Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development and application of vapor deposition technology in atomic manufacturing

Guo Qin-Min Qin Zhi-Hui

Citation:

Development and application of vapor deposition technology in atomic manufacturing

Guo Qin-Min, Qin Zhi-Hui
PDF
HTML
Get Citation
  • With the development of future information devices towards smaller size, lower power consumption and higher performance, the size of materials used to build devices will be further reduced. Traditional “top-down” technology has encountered a bottleneck in the development of information devices on a nanoscale, while the vapor deposition technology has attracted great attention due to its ability to construct nanostructures on an atomic scale, and is considered to have the most potential to break through the existing manufacturing limits and build nano-structures directly with atoms as a “bottom-up” method. During molecular beam epitaxy, atoms and molecules of materials are deposited on the surface in an “atomic spray painting” way. By such a method, some graphene-like two-dimensional materials (e.g., silicene, germanene, stanene, borophene) have been fabricated with high quality and show many novel electronic properties, and the ultrathin films (several atomic layers) of other materials have been grown to achieve certain purposes, such as NaCl ultrathin layers for decoupling the interaction of metal substrate with the adsorbate. In an atomic layer deposition process, which can be regarded as a special modification of chemical vapor deposition, the film growth takes place in a cyclic manner. The self- limited chemical reactions are employed to insure that only one monolayer of precursor (A) molecules is adsorbed on the surface, and the subsequent self- limited reaction with the other precursor (B) allows only one monolayer of AB materials to be built. And the self- assembled monolayers composed of usually long- chain molecules can be introduced as the active or inactive layer for area- selective atomic layer deposition growth, which is very useful in fabricating nano- patterned structures. As the reverse process of atomic layer deposition, atomic-layer etching processes can remove certain materials in atomic precision. In this paper we briefly introduce the principles of the related technologies and their applications in the field of nano- electronic device processing and manufacturing, and find how to realize the precise control of the thickness and microstructure of functional materials on an atomic scale.
      Corresponding author: Qin Zhi-Hui, zhqin@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51772087) and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB30000000)
    [1]

    冯黎, 朱雷 2020 功能材料与器件学报 26 191

    Feng L, Zhu L 2020 J. Funct. Mater. Devices 26 191

    [2]

    庞玉莲, 邹应全 2015 信息记录材料 16 36Google Scholar

    Pang Y L, Zou Y Q 2015 Info. Rec. Mater. 16 36Google Scholar

    [3]

    Striccoli M 2017 Science 357 353Google Scholar

    [4]

    Okazaki S 2015 Microelectron. Eng. 133 23Google Scholar

    [5]

    Hong F, Blaikie R 2019 Adv. Opt. Mater. 7 1801653Google Scholar

    [6]

    王霞, 吕浩, 赵秋玲, 张帅一, 谭永炎 2016 光谱学与光谱分析 36 3461

    Wang X, Lü H, Zhao Q L, Zhang S Y, Tan Y Y 2016 Spectrosc. Spect. Anal. 36 3461

    [7]

    Fang F Z 2016 Front. Mech. Eng. Chin. 11 325Google Scholar

    [8]

    Luo C, Li J F, Yang X, Wu X, Zhong S Y, Wang C L, Sun L T 2020 ACS Appl. Nano Mater. 3 4747

    [9]

    Martín-Palma R J, Lakhtakia A 2013 Engineered Biomimicry (Boston: Elsevier) pp383−398

    [10]

    LaPedus M 2018 工艺与制造 35 39

    LaPedus M 2018 Prog. Fabri. 35 39

    [11]

    Ashurbekova K, Ashurbekova K, Botta G, Yurkevich O, Knez M 2020 Nanotechnology 31 342001Google Scholar

    [12]

    Kulkarni A K 1994 B. Mater. Sci. 17 1379Google Scholar

    [13]

    Mattox D M 1992 Plat. Surf. Finish. 79 60

    [14]

    Mattox D M 1998 Plat. Surf. Finish. 85 49

    [15]

    Zhu D M, Miller R A, Nagaraj B A, Bruce R W 2001 Surf. Coat. Technol. 138 1Google Scholar

    [16]

    Muratore C, Walton S G, Leonhardt D, Fernsler R F 2006 J. Vac. Sci. Technol., A 24 25

    [17]

    Kumar T S, Prabu S B, Manivasagam G 2014 J. Mater. Eng. Perform. 23 2877Google Scholar

    [18]

    Yang R B, Bachmann J, Pippel E, Berger A, Woltersdorf J, Gösele U, Nielsch K 2009 Adv. Mater. 21 3170Google Scholar

    [19]

    Bao Q H, Chen C Z, Wang D G, Ji Q M, Lei T Q 2005 Appl. Surf. Sci. 252 1538Google Scholar

    [20]

    Cho A Y, Arthur J R 1975 Prog. Solid State Chem. 10 157Google Scholar

    [21]

    Hong M 1995 J. Cryst. Growth 150 277Google Scholar

    [22]

    Spirkoska D, Colombo C, Heiss M, Abstreiter G, Morral A F I 2008 J. Phys. Condens. Matter 20 454225Google Scholar

    [23]

    Wang X Q, Yoshika A 2011 Thin Film Growth (Sawston Cambridge: Woodhead Publishing) pp288−316

    [24]

    Howson R P, Spencer A G, Lewin R W 1988 Vacuum 38 947

    [25]

    Kelly P J, Arnell R D 2000 Vacuum 56 159Google Scholar

    [26]

    Shi J Z, Chen C Z, Yu H J, Zhang S J 2008 B. Mater. Sci. 31 877Google Scholar

    [27]

    Brauer G, Szyszka B, Vergohl M, Bandorf R 2010 Vacuum 84 1354Google Scholar

    [28]

    Kopecky D, Vrnata M, Kopecka J 2015 Chem. Listy 109 183

    [29]

    von Wenckstern H, Kneiss M, Hassa A, Storm P, Splith D, Grundmann M 2020 Phys. Status Solidi B 257 1900626Google Scholar

    [30]

    Dabrowska-Szata M 2003 Mater. Chem.Phys. 81 257Google Scholar

    [31]

    Ichimiya A 2005 J. Jpn. Soc. Tribologis. 50 731

    [32]

    Wood C 1981 Surf. Sci. 108 L441

    [33]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [34]

    Zhang J S, Chang C Z, Tang P Z, Zhang Z C, Feng X, Li K, Wang L L, Chen X, Liu C X, Duan W H, He K, Xue Q K, Ma X C, Wang Y Y 2013 Science 339 1582Google Scholar

    [35]

    Fei F, Zhang S, Zhang M, Shah S A, Song F, Wang X, Wang B 2019 Adv. Mater. 32 1904593

