Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vertical electrical field during decay stage of local thunderstorm near coastline in tropical island

Yu Hai Zhang Ting-Long Chen Yang Lü Wei-Tao Zhao Xiao-Ping Chen Jie

Citation:

Vertical electrical field during decay stage of local thunderstorm near coastline in tropical island

Yu Hai, Zhang Ting-Long, Chen Yang, Lü Wei-Tao, Zhao Xiao-Ping, Chen Jie
PDF
HTML
Get Citation
  • In order to directly observe the electric field characteristics and study the charge structure in thunderstorms occurring in tropical regions, a balloon-borne strong electric field sounding is used to measure the vertical component of the electric field, temperature within the cloud and real-time location information of the sounding. Based on the principle of corona discharge, two 1-m-long metal probes are used as the sensors to detect the vertical electric field. In the summer of 2019, a result of electric field sounding within a local thunderstorm was obtained in the northeastern coastal area of Hainan Island, China. With the combination of an S-band weather radar, atmospheric electric field instrument and lightning locating network, the charge structure of the thunderstorm is analyzed in detail. The results show that the thunderstorm is a small-scaled local thunderstorm occurring in the afternoon, the sounding starting to be observed at the decay stage of the thunderstorm. In this period, lightning activities is rare, and the variation of ground electric field is similar to that of conventional summer thunderstorms. The whole sounding process lasts 34 min, during which the vertical airflow in the cloud is relatively stable, basically keeping 4–6 m/s. It can be seen from the electric field profile that the charge distribution in the thunderstorm cloud shows a complex charge structure which is composed of six charge regions. A negative charge region is lowermost, and above this the polarity alternates successively from bottom to up, where all charge regions are located above the melting-layer. Due to data interruption, it is impossible to accurately judge the upper boundary of the upper negative charge region and the information about the positive charge region above. The remaining charge regions are located in an altitude range of 6.0–6.3 km, 6.3–6.6 km, 6.9–7.3 km and 7.3–8.3 km, respectively. The charge densities in these four regions are –1.84 nC/m3, 1.80 nC/m3, –1.46 nC/m3, and 1.04 nC/m3, respectively. According to the existing data, the charge density of the uppermost negative charge area should be greater than –0.51 nC/m3. Moreover, the upper positive charge region (the fourth from bottom up) has the largest strength, followed by the negative charge region above it, both of which are more than 1 km in thickness. The electric field intensities in the other charge regions are relatively small. The pairs of positive and negative charge regions at the bottom are slightly different in strength and thickness.
      Corresponding author: Zhang Ting-Long, 55962271@qq.com
    • Funds: Project supported by the Science Fund for Creative Research Groups of the Natural Science Foundation of Hainan Province, China (Grant No. 2017CXTD014), the Open Research Program of the State Key Laboratory for Severe Weather, Chinese Academy of Meteorological Sciences, China (Grant No. 2019LASW-B13), and the National Natural Science Foundation of China (Grant No. 41775011)
    [1]

    Maccready P B, Proudfit A 1965 Q. J. R. Meteorolog. Soc. 91 44Google Scholar

    [2]

    Marshall T C, Rust W D 1991 J. Geophys. Res. 96 22297Google Scholar

    [3]

    Marshall T C, Rust W D 1993 Bull. Am. Meteorol. Soc. 74 2159Google Scholar

    [4]

    Marshall T C, Rust W D, Stolzenburg M 1995 J. Geophys. Res. 100 1001Google Scholar

    [5]

    Bateman M G, Marshall T C, Stolzenburg M, Rust W D 1999 J. Geophys. Res. 104 9643Google Scholar

    [6]

    Zhang T L, Zhao Z K, Zhao Y, Wei C X, Yu H, Zhou F C 2015 Atmos. Res. 164-165 188Google Scholar

    [7]

    Zhang T L, Yu H, Zhou F C, Chen J, Zhang M H 2018 Ann. Geophys. 36 979Google Scholar

    [8]

    张廷龙, 余海, 王军, 张茂华, 周方聪, 陈洁 2019 地球物理学报 62 1591Google Scholar

    Zhang T L, Yu H, Wang J, Zhang M H, Zhou F C, Chen J 2019 Chin. J. Geophys. 62 1591Google Scholar

    [9]

    刘冬霞, 郄秀书, 王志超, 吴学柯, 潘伦湘 2013 物理学报 62 219201Google Scholar

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201Google Scholar

    [10]

