraja M S, Parastesha F, Jafariba S 2020 Chaos, Soliton. Fract. 137 109782Google Scholar

    [28]

    安新磊, 张莉 2020 力学学报 52 1174Google Scholar

    An X L, Zhang L 2020 Chin. J. Theor. Appl. Mech. 52 1174Google Scholar

    [29]

    Ma J, Zhang G, Hayat T, Ren G D 2019 Nonlinear Dyn. 95 1585Google Scholar

    [30]

    Du L, Cao Z L, Lei Y M, Deng Z C 2019 Sci. China Technol. Sci. 62 1141Google Scholar

    [31]

    Wang C N, Tang J, Ma J 2019 Eur. Phys. J-Spec. Top. 228 1907Google Scholar

    [32]

    Oliveira L B, Filanovsky I M, Allam A, Fernandes J R 2008 IEEE International Symposium on Circuits and Systems Washington, USA, May 18–21, 2008 p2322

    [33]

    Xu Y M, Yao Z, Hobiny A, Aatef H, Ma J 2019 Front. Inform. Tech. El. 20 571Google Scholar

    [34]

    Ma J, Lv M, Zhou P, Xu Y, Hayat T 2017 Appl. Math. Comput. 307 321Google Scholar

    [35]

    Qin H L, Ma J, Ren G D, Zhou P 2018 Int J. Mod. Phys. B 32 1850298Google Scholar

    [36]

    An X L, Zhang L 2018 Nonlinear Dyn. 94 2995Google Scholar

    [37]

    Varshney V, Sabarathinam S, Prasad A 2018 Int. J. Bifurcat. Chaos 28 1850013Google Scholar

    [38]

    Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N, Leonov G, Prasad A 2016 Phys. Rep. 637 1Google Scholar

    [39]

    Gallas J A C 2015 Mod. Phys. Lett. B 29 1530018Google Scholar

    [40]

    Rosa L A S, Prebianca F, Hoff A, Manchein C, Albuquerque H A 2020 Int. J. Bifurcat. Chaos 30 118Google Scholar

    [41]

    Rao X B, Chu Y D, Chang Y X, Zhang J G, Tian Y P 2017 Nonlinear Dyn. 88 2347Google Scholar

    [42]

    Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Hinke M O, Wechselberger M 2012 SIAM Rev. 54 211Google Scholar

    [43]

    Kousaka T, Ogura Y, Shimizu K, Asahara H, Inaba N 2017 Physica D 27 48Google Scholar

    [44]

    Wang Q Q, Yu Y, Zhang Z D, Han X J 2019 J. Low Freq. Noise. V. A. 38 377Google Scholar

    [45]

    Rotstein H G 2014 Encyclopedia of Computational Neuroscience 2 1Google Scholar

    [46]