    [36]

    Guo Q M, Qin Z H, Liu C D, Zang K, Yu Y H, Cao G Y 2010 Surf. Sci. 604 1820Google Scholar

    [37]

    Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X, Gao H J 2014 Adv. Mater. 26 4820Google Scholar

    [38]

    Qin Z H, Pan J B, Lu S Z, Yan S, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046Google Scholar

    [39]

    Liao M H, Zang Y Y, Guan Z Y, Li H W, Gong Y, Zhu K J, Hu X P, Zhang D, Xu Y, Wang Y Y, He K, Ma X C, Zhang S C, Xue Q K 2018 Nat. Phys. 14 344Google Scholar

    [40]

    秦志辉 2017 物理学报 66 216802Google Scholar

    Qin Z H 2017 Acta Phys. Sin. 66 216802Google Scholar

    [41]

    Qin Z 2013 Chin. Phys. B 22 098108Google Scholar

    [42]

    Cahangirov S, Topsakal M, Aktürk E, Şahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [43]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [44]

    Le Lay G 2015 Nat. Nanotechnol. 10 202Google Scholar

    [45]

    Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002Google Scholar

    [46]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510Google Scholar

    [47]

    Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [48]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 564

    [49]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563Google Scholar

    [50]

    Penev E S, Kutana A, Yakobson B I 2016 Nano Lett. 16 2522Google Scholar

    [51]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [52]

    Guo Q, Zhong Y, Huang M, Lu S, Yu Y 2020 Thin Solid Films 693 137709Google Scholar

    [53]

    Guo Q M, Qin Z H, Huang M, Mantsevich V N, Cao G Y 2016 Chin. Phys. B 25 036801Google Scholar

    [54]

    Beinik I, Barth C, Hanbucken M, Masson L 2015 Sci. Rep. 5 8223Google Scholar

    [55]

    Kwong P, Seidel S, Gupta M 2015 J. Vac. Sci. Technol., A 33 031504Google Scholar

    [56]

    McGinn P J 2019 ACS Comb. Sci. 21 501Google Scholar

    [57]

    Nie Z, Shi Y, Qin S, Wang Y, Jiang H, Zheng Q, Cui Y, Meng Y, Song F, Wang X, Turcu I C E, Wang X, Xu Y, Shi Y, Zhao J, Zhang R, Wang F 2019 Commun. Phys. 2 103Google Scholar

    [58]

    Triboulet R 2014 Prog. Cryst. Growth Charact. Matter. 60 1Google Scholar

    [59]

    Wang X R, Yushin G 2015 Energy Environ. Sci. 8 1889Google Scholar

    [60]

    Yu S J, Pak K, Kwak M J, Joo M, Kim B J, Oh M S, Baek J, Park H, Choi G, Kim D H, Choi J, Choi Y, Shin J, Moon H, Lee E, Im S G 2018 Adv. Eng. Mater. 20 1700622Google Scholar

    [61]

    Keyshar K, Gong Y J, Ye G L, Brunetto G, Zhou W, Cole D P, Hackenberg K, He Y M, Machado L, Kabbani M, Hart A H C, Li B, Galvao D S, George A, Vajtai R, Tiwary C S, Ajayan P M 2015 Adv. Mater. 27 4640Google Scholar

    [62]

    Matsuda T, Sato J, Ishikawa T, Ogino A, Nagatsu M 2009 Diam. Relat. Mater. 18 548Google Scholar

    [63]

    Shukla B, Saito T, Yumura M, Iijima S 2009 Chem. Commun. 342 2

    [64]

    Chen H C, Su W R, Yeh Y C 2020 ACS Appl. Mater. Interfaces 12 32905Google Scholar

    [65]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [66]

    Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125Google Scholar

    [67]

    Kim Y, Choi D S, Kim H J, Kim H, Kim T Y, Rhyu S H, Lee K S, Yoon D H, Yang W S 2014 J. Ceram. Process. Res. 15 269

    [68]

    Fang W J, Hsu A L, Song Y, Kong J 2015 Nanoscale 7 20335Google Scholar

    [69]

    Sun H, Xu J, Wang C, Ge G, Jia Y, Liu J, Song F, Wan J 2016 Carbon 108 356Google Scholar

    [70]

    Sun H, Fu C, Shen X, Yang W, Guo P, Lu Y, Luo Y, Yu B, Wang X, Wang C, Xu J, Liu J, Song F, Wang G, Wan J 2017 Nanotechnology 28 245604Google Scholar

    [71]

    Tan H, Wang D G, Guo Y B 2018 Coatings 8 40Google Scholar

    [72]

    Jessen B S, Gammelgaard L, Thomsen M R, Mackenzie D M A, Thomsen J D, Caridad J M, Duegaard E, Watanabe K, Taniguchi T, Booth T J, Pedersen T G, Jauho A P, Boggild P 2019 Nat. Nanotechnol. 14 340Google Scholar

    [73]

    Wu J, Li Y, Pan D, Jiang C, Jin C, Song F, Wang G, Wan J 2019 Carbon 147 434Google Scholar

    [74]

    Jia K, Ci H, Zhang J, Sun Z, Ma Z, Zhu Y, Liu S, Liu J, Sun L, Liu X, Sun J, Yin W, Peng H, Lin L, Liu Z 2020 Angew. Chem. Int. Ed. 59 17214Google Scholar

    [75]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268Google Scholar

    [76]

    Puurunen R L 2005 J. Appl. Phys. 97 121301Google Scholar

    [77]

    Kol'tsov S I, Aleskovskii V B 1967 Zh. Prikl. Khim. 40 907

    [78]

    Kol'tsov S I, Aleskovskii V B 1969 Zh. Prikl. Khim. 42 1023

    [79]

    Suntola T, Antson J U.S. Patent 4058430 [1977-11-15]

    [80]

    Longo E, Mantovan R, Cecchini R, Overbeek M D, Longo M, Trevisi G, Lazzarini L, Tallarida G, Fanciulli M, Winter C H, Wiemer C 2020 Nano Res. 13 570Google Scholar

    [81]

    Ahvenniemi E, Karppinen M 2016 Dalton Trans. 45 10730Google Scholar

    [82]

    Leskelä M, Ritala M 2003 Angew. Chem. Int. Ed. 42 5548Google Scholar

    [83]

    Yang H C, Waldman R Z, Chen Z W, Darling S B 2018 Nanoscale 10 20505Google Scholar

    [84]

    Griffiths M B E, Pallister P J, Mandia D J, Barry S T 2016 Chem. Mater. 28 44Google Scholar

    [85]

    Ahn J, Ahn C, Jeon S, Park J 2019 Appl. Sci. 9 1990Google Scholar

    [86]