    Qie X S, Zhang T L, Chen C P, Zhang G S, Zhang T, Wei W Z 2005 Geophys. Res. Lett. 32 L05814Google Scholar

    [11]

    Qie X, Kong X, Zhang G, Zhang T, Yuan T, Zhou Y, Zhang Y, Wang H, Sun A 2005 Atmos. Res. 76 231Google Scholar

    [12]

    赵阳, 张义军, 董万盛, 张鸿发, 陈成品, 张彤 2004 地球物理学报 47 405Google Scholar

    Zhao Y, Zhang Y J, Dong W S, Zhang H F, Chen C P, Zhang T 2004 Chin. J. Geophys. 47 405Google Scholar

    [13]

    Zhagn Y J, Dong W S, Zhao Y, Zhang G S, Zhang H F, Chen C P, Zhang T 2004 Sci. China, Ser. D Earth Sci. 47 108Google Scholar

    [14]

    Zhang Y J, Meng Q, Lu W T, Paul K, Liu X S, Zhou X J 2006 Chin. Sci. Bull. 51 198Google Scholar

    [15]

    Cui H, Qie X, Zhang Q, Zhang T, Zhang G, Yang J 2009 Atmos. Res. 91 425Google Scholar

    [16]

    Zhang T L, Qie X S, Yuan T, Zhang G S, Zhang T, Zhao Y 2009 Atmos. Res. 92 475Google Scholar

    [17]

    Zhao Z K, Qie X S, Zhang T L, Zhang T, Zhang H F, Wang Y, She Y, Sun B L, Wang H B 2009 Chin. Sci Bull. 55 872Google Scholar

    [18]

    李亚珺, 张广庶, 文军, 王彦辉, 张彤, 范祥鹏, 武斌 2012 地球物理学报 55 3203Google Scholar

    Li Y J, Zhang G S, Wen J, Wang Y H, Zhang T, Fan X P, Wu B 2012 Chin. J. Geophys. 55 3203Google Scholar

    [19]

    Li Y J, Zhang G S, Wen J, Wang D H, Wang Y H, Zhang T, Fan X P, Wu B 2013 Atmos. Res. 134 137Google Scholar

    [20]

    Takahashi T 1978 J. Atmos. Sci. 35 1536Google Scholar

    [21]

    Saunders C P R, Keith W D, MIitzeva R P 1991 J. Geophys. Res. 96 11007Google Scholar

    [22]

    Saunders C P R, Peck S L 1998 J. Geophys. Res. 103 13949Google Scholar

    [23]

    Mansell E R, MacGorman D R, Ziegler G L, Straka J M 2005 J. Geophys. Res. 110 D12101Google Scholar

    [24]

    Winn W P, Moore C B, Holmes C R 1981 J. Geophys. Res. 86 1187Google Scholar

    [25]

    Marshall T C, Winn W P 1982 J. Geophys. Res. 87 7141Google Scholar

    [26]

    Marshall T C, Stolzenburg M 1998 J. Geophys. Res. 103 19769Google Scholar

    [27]

    Bateman M G, Rust W D, Smull B F, Marshall T C 1995 J. Geophys. Res. 100 16341Google Scholar

    [28]

    Bruning E C, Rust W D, Schuur T J, MacGorman D R, Krehbiel P R, Rison W 2007 Mon. Wea. Rev. 135 2525Google Scholar

    [29]

    Jayaratne E R, Saunders C P R, Hallett J 1983 Q. J. R. Meteorolog. Soc. 109 609Google Scholar

    [30]

    Hou T J, Lei H C, Hu Z X 2009 Atmos. Res. 91 281Google Scholar

    [31]

    Liu D X, Qie X S, Peng L, Li W L 2014 Adv. Atmos. Sci. 31 1022Google Scholar

    [32]

    李万莉, 刘冬霞, 郄秀书, 傅慎明, 段树, 陈羿辰 2012 物理学报 61 059202Google Scholar

    Li W L, Liu D X, Qie X S, Fu S M, Duan S, Chen Y C 2012 Acta Phys. Sin. 61 059202Google Scholar

    [33]

    李江林, 余晔, 李万莉, 李亚珺 2019 地球物理学报 62 2366Google Scholar

    Li J L, Yu Y, Li W L, Li Y J 2019 Chin. J. Geophys. 62 2366Google Scholar

    [34]