    孙常春, 陈仲堂, 侯祥林 2017 振动与冲击 36 220

    Sun C C, Chen Z T, Hou X L 2017 J. Vib. Shock 36 220

  • [1] Chen Yu-Wei, Fang Tao, Fan Ying-Le, She Qing-Shan. Intrinsic mechanism of influence of channel blocking and noise on response state of multicompartmental neurons. Acta Physica Sinica, 2024, 73(19): 190501. doi: 10.7498/aps.73.20240967
    [2] Lü Cheng-Ye, Chen Ying-Wei, Xie Mu-Ting, Li Xue-Yang, Yu Hong-Yu, Zhong Yang, Xiang Hong-Jun. First-principles calculation method for periodic system under external electromagnetic field. Acta Physica Sinica, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [3] Yin Jia-Peng, Liu Sheng-Guang. A single long electron bunch detect electromagnetic field evolution in laser plasma. Acta Physica Sinica, 2022, 71(1): 012901. doi: 10.7498/aps.71.20211374
    [4] Zhu Hai-Long, Li Xue-Ying, Tong Hong-Hui. Three-dimensional numerical simulation of physical field distribution of radio frequency thermal plasma. Acta Physica Sinica, 2021, 70(15): 155202. doi: 10.7498/aps.70.20202135
    [5] Wang Yan-Hong, Wang Lei, Wu Jing-Zhi. Nanoscale electromagnetic field interaction generated by microtubule vibration in neurons. Acta Physica Sinica, 2021, 70(15): 158703. doi: 10.7498/aps.70.20210421
    [6] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang. Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field. Acta Physica Sinica, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [7] Zheng Guang-Chao, Liu Chong-Xin, Wang Yan. Dynamic analysis and finite time synchronization of a fractional-order chaotic system with hidden attractors. Acta Physica Sinica, 2018, 67(5): 050502. doi: 10.7498/aps.67.20172354
    [8] Wang Hong-Guang, Zhai Yong-Gui, Li Ji-Xiao, Li Yun, Wang Rui, Wang Xin-Bo, Cui Wan-Zhao, Li Yong-Dong. Fast particle-in-cell simulation method of calculating the multipactor thresholds of microwave devices based on their frequency-domain EM field solutions. Acta Physica Sinica, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [9] Bao Han, Bao Bo-Cheng, Lin Yi, Wang Jiang, Wu Hua-Gan. Hidden attractor and its dynamical characteristic in memristive self-oscillating system. Acta Physica Sinica, 2016, 65(18): 180501. doi: 10.7498/aps.65.180501
    [10] Bi Chuang, Zhang Qian, Xiang Yong, Wang Jing-Mei. Bifurcation and attractor of two-dimensional sinusoidal discrete map. Acta Physica Sinica, 2013, 62(24): 240503. doi: 10.7498/aps.62.240503
    [11] Wang Fa-Qiang, Ma Xi-Kui, Yan Ye. Analysis of Hopf bifurcation in voltage-controlled boost converter under different switching frequencies. Acta Physica Sinica, 2011, 60(6): 060510. doi: 10.7498/aps.60.060510
    [12] Yang Zhuo-Qin, Guan Ting-Ting, Gan Chun-Biao, Zhang Jiao-Ying. Study on bursting of pancreatic cells in codimension-2 bifurcation regions. Acta Physica Sinica, 2011, 60(11): 110202. doi: 10.7498/aps.60.110202
    [13] Deng Shan-Hong, Gao Song, Li Yong-Ping, Pei Yun-Chang, Lin Sheng-Lu. A semiclassical analyses on the auto-ionization of lithium atom in parallel electric and magnetic fields. Acta Physica Sinica, 2010, 59(2): 826-831. doi: 10.7498/aps.59.826
    [14] Zhu Yan-Wu, Shi Shun-Xiang, Liu Ji-Fang, Sun Yan-Ling. A full electromagnetic analysis of a filter substrate lens for spatiotemporal terahertz pulse shaping. Acta Physica Sinica, 2009, 58(2): 1042-1045. doi: 10.7498/aps.58.1042
    [15] Bao Bo-Cheng, Kang Zhu-Sheng, Xu Jian-Ping, Hu Wen. Bifurcation and attractor of generalized square map with exponential term. Acta Physica Sinica, 2009, 58(3): 1420-1431. doi: 10.7498/aps.58.1420
    [16] Lou Zhi-Mei. Mei symmetry for two-dimensional charged particle in motion. Acta Physica Sinica, 2005, 54(3): 1015-1017. doi: 10.7498/aps.54.1015
    [17] Zhang Qin, Ban Chun-Yan, Cui Jian-Zhong, Ba Qi-Xian, Lu Gui-Min, Zhang Bei-Jiang. The forced solution mechanism of alloying agents of 7075 alloy as-cast ingot und er the effects of electromagnetic field. Acta Physica Sinica, 2003, 52(10): 2642-2648. doi: 10.7498/aps.52.2642
    [18] WU QI-XUE. DOUBLE-WAVE DESCRIPTION OF THE MOTION OF SPINNING ELECTRON IN BOTH ELECTROMAGNETIC FIELD AND TWO-DIMENSIONAL HARMONIC OSCILLATOR POTENTIAL FIELD. Acta Physica Sinica, 2000, 49(11): 2118-2122. doi: 10.7498/aps.49.2118
    [19] ZHANG JING-YI. THE ELECTROMAGNETIC FIELD TENSOR FOR THE SOURCE OF FIELD POSSESSING BOTH ELECTRIC AND MAGNETIC CHARGES IN GENERAL RELATIVITY. Acta Physica Sinica, 1999, 48(12): 2158-2161. doi: 10.7498/aps.48.2158
    [20] HE KAI-FEN, HU GANG. THE EFFECT OF NEGATIVE ENERGY MODE ON NONLINEAR INSTABILITY IN DRIVEN DRIFT WAVES (Ⅱ)——EXCHANGE WITH POSITIVE-ENERGY MODE,‘AVOIDED-CROSSING' AND THE HOPF BIFURCATION. Acta Physica Sinica, 1993, 42(7): 1042-1049. doi: 10.7498/aps.42.1042
Metrics
  • Abstract views:  8116
  • PDF Downloads:  135
  • Cited By: 0
Publishing process
  • Received Date:  16 August 2020
  • Accepted Date:  16 September 2020
  • Available Online:  26 February 2021
  • Published Online:  05 March 2021

/

返回文章
返回