    Marichy C, Bechelany M, Pinna N 2012 Adv. Mater. 24 1017Google Scholar

    [87]

    Ovanesyan R A, Filatova E A, Elliott S D, Hausmann D M, Smith D C, Agarwal S 2019 J. Vac. Sci. Technol., A 37 060904Google Scholar

    [88]

    Solanki R, Huo J, Freeouf J L, Miner B 2002 Appl. Phys. Lett. 81 3864Google Scholar

    [89]

    Andou Y, Nishida H, Endo T 2006 Chem. Commun. 501 8

    [90]

    Amitonova L V, de Boer J F 2020 Light-Sci. Appl. 9 81Google Scholar

    [91]

    Clary J, Norman S, Funke H, Su D, Musgrave C, Weimer A 2020 Nanotechnology 31 175703Google Scholar

    [92]

    Cao K, Cai J, Chen R 2020 Chem. Mater. 32 2195Google Scholar

    [93]

    Shimamura H, Nakamura T 2010 Polym. Degrad. Stab. 95 21Google Scholar

    [94]

    Klesko J P, Kerrigan M M, Winter C H 2016 Chem. Mater. 28 700Google Scholar

    [95]

    Kerrigan M M, Klesko J P, Winter C H 2017 Chem. Mater. 29 7458Google Scholar

    [96]

    Knisley T J, Kalutarage L C, Winter C H 2013 Coord. Chem. Rev. 257 3222Google Scholar

    [97]

    Eigenfeld N T, Gray J M, Brown J J, Skidmore G D, George S M, Bright V M 2014 Adv. Mater. 26 3962Google Scholar

    [98]

    Knisley T J, Saly M J, Heeg M J, Roberts J L, Winter C H 2011 Organometallics 30 5010Google Scholar

    [99]

    Krozer A, Rodahl M 1997 J. Vac. Sci. Technol., A 15 1704Google Scholar

    [100]

    Chen R, Bent S F 2006 Adv. Mater. 18 1086Google Scholar

    [101]

    Wojtecki R, Mettry M, Fine Nathel N F, Friz A, De Silva A, Arellano N, Shobha H 2018 ACS Appl. Mater. Interfaces 10 38630Google Scholar

    [102]

    Koenig M, Lahann J 2017 Beilstein J. Nanotechnol. 8 1250Google Scholar

    [103]

    Chang Y H, Liu C M, Tseng Y C, Chen C, Chen C C, Cheng H E 2010 Nanotechnology 21 225602Google Scholar

    [104]

    Kim S W, Han T H, Kim J, Gwon H, Moon H S, Kang S W, Kim S O, Kang K 2009 ACS Nano 3 1085Google Scholar

    [105]

    Ban C M, George S M 2016 Adv. Mater. Interfaces 3 1600762Google Scholar

    [106]

    Liu L, Karuturi S K, Su L T, Tok A I Y 2011 Energy Environ. Sci. 4 209Google Scholar

    [107]

    Mackus A J M, Bol A A, Kessels W M M 2014 Nanoscale 6 10941Google Scholar

    [108]

    Skoog S A, Elam J W, Narayan R J 2013 Int. Mater. Rev. 58 113Google Scholar

    [109]

    Szilagyi I M, Teucher G, Harkonen E, Farm E, Hatanpaa T, Nikitin T, Khriachtchev L, Rasanen M, Ritala M, Leskela M 2013 Nanotechnology 24 245701Google Scholar

    [110]

    Gebhard M, Mitschker F, Hoppe C, Aghaee M, Rogalla D, Creatore M, Grundmeier G, Awakowicz P, Devi A 2018 Plasma Process. Polym. 15 e1700209Google Scholar

    [111]

    Kim K M, Jang J S, Yoon S G, Yun J Y, Chung N K 2020 Materials 13 2008Google Scholar

    [112]

    Choudhury D, Sarkar S K 2014 Chem. Vapor Depos. 20 130Google Scholar

    [113]

    Yoshimura T 2016 Macromol. Symp. 361 141Google Scholar

    [114]

    Poodt P, Cameron D C, Dickey E, George S M, Kuznetsov V, Parsons G N, Roozeboom F, Sundaram G, Vermeer A 2012 J. Vac. Sci. Technol., A 30 010802Google Scholar

    [115]

    Poodt P, van Lieshout J, Illiberi A, Knaapen R, Roozeboom F, van Asten A 2013 J. Vac. Sci. Technol., A 31 01A108

    [116]

    Sharma K, Hall R A, George S M 2015 J. Vac. Sci. Technol., A 33 01A132Google Scholar

    [117]

    Mousa M B M, Ovental J S, Brozena A H, Oldham C J, Parsons G N 2018 J. Vac. Sci. Technol., A 36 031517Google Scholar

    [118]

    Satpati A K, Arroyo-Curras N, Ji L, Yu E T, Bard A J 2013 Chem. Mater. 25 4165Google Scholar

    [119]

    Venkatraman K, Gusley R, Lesak A, Akolkar R 2019 J. Vac. Sci. Technol., A 37 020901Google Scholar

    [120]

    Elam J W 2012 Atomic Layer Deposition of Nanostructured Materials (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp227−249

    [121]

    Chen R, Kim H, McIntyre P C, Porter D W, Bent S F 2005 Appl. Phys. Lett. 86 191910Google Scholar

    [122]

    Lee H B R, Bent S F 2012 Atomic Layer Deposition of Nanostructured Materials (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp193−225

    [123]

    Hashemi F S M, Prasittichai C, Bent S F 2014 J. Phys. Chem. C 118 10957Google Scholar

    [124]

    Minaye Hashemi F S, Prasittichai C, Bent S F 2015 ACS Nano 9 8710Google Scholar

    [125]

    Hashemi F S M, Bent S F 2016 Adv. Mater. Interfaces 3 1600464Google Scholar

    [126]

    Seo S, Yeo B C, Han S S, Yoon C M, Yang J Y, Yoon J, Yoo C, Kim H J, Lee Y B, Lee S J, Myoung J M, Lee H B R, Kim W H, Oh I K, Kim H 2017 ACS Appl. Mater. Interfaces 9 41607Google Scholar

    [127]

    Farm E, Kemell M, Santala E, Ritala M, Leskela M 2010 J. Electrochem. Soc. 157 K10Google Scholar

    [128]

    Lee W, Prinz F B 2009 J. Electrochem. Soc. 156 G125Google Scholar

    [129]

    Horiike Y, Tanaka T, Nakano M, Iseda S, Sakaue H, Nagata A, Shindo H, Miyazaki S, Hirose M 1990 J. Vac. Sci. Technol., A 8 1844Google Scholar

    [130]