    Rust W D, Marshall T C 1996 J. Geophys. Res. 101 23499Google Scholar

    [35]

    Stolzenburg M, Rust W D, Smull B F, Marshall T C 1998 J. Geophys. Res. 103 14059Google Scholar

    [36]

    Stolzenburg M, Rust W D, Marshall T C 1998 J. Geophys. Res. 103 14079Google Scholar

    [37]

    Stolzenburg M, Rust W D, Marshall T C 1998 J. Geophys. Res. 103 14097Google Scholar

    [38]

    张义军, 徐良韬, 郑栋, 王飞 2014 应用气象学报 25 513Google Scholar

    Zhang Y J, Xu L T, Zheng D, Wang F 2014 J. Appl. Meteor. Sci. 25 513Google Scholar

    [39]

    Tessendorf S A, Wiens K C, Rutledge S A 2007 Mon. Wea. Rev. 135 3665Google Scholar

    [40]

    Tessendorf S A, Rutledge S A, Wiens K C 2007 Mon. Wea. Rev. 135 3682Google Scholar

    [41]

    Bruning E C, Rust W D, MacGorman D R, Biggerstaff M I, Schuur T J 2010 Mon. Wea. Rev. 138 3740Google Scholar

    [42]

    Bruning E C, Weiss S A, Calhoun K M 2014 Atmos. Res. 135-136 274Google Scholar

    [43]

    Fuchs B R, Rutledge S A, Bruning E C, et al. 2015 J. Geophys. Res. 120 6575Google Scholar

    [44]

    Qie X S, Zhang Y J 2019 Adv. Atmos. Sci. 36 994Google Scholar

    [45]

    Takahashi T, Tajiri T, Sonol Y 1999 J. Atmos. Sci. 56 1561Google Scholar

    [46]

    Suzuki T, Matsudo Y, Asano T, Hayakawa M, Michimoto K 2011 J. Geophys. Res. 116 D06205Google Scholar

    [47]

    Takahashi T, Isono K 1967 Tellus 19 420Google Scholar

    [48]

    Takahashi T 1975 J. Atmos. Sci. 32 123Google Scholar

    [49]

    Takahashi T 1978 Mon. Wea. Rev. 106 1598Google Scholar

    [50]

    Takahashi T, Keenan T D 2004 J. Geophys. Res. 109 D16208Google Scholar

    [51]

    Mohanty M, Kumar P P 2004 Indian J. Radio. Space. Phys. 33 310

    [52]

    Falade J A, Adesanya S O 2015 Adv. Phys. Theor. Appl. 44 72

    [53]

    Falade J A, Adesanya S O 2015 Adv. Phys. Theor. Appl. 44 107

    [54]

    余海, 张廷龙, 高燚, 劳小青, 韦昌雄, 范祥鹏 2016 中国科学院大学学报 33 195Google Scholar

    Yu H, Zhang T L, Gao Y, Lao X Q, Wei C X, Fan X P 2016 Journal of University of Chinese Academy of Sciences 33 195Google Scholar

    [55]

    赵中阔, 郄秀书, 张广庶, 张廷龙, 张彤, 郭凤霞, 窦志强 2008 高原气象 27 881

    Zhao Z K, Qie X S, Zhang G S, Zhang T L, Zhang T, Guo F X, Dou Z Q 2008 Plateau. Meteor. 27 881

    [56]

    冯桂力, 郄秀书, 吴书君 2008 大气科学 32 289Google Scholar

    Feng G L, Qie X S, Wu S J 2008 Chin. J. Atmos. Sci. 32 289Google Scholar

    [57]

    Zhang T L, Zhao G, Wei C X, Gao Y, Yu H, Zhou F C 2017 J. Atmos. Solar-Terr. Phys. 154 226Google Scholar

    [58]

    肖艳娇, 刘黎平 2006 气象学报 64 647Google Scholar

    Xiao Y J, Liu L P 2006 Acta Meteor. Sin. 64 647Google Scholar

    [59]

    Stolzenburg M, marshall T C 1994 J. Geophys. Res. 99 25921Google Scholar

    [60]

    Marshall T C, Stolzenburg M, Krehbiel P R, Lund N R, Maggio C R 2009 J. Geophys. Res. 114 D02209Google Scholar

  • 图 1  (a)探空观测设备分布图; (b) (a)图方框部分放大图. ▲: 探空点; ☆: ADTD定位子站; ★: 雷达站和ADTD定位子站

    Figure 1.  (a) Distribution of Sounding observation in Hainan Province; (b) enlarged view of the section in the square of picture (a). ▲: Sounding site; ☆: Substations of ADTD; ★: Radar site and ADTD substation

    图 2  8月12日08时850 hPa风场和相对湿度以及500 hPa等高线(北京时间, BJT)

    Figure 2.  The wind, relative humidity (850 hPa) and geopotential height field (500 hPa) at 8:00 (BJT) on August 12, 2019.