    Athavale S D 1996 J. Vac. Sci. Technol., B 14 3702Google Scholar

    [131]

    Dimiev A, Kosynkin D V, Sinitskii A, Slesarev A, Sun Z, Tour J M 2011 Science 331 1168Google Scholar

    [132]

    Faraz T, Roozeboom F, Knoops H, Kessels W M M 2015 ECS J. Solid State SC 4 N5023

    [133]

    Lee Y, DuMont J W, George S M 2015 Chem. Mater. 27 3648Google Scholar

    [134]

    Oehrlein G, Metzler D, Li C 2015 ECS J. Solid State SC 4 N5041

    [135]

    Kauppinen C, Khan S A, Sundqvist J, Suyatin D B, Suihkonen S, Kauppinen E I, Sopanen M 2017 J. Vac. Sci. Technol., A 35 060603Google Scholar

    [136]

    Kim K S, Ji Y J, Nam Y, Kim K H, Singh E, Lee J Y, Yeom G Y 2017 Sci. Rep. 7 2462Google Scholar

    [137]

    Kim K S, Kim K H, Nam Y, Jeon J, Yim S, Singh E, Lee J Y, Lee S J, Jung Y S, Yeom G Y, Kim D W 2017 ACS Appl. Mater. Interfaces 9 11967Google Scholar

    [138]

    Park J W, Kim D S, Mun M K, Lee W O, Kim K S, Yeom G Y 2017 J. Phys. D: Appl. Phys. 50 254007Google Scholar

    [139]

    Shinoda K, Miyoshi N, Kobayashi H, Kurihara M, Izawa M, Ishikawa K, Hori M 2017 ECS Trans. 80 3

    [140]

    Abdulagatov A I, George S M 2018 Chem. Mater. 30 8465Google Scholar

    [141]

    Cheng Y, Wang K, Qi Y, Liu Z 2020 Acta Phys.-Chim. Sin. 2021 37

    [142]

    Wang M, Fu L, Gan L, Zhang C, Rummeli M, Bachmatiuk A, Huang K, Fang Y, Liu Z 2013 Sci. Rep. 3 1238Google Scholar

  • 图 1  MBE系统结构示意图

    Figure 1.  Schematic diagram of MBE system.

    图 2  RHEED系统示意图和漫反射现象随着薄膜生长的关系示意图

    Figure 2.  Schematic diagram of RHEED, and the relationship between diffuse reflection and film coverage during growth.

    图 3  (a) Pt(111)表面锗烯的理论计算结构; (b)−(g) 不同位置的Ge原子对以及Ge单原子与最近邻基底Pt原子间电子局域函数的计算模拟; (h)−(j) 锗烯的实验结果(LEED, STM图像及表观高度)[37]

    Figure 3.  (a) Theoretical model of germanene on Pt (111) surface, and the electron localization functions of the cross-sections between the germanium pairs (b)−(f) and between one germanium atom and its nearest Pt neighbor (g). (h)−(j) The experimental results of LEED pattern, STM image and the apparent height along the indicated line in the STM image, respectively[37].

    图 4  (a) Cu(111)表面制备的锗烯; (b), (c) Cu(111)基底和锗烯的原子分辨图像; (d) 双层锗烯的吸附结构模型; (e) 相应的STM图像模拟, 与实验结果(c)吻合; (f) 单层(红色)和双层(黑色)锗烯的电子结构(STS谱), 插图为Cu(111)基底STS谱用于标定针尖状态[38]

    Figure 4.  (a) STM image of germanene on Cu(111); (b), (c) the atomic-resolved STM images of Cu (111) substrate and germanene, respectively; (d) the adsorption model of bilayer germanene; (e) the simulated STM image with the features fitting very well with the experimental observations; (f) the STS of monolayer (red) and bilayer (black) germanene, and inset is STS taken on the bare Cu(111) to verify the condition of the tip[38].

    图 5  (a)−(c) 在Cu(111)表面MBE生长的不同取向的硒化铜蜂窝状结构的STM图像; (d) 用于标定针尖状态的Cu(111)表面标准STS谱; (e) CuSe结构的STS谱[52]

    Figure 5.  (a)−(c) The STM images of honeycomb structures with equivalent orientations on Cu(111) by means of MBE growth; (d) the standard STS of Cu(111) for checking tip status; (e) electronic structure (STS) of CuSe structures[52].

    图 6  (a) 在Cu(100)上外延生长的NaCl薄膜[36], 以及在其上的CoPc分子轨道的实验(b)和理论(c)图像[53]

    Figure 6.  (a) MBE growth of NaCl layers on Cu(100)[36], on top of which the quasi-free molecular orbital of adsorbed CoPc can be observed. (b) and (c) are the STM image and theoretical simulation of molecular orbital, respectively[53].

    图 7  两种主要的石墨烯的CVD生长机制[75] (a) 偏析机制; (b) 表面化学反应机制

    Figure 7.  Two main mechanisms of CVD growth of graphene[75] (a) Segregation mechanism; (b) surface reaction mechanism.

    图 8  原子层沉积系统示意图

    Figure 8.  Schematic diagram of atomic layer deposition system.

    图 9  Al2O3层的ALD制备过程[76]

    Figure 9.  The ALD process of Al2O3[76].

    图 10  (a) ALD与其他方式镀膜效果比较; (b) 在深高宽比Si结构上原子沉积Cu2S薄膜的SEM照片[120]

    Figure 10.  (a) The coating effects of ALD and other methods; (b) cross-sectional SEM images of ALD Cu2S film on silicon trench structure[120].

    图 11  气体前驱体暴露量和沉积温度对原子层沉积镀膜速率的影响

    Figure 11.  Effects of gaseous precursor exposure and deposition temperature on deposition rate of atomic layers.

    图 12  在SiO2/H-Si表面选区ALD沉积High-k氧化铪制作MOSFET原型[121]

    Figure 12.  The area-selective ALD of high-k hafnium oxide on SiO2/H-Si surface to fabricate MOSFET prototype.[121]

    图 13  (a) 左边选区ALD的原理示意图, 右边为自组装钝化层的单体分子结构; (b) 自组装薄膜的缺陷(pinhole)影响ALD沉积过程的选择性; (c) 自组装分子的光聚合官能团(二炔基)在光诱导下聚合有效抑制缺陷产生; (d) 通过选区ALD沉积ZnO掩膜刻蚀后的微结构, 结构最窄宽度约为15 nm[101]

    Figure 13.  (a) Schematic diagram of area-selective ALD growth (left), and the monomer molecular structures forming inactive SAMs (right); (b) the pinhole defect affects the selectivity of ALD deposition; (c) photopolymeric functional groups (diacetylenyl) of SAMs can effectively inhibit defect formation in terms of photo-induced polymerization; (d) SEM micrograph of the microstructure obtained by etching with ZnO mask of area-selective ALD, and the width of narrowest structure reaches 15 nm[101].

    图 14  ALE和ALD过程对比示意图[132]

    Figure 14.  Schematic diagram of ALE process compared with ALD[132].

    图 15  双层石墨烯ALE刻蚀前后的光学显微图像(a), (b)以及相应的AFM图像(c), (d)和在各位点的拉曼谱(e)[136]

    Figure 15.  Optical microscopic images (a), (b) and AFM images (c), (d) of bilayer graphene before and after one cycle of ALE etching. (e) Raman spectrum of graphene taken at twelve points indicated in (a), (b) before and after etching[136].

    图 16  单层石墨烯经过一个循环的ALE刻蚀前后的拉曼光谱[136]

    Figure 16.  Raman spectrum of monolayer graphene before and after one cycle of ALE[136].

    图 17  (a)−(f) 经过PS纳米球掩膜的石墨烯加工过程; (g) 铜箔表面具有纳米模板的石墨烯[142]

    Figure 17.  (a)−(f) The growth and etching processes of graphene via PS nanoparticle mask; (g) the nano-patterned template graphene on Cu foil[142].

  • [1]

    冯黎, 朱雷 2020 功能材料与器件学报 26 191

    Feng L, Zhu L 2020 J. Funct. Mater. Devices 26 191

    [2]

    庞玉莲, 邹应全 2015 信息记录材料 16 36Google Scholar

    Pang Y L, Zou Y Q 2015 Info. Rec. Mater. 16 36Google Scholar

    [3]

    Striccoli M 2017 Science 357 353Google Scholar

    [4]

    Okazaki S 2015 Microelectron. Eng. 133 23Google Scholar

    [5]

    Hong F, Blaikie R 2019 Adv. Opt. Mater. 7 1801653Google Scholar

    [6]

    王霞, 吕浩, 赵秋玲, 张帅一, 谭永炎 2016 光谱学与光谱分析 36 3461

    Wang X, Lü H, Zhao Q L, Zhang S Y, Tan Y Y 2016 Spectrosc. Spect. Anal. 36 3461

    [7]

    Fang F Z 2016 Front. Mech. Eng. Chin. 11 325Google Scholar

    [8]

    Luo C, Li J F, Yang X, Wu X, Zhong S Y, Wang C L, Sun L T 2020 ACS Appl. Nano Mater. 3 4747

    [9]

    Martín-Palma R J, Lakhtakia A 2013 Engineered Biomimicry (Boston: Elsevier) pp383−398

    [10]

    LaPedus M 2018 工艺与制造 35 39

    LaPedus M 2018 Prog. Fabri. 35 39

    [11]

    Ashurbekova K, Ashurbekova K, Botta G, Yurkevich O, Knez M 2020 Nanotechnology 31 342001Google Scholar

    [12]

    Kulkarni A K 1994 B. Mater. Sci. 17 1379Google Scholar

    [13]

    Mattox D M 1992 Plat. Surf. Finish. 79 60

    [14]

    Mattox D M 1998 Plat. Surf. Finish. 85 49

    [15]

    Zhu D M, Miller R A, Nagaraj B A, Bruce R W 2001 Surf. Coat. Technol. 138 1Google Scholar

    [16]

    Muratore C, Walton S G, Leonhardt D, Fernsler R F 2006 J. Vac. Sci. Technol., A 24 25

    [17]

    Kumar T S, Prabu S B, Manivasagam G 2014 J. Mater. Eng. Perform. 23 2877Google Scholar

    [18]

    Yang R B, Bachmann J, Pippel E, Berger A, Woltersdorf J, Gösele U, Nielsch K 2009 Adv. Mater. 21 3170Google Scholar

    [19]

    Bao Q H, Chen C Z, Wang D G, Ji Q M, Lei T Q 2005 Appl. Surf. Sci. 252 1538Google Scholar

    [20]

    Cho A Y, Arthur J R 1975 Prog. Solid State Chem. 10 157Google Scholar

    [21]

    Hong M 1995 J. Cryst. Growth 150 277Google Scholar

    [22]

    Spirkoska D, Colombo C, Heiss M, Abstreiter G, Morral A F I 2008 J. Phys. Condens. Matter 20 454225Google Scholar

    [23]

    Wang X Q, Yoshika A 2011 Thin Film Growth (Sawston Cambridge: Woodhead Publishing) pp288−316

    [24]

    Howson R P, Spencer A G, Lewin R W 1988 Vacuum 38 947

    [25]

    Kelly P J, Arnell R D 2000 Vacuum 56 159Google Scholar

    [26]

    Shi J Z, Chen C Z, Yu H J, Zhang S J 2008 B. Mater. Sci. 31 877Google Scholar

    [27]

    Brauer G, Szyszka B, Vergohl M, Bandorf R 2010 Vacuum 84 1354Google Scholar

    [28]

    Kopecky D, Vrnata M, Kopecka J 2015 Chem. Listy 109 183

    [29]

    von Wenckstern H, Kneiss M, Hassa A, Storm P, Splith D, Grundmann M 2020 Phys. Status Solidi B 257 1900626Google Scholar

    [30]

    Dabrowska-Szata M 2003 Mater. Chem.Phys. 81 257Google Scholar

    [31]

    Ichimiya A 2005 J. Jpn. Soc. Tribologis. 50 731

    [32]

    Wood C 1981 Surf. Sci. 108 L441

    [33]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [34]

    Zhang J S, Chang C Z, Tang P Z, Zhang Z C, Feng X, Li K, Wang L L, Chen X, Liu C X, Duan W H, He K, Xue Q K, Ma X C, Wang Y Y 2013 Science 339 1582Google Scholar

    [35]

    Fei F, Zhang S, Zhang M, Shah S A, Song F, Wang X, Wang B 2019 Adv. Mater. 32 1904593

    [36]

    Guo Q M, Qin Z H, Liu C D, Zang K, Yu Y H, Cao G Y 2010 Surf. Sci. 604 1820Google Scholar

    [37]

    Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X, Gao H J 2014 Adv. Mater. 26 4820Google Scholar

    [38]

    Qin Z H, Pan J B, Lu S Z, Yan S, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046Google Scholar

    [39]

    Liao M H, Zang Y Y, Guan Z Y, Li H W, Gong Y, Zhu K J, Hu X P, Zhang D, Xu Y, Wang Y Y, He K, Ma X C, Zhang S C, Xue Q K 2018 Nat. Phys. 14 344Google Scholar

    [40]

    秦志辉 2017 物理学报 66 216802Google Scholar

    Qin Z H 2017 Acta Phys. Sin. 66 216802Google Scholar

    [41]