    图 3  雷暴不同阶段的回波强度(高度2 km). ▲: 探空点

    Figure 3.  Radar echo intensity of thunderstorm in different stages ▲: Sounding site

    图 4  探空气球路径 (a) 气球飞行高度随时间变化曲线; (b) 水平投影; (c) 东西方向的立体投影; (d) 南北方向的立体投影; (e) 空间飞行轨迹

    Figure 4.  The Sounding path: (a) Height-time plots; (b) plan view; (c) west-east ward vertical projection; (d) north-south ward vertical projection; (e) height-distance plots.

    图 5  探空路径及雷达回波特征(18:07) (a) 回波平面图, 直线AB为垂直剖面位置; (b) 探空路径与回波垂直剖面叠加. 其中▲为探空点位置

    Figure 5.  Sounding path and the corresponding Radar echo characters (18:07): (a) Radar echo characters during the sounding stage; (b) superposition image of radar echo vertical cross section of line AB in Fig. (a) and sounding path. ▲: Sounding site.

    图 6  8月12日探空分析结果 (a) 气球上升速度; (b) 电晕电流; (c) 空中电场(E)和温度(T); (d) 电荷密度

    Figure 6.  Sounding results in thunderstorm on August 12, 2019: (a) Ascending velocity; (b) corona current; (c) E-field (E) and temperature (T); (d) charge density.

    图 7  雷暴地面电场演变特征, 其中红色竖线之间区域为探空观测阶段

    Figure 7.  Evolution characteristics of ground E-field of thunderstorm, in which the duration between two red vertical lines was the sounding stage.

    图 8  18:18时刻雷达回波与其前后10 min地闪活动叠加图.+:正地闪, ×:负地闪

    Figure 8.  Superposition image of radar echo reflectivity at 18:18 and CGs flashes for 10 minutes before and after the moment. +: Positive CGs flashes, ×:Negative CGs flashes.

  • [1]

    Maccready P B, Proudfit A 1965 Q. J. R. Meteorolog. Soc. 91 44Google Scholar

    [2]

    Marshall T C, Rust W D 1991 J. Geophys. Res. 96 22297Google Scholar

    [3]

    Marshall T C, Rust W D 1993 Bull. Am. Meteorol. Soc. 74 2159Google Scholar

    [4]

    Marshall T C, Rust W D, Stolzenburg M 1995 J. Geophys. Res. 100 1001Google Scholar

    [5]

    Bateman M G, Marshall T C, Stolzenburg M, Rust W D 1999 J. Geophys. Res. 104 9643Google Scholar

    [6]

    Zhang T L, Zhao Z K, Zhao Y, Wei C X, Yu H, Zhou F C 2015 Atmos. Res. 164-165 188Google Scholar

    [7]

    Zhang T L, Yu H, Zhou F C, Chen J, Zhang M H 2018 Ann. Geophys. 36 979Google Scholar

    [8]

    张廷龙, 余海, 王军, 张茂华, 周方聪, 陈洁 2019 地球物理学报 62 1591Google Scholar

    Zhang T L, Yu H, Wang J, Zhang M H, Zhou F C, Chen J 2019 Chin. J. Geophys. 62 1591Google Scholar

    [9]

    刘冬霞, 郄秀书, 王志超, 吴学柯, 潘伦湘 2013 物理学报 62 219201Google Scholar

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201Google Scholar

    [10]

    Qie X S, Zhang T L, Chen C P, Zhang G S, Zhang T, Wei W Z 2005 Geophys. Res. Lett. 32 L05814Google Scholar

    [11]

    Qie X, Kong X, Zhang G, Zhang T, Yuan T, Zhou Y, Zhang Y, Wang H, Sun A 2005 Atmos. Res. 76 231Google Scholar

    [12]

    赵阳, 张义军, 董万盛, 张鸿发, 陈成品, 张彤 2004 地球物理学报 47 405Google Scholar

    Zhao Y, Zhang Y J, Dong W S, Zhang H F, Chen C P, Zhang T 2004 Chin. J. Geophys. 47 405Google Scholar