    Qin Z 2013 Chin. Phys. B 22 098108Google Scholar

    [42]

    Cahangirov S, Topsakal M, Aktürk E, Şahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [43]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [44]

    Le Lay G 2015 Nat. Nanotechnol. 10 202Google Scholar

    [45]

    Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002Google Scholar

    [46]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510Google Scholar

    [47]

    Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [48]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 564

    [49]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563Google Scholar

    [50]

    Penev E S, Kutana A, Yakobson B I 2016 Nano Lett. 16 2522Google Scholar

    [51]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [52]

    Guo Q, Zhong Y, Huang M, Lu S, Yu Y 2020 Thin Solid Films 693 137709Google Scholar

    [53]

    Guo Q M, Qin Z H, Huang M, Mantsevich V N, Cao G Y 2016 Chin. Phys. B 25 036801Google Scholar

    [54]

    Beinik I, Barth C, Hanbucken M, Masson L 2015 Sci. Rep. 5 8223Google Scholar

    [55]

    Kwong P, Seidel S, Gupta M 2015 J. Vac. Sci. Technol., A 33 031504Google Scholar

    [56]

    McGinn P J 2019 ACS Comb. Sci. 21 501Google Scholar

    [57]

    Nie Z, Shi Y, Qin S, Wang Y, Jiang H, Zheng Q, Cui Y, Meng Y, Song F, Wang X, Turcu I C E, Wang X, Xu Y, Shi Y, Zhao J, Zhang R, Wang F 2019 Commun. Phys. 2 103Google Scholar

    [58]

    Triboulet R 2014 Prog. Cryst. Growth Charact. Matter. 60 1Google Scholar

    [59]

    Wang X R, Yushin G 2015 Energy Environ. Sci. 8 1889Google Scholar

    [60]

    Yu S J, Pak K, Kwak M J, Joo M, Kim B J, Oh M S, Baek J, Park H, Choi G, Kim D H, Choi J, Choi Y, Shin J, Moon H, Lee E, Im S G 2018 Adv. Eng. Mater. 20 1700622Google Scholar

    [61]

    Keyshar K, Gong Y J, Ye G L, Brunetto G, Zhou W, Cole D P, Hackenberg K, He Y M, Machado L, Kabbani M, Hart A H C, Li B, Galvao D S, George A, Vajtai R, Tiwary C S, Ajayan P M 2015 Adv. Mater. 27 4640Google Scholar

    [62]

    Matsuda T, Sato J, Ishikawa T, Ogino A, Nagatsu M 2009 Diam. Relat. Mater. 18 548Google Scholar

    [63]

    Shukla B, Saito T, Yumura M, Iijima S 2009 Chem. Commun. 342 2

    [64]

    Chen H C, Su W R, Yeh Y C 2020 ACS Appl. Mater. Interfaces 12 32905Google Scholar

    [65]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [66]

    Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125Google Scholar

    [67]

    Kim Y, Choi D S, Kim H J, Kim H, Kim T Y, Rhyu S H, Lee K S, Yoon D H, Yang W S 2014 J. Ceram. Process. Res. 15 269

    [68]

    Fang W J, Hsu A L, Song Y, Kong J 2015 Nanoscale 7 20335Google Scholar

    [69]

    Sun H, Xu J, Wang C, Ge G, Jia Y, Liu J, Song F, Wan J 2016 Carbon 108 356Google Scholar

    [70]

    Sun H, Fu C, Shen X, Yang W, Guo P, Lu Y, Luo Y, Yu B, Wang X, Wang C, Xu J, Liu J, Song F, Wang G, Wan J 2017 Nanotechnology 28 245604Google Scholar

    [71]

    Tan H, Wang D G, Guo Y B 2018 Coatings 8 40Google Scholar

    [72]

    Jessen B S, Gammelgaard L, Thomsen M R, Mackenzie D M A, Thomsen J D, Caridad J M, Duegaard E, Watanabe K, Taniguchi T, Booth T J, Pedersen T G, Jauho A P, Boggild P 2019 Nat. Nanotechnol. 14 340Google Scholar

    [73]

    Wu J, Li Y, Pan D, Jiang C, Jin C, Song F, Wang G, Wan J 2019 Carbon 147 434Google Scholar

    [74]

    Jia K, Ci H, Zhang J, Sun Z, Ma Z, Zhu Y, Liu S, Liu J, Sun L, Liu X, Sun J, Yin W, Peng H, Lin L, Liu Z 2020 Angew. Chem. Int. Ed. 59 17214Google Scholar

    [75]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268Google Scholar

    [76]

    Puurunen R L 2005 J. Appl. Phys. 97 121301Google Scholar

    [77]

    Kol'tsov S I, Aleskovskii V B 1967 Zh. Prikl. Khim. 40 907

    [78]

    Kol'tsov S I, Aleskovskii V B 1969 Zh. Prikl. Khim. 42 1023

    [79]

    Suntola T, Antson J U.S. Patent 4058430 [1977-11-15]

    [80]

    Longo E, Mantovan R, Cecchini R, Overbeek M D, Longo M, Trevisi G, Lazzarini L, Tallarida G, Fanciulli M, Winter C H, Wiemer C 2020 Nano Res. 13 570Google Scholar

    [81]

    Ahvenniemi E, Karppinen M 2016 Dalton Trans. 45 10730Google Scholar

    [82]

    Leskelä M, Ritala M 2003 Angew. Chem. Int. Ed. 42 5548Google Scholar

    [83]

    Yang H C, Waldman R Z, Chen Z W, Darling S B 2018 Nanoscale 10 20505Google Scholar

    [84]

    Griffiths M B E, Pallister P J, Mandia D J, Barry S T 2016 Chem. Mater. 28 44Google Scholar

    [85]

    Ahn J, Ahn C, Jeon S, Park J 2019 Appl. Sci. 9 1990Google Scholar

    [86]

    Marichy C, Bechelany M, Pinna N 2012 Adv. Mater. 24 1017Google Scholar

    [87]

    Ovanesyan R A, Filatova E A, Elliott S D, Hausmann D M, Smith D C, Agarwal S 2019 J. Vac. Sci. Technol., A 37 060904Google Scholar

    [88]

    Solanki R, Huo J, Freeouf J L, Miner B 2002 Appl. Phys. Lett. 81 3864Google Scholar

    [89]

    Andou Y, Nishida H, Endo T 2006 Chem. Commun. 501 8

    [90]

    Amitonova L V, de Boer J F 2020 Light-Sci. Appl. 9 81Google Scholar

    [91]

    Clary J, Norman S, Funke H, Su D, Musgrave C, Weimer A 2020 Nanotechnology 31 175703Google Scholar

    [92]

    Cao K, Cai J, Chen R 2020 Chem. Mater. 32 2195Google Scholar

    [93]

    Shimamura H, Nakamura T 2010 Polym. Degrad. Stab. 95 21Google Scholar

    [94]

    Klesko J P, Kerrigan M M, Winter C H 2016 Chem. Mater. 28 700Google Scholar

    [95]

    Kerrigan M M, Klesko J P, Winter C H 2017 Chem. Mater. 29 7458Google Scholar

    [96]

    Knisley T J, Kalutarage L C, Winter C H 2013 Coord. Chem. Rev. 257 3222Google Scholar

    [97]

    Eigenfeld N T, Gray J M, Brown J J, Skidmore G D, George S M, Bright V M 2014 Adv. Mater. 26 3962Google Scholar

    [98]

    Knisley T J, Saly M J, Heeg M J, Roberts J L, Winter C H 2011 Organometallics 30 5010Google Scholar

    [99]

    Krozer A, Rodahl M 1997 J. Vac. Sci. Technol., A 15 1704Google Scholar

    [100]

    Chen R, Bent S F 2006 Adv. Mater. 18 1086Google Scholar

    [101]

    Wojtecki R, Mettry M, Fine Nathel N F, Friz A, De Silva A, Arellano N, Shobha H 2018 ACS Appl. Mater. Interfaces 10 38630Google Scholar

    [102]

    Koenig M, Lahann J 2017 Beilstein J. Nanotechnol. 8 1250Google Scholar

    [103]

    Chang Y H, Liu C M, Tseng Y C, Chen C, Chen C C, Cheng H E 2010 Nanotechnology 21 225602Google Scholar

    [104]

    Kim S W, Han T H, Kim J, Gwon H, Moon H S, Kang S W, Kim S O, Kang K 2009 ACS Nano 3 1085Google Scholar

    [105]

    Ban C M, George S M 2016 Adv. Mater. Interfaces 3 1600762Google Scholar

    [106]

    Liu L, Karuturi S K, Su L T, Tok A I Y 2011 Energy Environ. Sci. 4 209Google Scholar

    [107]

    Mackus A J M, Bol A A, Kessels W M M 2014 Nanoscale 6 10941Google Scholar

    [108]

    Skoog S A, Elam J W, Narayan R J 2013 Int. Mater. Rev. 58 113Google Scholar

    [109]

    Szilagyi I M, Teucher G, Harkonen E, Farm E, Hatanpaa T, Nikitin T, Khriachtchev L, Rasanen M, Ritala M, Leskela M 2013 Nanotechnology 24 245701Google Scholar

    [110]

    Gebhard M, Mitschker F, Hoppe C, Aghaee M, Rogalla D, Creatore M, Grundmeier G, Awakowicz P, Devi A 2018 Plasma Process. Polym. 15 e1700209Google Scholar

    [111]

    Kim K M, Jang J S, Yoon S G, Yun J Y, Chung N K 2020 Materials 13 2008Google Scholar

    [112]

    Choudhury D, Sarkar S K 2014 Chem. Vapor Depos. 20 130Google Scholar

    [113]

    Yoshimura T 2016 Macromol. Symp. 361 141Google Scholar

    [114]

    Poodt P, Cameron D C, Dickey E, George S M, Kuznetsov V, Parsons G N, Roozeboom F, Sundaram G, Vermeer A 2012 J. Vac. Sci. Technol., A 30 010802Google Scholar

    [115]

    Poodt P, van Lieshout J, Illiberi A, Knaapen R, Roozeboom F, van Asten A 2013 J. Vac. Sci. Technol., A 31 01A108

    [116]

    Sharma K, Hall R A, George S M 2015 J. Vac. Sci. Technol., A 33 01A132Google Scholar

    [117]

    Mousa M B M, Ovental J S, Brozena A H, Oldham C J, Parsons G N 2018 J. Vac. Sci. Technol., A 36 031517Google Scholar

    [118]

    Satpati A K, Arroyo-Curras N, Ji L, Yu E T, Bard A J 2013 Chem. Mater. 25 4165Google Scholar

    [119]

    Venkatraman K, Gusley R, Lesak A, Akolkar R 2019 J. Vac. Sci. Technol., A 37 020901Google Scholar

    [120]

    Elam J W 2012 Atomic Layer Deposition of Nanostructured Materials (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp227−249

    [121]

    Chen R, Kim H, McIntyre P C, Porter D W, Bent S F 2005 Appl. Phys. Lett. 86 191910Google Scholar

    [122]

    Lee H B R, Bent S F 2012 Atomic Layer Deposition of Nanostructured Materials (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp193−225

    [123]

    Hashemi F S M, Prasittichai C, Bent S F 2014 J. Phys. Chem. C 118 10957Google Scholar

    [124]

    Minaye Hashemi F S, Prasittichai C, Bent S F 2015 ACS Nano 9 8710Google Scholar

    [125]

    Hashemi F S M, Bent S F 2016 Adv. Mater. Interfaces 3 1600464Google Scholar

    [126]

    Seo S, Yeo B C, Han S S, Yoon C M, Yang J Y, Yoon J, Yoo C, Kim H J, Lee Y B, Lee S J, Myoung J M, Lee H B R, Kim W H, Oh I K, Kim H 2017 ACS Appl. Mater. Interfaces 9 41607Google Scholar

    [127]

    Farm E, Kemell M, Santala E, Ritala M, Leskela M 2010 J. Electrochem. Soc. 157 K10Google Scholar

    [128]

    Lee W, Prinz F B 2009 J. Electrochem. Soc. 156 G125Google Scholar

    [129]

    Horiike Y, Tanaka T, Nakano M, Iseda S, Sakaue H, Nagata A, Shindo H, Miyazaki S, Hirose M 1990 J. Vac. Sci. Technol., A 8 1844Google Scholar

    [130]

    Athavale S D 1996 J. Vac. Sci. Technol., B 14 3702Google Scholar

    [131]

    Dimiev A, Kosynkin D V, Sinitskii A, Slesarev A, Sun Z, Tour J M 2011 Science 331 1168Google Scholar

    [132]

    Faraz T, Roozeboom F, Knoops H, Kessels W M M 2015 ECS J. Solid State SC 4 N5023

    [133]

    Lee Y, DuMont J W, George S M 2015 Chem. Mater. 27 3648Google Scholar

    [134]

    Oehrlein G, Metzler D, Li C 2015 ECS J. Solid State SC 4 N5041

    [135]

    Kauppinen C, Khan S A, Sundqvist J, Suyatin D B, Suihkonen S, Kauppinen E I, Sopanen M 2017 J. Vac. Sci. Technol., A 35 060603Google Scholar

    [136]