    [13]

    Zhagn Y J, Dong W S, Zhao Y, Zhang G S, Zhang H F, Chen C P, Zhang T 2004 Sci. China, Ser. D Earth Sci. 47 108Google Scholar

    [14]

    Zhang Y J, Meng Q, Lu W T, Paul K, Liu X S, Zhou X J 2006 Chin. Sci. Bull. 51 198Google Scholar

    [15]

    Cui H, Qie X, Zhang Q, Zhang T, Zhang G, Yang J 2009 Atmos. Res. 91 425Google Scholar

    [16]

    Zhang T L, Qie X S, Yuan T, Zhang G S, Zhang T, Zhao Y 2009 Atmos. Res. 92 475Google Scholar

    [17]

    Zhao Z K, Qie X S, Zhang T L, Zhang T, Zhang H F, Wang Y, She Y, Sun B L, Wang H B 2009 Chin. Sci Bull. 55 872Google Scholar

    [18]

    李亚珺, 张广庶, 文军, 王彦辉, 张彤, 范祥鹏, 武斌 2012 地球物理学报 55 3203Google Scholar

    Li Y J, Zhang G S, Wen J, Wang Y H, Zhang T, Fan X P, Wu B 2012 Chin. J. Geophys. 55 3203Google Scholar

    [19]

    Li Y J, Zhang G S, Wen J, Wang D H, Wang Y H, Zhang T, Fan X P, Wu B 2013 Atmos. Res. 134 137Google Scholar

    [20]

    Takahashi T 1978 J. Atmos. Sci. 35 1536Google Scholar

    [21]

    Saunders C P R, Keith W D, MIitzeva R P 1991 J. Geophys. Res. 96 11007Google Scholar

    [22]

    Saunders C P R, Peck S L 1998 J. Geophys. Res. 103 13949Google Scholar

    [23]

    Mansell E R, MacGorman D R, Ziegler G L, Straka J M 2005 J. Geophys. Res. 110 D12101Google Scholar

    [24]

    Winn W P, Moore C B, Holmes C R 1981 J. Geophys. Res. 86 1187Google Scholar

    [25]

    Marshall T C, Winn W P 1982 J. Geophys. Res. 87 7141Google Scholar

    [26]

    Marshall T C, Stolzenburg M 1998 J. Geophys. Res. 103 19769Google Scholar

    [27]

    Bateman M G, Rust W D, Smull B F, Marshall T C 1995 J. Geophys. Res. 100 16341Google Scholar

    [28]

    Bruning E C, Rust W D, Schuur T J, MacGorman D R, Krehbiel P R, Rison W 2007 Mon. Wea. Rev. 135 2525Google Scholar

    [29]

    Jayaratne E R, Saunders C P R, Hallett J 1983 Q. J. R. Meteorolog. Soc. 109 609Google Scholar

    [30]

    Hou T J, Lei H C, Hu Z X 2009 Atmos. Res. 91 281Google Scholar

    [31]

    Liu D X, Qie X S, Peng L, Li W L 2014 Adv. Atmos. Sci. 31 1022Google Scholar

    [32]

    李万莉, 刘冬霞, 郄秀书, 傅慎明, 段树, 陈羿辰 2012 物理学报 61 059202Google Scholar

    Li W L, Liu D X, Qie X S, Fu S M, Duan S, Chen Y C 2012 Acta Phys. Sin. 61 059202Google Scholar

    [33]

    李江林, 余晔, 李万莉, 李亚珺 2019 地球物理学报 62 2366Google Scholar

    Li J L, Yu Y, Li W L, Li Y J 2019 Chin. J. Geophys. 62 2366Google Scholar

    [34]

    Rust W D, Marshall T C 1996 J. Geophys. Res. 101 23499Google Scholar

    [35]

    Stolzenburg M, Rust W D, Smull B F, Marshall T C 1998 J. Geophys. Res. 103 14059Google Scholar

    [36]

    Stolzenburg M, Rust W D, Marshall T C 1998 J. Geophys. Res. 103 14079Google Scholar

    [37]

    Stolzenburg M, Rust W D, Marshall T C 1998 J. Geophys. Res. 103 14097Google Scholar

    [38]