    Kim K S, Ji Y J, Nam Y, Kim K H, Singh E, Lee J Y, Yeom G Y 2017 Sci. Rep. 7 2462Google Scholar

    [137]

    Kim K S, Kim K H, Nam Y, Jeon J, Yim S, Singh E, Lee J Y, Lee S J, Jung Y S, Yeom G Y, Kim D W 2017 ACS Appl. Mater. Interfaces 9 11967Google Scholar

    [138]

    Park J W, Kim D S, Mun M K, Lee W O, Kim K S, Yeom G Y 2017 J. Phys. D: Appl. Phys. 50 254007Google Scholar

    [139]

    Shinoda K, Miyoshi N, Kobayashi H, Kurihara M, Izawa M, Ishikawa K, Hori M 2017 ECS Trans. 80 3

    [140]

    Abdulagatov A I, George S M 2018 Chem. Mater. 30 8465Google Scholar

    [141]

    Cheng Y, Wang K, Qi Y, Liu Z 2020 Acta Phys.-Chim. Sin. 2021 37

    [142]

    Wang M, Fu L, Gan L, Zhang C, Rummeli M, Bachmatiuk A, Huang K, Fang Y, Liu Z 2013 Sci. Rep. 3 1238Google Scholar

  • [1] Qiu Peng, Liu Heng, Zhu Xiao-Li, Tian Feng, Du Meng-Chao, Qiu Hong-Yu, Chen Guan-Liang, Hu Yu-Yu, Kong De-Lin, Yang Jin, Wei Hui-Yun, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition and application of group III nitrides semiconductor and their alloys. Acta Physica Sinica, 2024, 73(3): 038102. doi: 10.7498/aps.73.20230832
    [2] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [3] Li Zhong-Xiang, Wang Shu-Ya, Huang Zi-Qiang, Wang Chen, Mu Qing. Preparation of Al2O3 tunnel barrier layer in atome-level controlled Josephson junction. Acta Physica Sinica, 2022, 71(21): 218102. doi: 10.7498/aps.71.20220820
    [4] Dai Li-Zhi, Hu Xiao-Xue, Liu Peng, Tian Ye. DNA origami mediated precise fabrication of nanostructures in multi scales. Acta Physica Sinica, 2021, 70(6): 068201. doi: 10.7498/aps.70.20201689
    [5] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [6] Zhong Xiao-Yan, Li Zhuo. Atomic scale characterization of three-dimensional structure, magnetic properties and dynamic evolutions of materials by transmission electron microscopy. Acta Physica Sinica, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [7] Zhan Hai-Yang, Xing Fei, Zhang Li. Analysis of optical measurement precision limit for close-to-atomic scale manufacturing. Acta Physica Sinica, 2021, 70(6): 060703. doi: 10.7498/aps.70.20201924
    [8] Li Sheng-Kai, Hao Qing, Peng Tian-Huan, Chen Zhuo, Tan Wei-Hong. Nucleic acid-metal complex and its application in atomic-scale manufacturing. Acta Physica Sinica, 2021, 70(2): 028102. doi: 10.7498/aps.70.20201430
    [9] Yang Bei, Li Qian, Liu Hua-Jie, Fan Chun-Hai. Recent progress of frame nucleic acids studies towards atomic fabrications. Acta Physica Sinica, 2021, 70(2): 026201. doi: 10.7498/aps.70.20201437
    [10] Li Ye, Wang Xi-Xi, Wei Hui-Yun, Qiu Peng, He Ying-Feng, Song Yi-Meng, Duan Zhang, Shen Cheng-Tao, Peng Ming-Zeng, Zheng Xin-He. Enhancement of interface transportation for quantum dot solar cells using ultrathin InN by atomic layer deposition. Acta Physica Sinica, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [11] Wang Xing-Yue, Zhang Hui, Ruan Zi-Lin, Hao Zhen-Liang, Yang Xiao-Tian, Cai Jin-Ming, Lu Jian-Chen. Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions. Acta Physica Sinica, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [12] Liu Ke, Ma Wen-Quan, Huang Jian-Liang, Zhang Yan-Hua, Cao Yu-Lian, Huang Wen-Jun, Zhao Cheng-Cheng. Three-color InAs/GaAs quantum dot infrared photodetector with AlGaAs inserting layer. Acta Physica Sinica, 2016, 65(10): 108502. doi: 10.7498/aps.65.108502
    [13] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [14] Wang Meng, Ou Yun-Bo, Li Fang-Sen, Zhang Wen-Hao, Tang Chen-Jia, Wang Li-Li, Xue Qi-Kun, Ma Xu-Cun. Molecular beam epitaxy of single unit-cell FeSe superconducting films on SrTiO3(001). Acta Physica Sinica, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [15] Li Yong, Li Hui-Qi, Xia Yang, Liu Bang-Wu. Study on atomic layer deposition preparation of core-shell structured nanometer materials. Acta Physica Sinica, 2013, 62(19): 198102. doi: 10.7498/aps.62.198102
    [16] Dong Ya-Bin, Xia Yang, Li Chao-Bo, Lu Wei-Er, Rao Zhi-Peng, Zhang Yang, Zhang Xiang, Ye Tian-Chun. Investigation on the relationship between the properties of atomic layer deposition ZnO film and the dose of precursor. Acta Physica Sinica, 2013, 62(14): 147306. doi: 10.7498/aps.62.147306
    [17] Yan Da-Wei, Li Li-Sha, Jiao Jin-Ping, Huang Hong-Juan, Ren Jian, Gu Xiao-Feng. Capacitance characteristics of atomic layer deposited Al2O3/n-GaN MOS structure. Acta Physica Sinica, 2013, 62(19): 197203. doi: 10.7498/aps.62.197203
    [18] Su Shao-Jian, Wang Wei, Zhang Guang-Ze, Hu Wei-Xuan, Bai An-Qi, Xue Chun-Lai, Zuo Yu-Hua, Cheng Bu-Wen, Wang Qi-Ming. Epitaxial growth of Ge0.975Sn0.025alloy films on Si(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [19] Zhang Yan-Hui, Chen Ping-Ping, Li Tian-Xin, Yin Hao. InNSb single crystal films prepared on GaAs (001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [20] JING CHAO, JIN XIAO-FENG, DONG GUO-SHENG, GONG XIAO-YAN, YU LI-MING, ZHENG WEI-MIN. EXCHANGE BIASING IN MOLECULAR-BEAM-EPITAXY-GROWN Fe/Fe50Mn50 BILAYERS. Acta Physica Sinica, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
Metrics
  • Abstract views:  13580
  • PDF Downloads:  433
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2020
  • Accepted Date:  20 September 2020
  • Available Online:  15 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回