    张义军, 徐良韬, 郑栋, 王飞 2014 应用气象学报 25 513Google Scholar

    Zhang Y J, Xu L T, Zheng D, Wang F 2014 J. Appl. Meteor. Sci. 25 513Google Scholar

    [39]

    Tessendorf S A, Wiens K C, Rutledge S A 2007 Mon. Wea. Rev. 135 3665Google Scholar

    [40]

    Tessendorf S A, Rutledge S A, Wiens K C 2007 Mon. Wea. Rev. 135 3682Google Scholar

    [41]

    Bruning E C, Rust W D, MacGorman D R, Biggerstaff M I, Schuur T J 2010 Mon. Wea. Rev. 138 3740Google Scholar

    [42]

    Bruning E C, Weiss S A, Calhoun K M 2014 Atmos. Res. 135-136 274Google Scholar

    [43]

    Fuchs B R, Rutledge S A, Bruning E C, et al. 2015 J. Geophys. Res. 120 6575Google Scholar

    [44]

    Qie X S, Zhang Y J 2019 Adv. Atmos. Sci. 36 994Google Scholar

    [45]

    Takahashi T, Tajiri T, Sonol Y 1999 J. Atmos. Sci. 56 1561Google Scholar

    [46]

    Suzuki T, Matsudo Y, Asano T, Hayakawa M, Michimoto K 2011 J. Geophys. Res. 116 D06205Google Scholar

    [47]

    Takahashi T, Isono K 1967 Tellus 19 420Google Scholar

    [48]

    Takahashi T 1975 J. Atmos. Sci. 32 123Google Scholar

    [49]

    Takahashi T 1978 Mon. Wea. Rev. 106 1598Google Scholar

    [50]

    Takahashi T, Keenan T D 2004 J. Geophys. Res. 109 D16208Google Scholar

    [51]

    Mohanty M, Kumar P P 2004 Indian J. Radio. Space. Phys. 33 310

    [52]

    Falade J A, Adesanya S O 2015 Adv. Phys. Theor. Appl. 44 72

    [53]

    Falade J A, Adesanya S O 2015 Adv. Phys. Theor. Appl. 44 107

    [54]

    余海, 张廷龙, 高燚, 劳小青, 韦昌雄, 范祥鹏 2016 中国科学院大学学报 33 195Google Scholar

    Yu H, Zhang T L, Gao Y, Lao X Q, Wei C X, Fan X P 2016 Journal of University of Chinese Academy of Sciences 33 195Google Scholar

    [55]

    赵中阔, 郄秀书, 张广庶, 张廷龙, 张彤, 郭凤霞, 窦志强 2008 高原气象 27 881

    Zhao Z K, Qie X S, Zhang G S, Zhang T L, Zhang T, Guo F X, Dou Z Q 2008 Plateau. Meteor. 27 881

    [56]

    冯桂力, 郄秀书, 吴书君 2008 大气科学 32 289Google Scholar

    Feng G L, Qie X S, Wu S J 2008 Chin. J. Atmos. Sci. 32 289Google Scholar

    [57]

    Zhang T L, Zhao G, Wei C X, Gao Y, Yu H, Zhou F C 2017 J. Atmos. Solar-Terr. Phys. 154 226Google Scholar

    [58]

    肖艳娇, 刘黎平 2006 气象学报 64 647Google Scholar

    Xiao Y J, Liu L P 2006 Acta Meteor. Sin. 64 647Google Scholar

    [59]

    Stolzenburg M, marshall T C 1994 J. Geophys. Res. 99 25921Google Scholar

    [60]

    Marshall T C, Stolzenburg M, Krehbiel P R, Lund N R, Maggio C R 2009 J. Geophys. Res. 114 D02209Google Scholar

  • [1] Axikegu, Zhou Xun-Xiu, Zhang Yun-Feng. Effects of thunderstorms electric field on secondary photons of cosmic ray at large high altitude air shower observatory. Acta Physica Sinica, 2024, 73(12): 129201. doi: 10.7498/aps.73.20240341
    [2] Wu Shuang-Lin, Li Zheng-Lin, Qin Ji-Xing, Wang Meng-Yuan, Dong Fan-Chen. Influence of tropical dipole in the East Indian Ocean on acoustic convergence region. Acta Physica Sinica, 2022, 71(13): 134301. doi: 10.7498/aps.71.20212355
    [3] Zhang Kun, Luo Tao, Wang Fei-Fei, Sun Gang, Liu Qing, Qing Chun, Li Xue-Bin, Weng Ning-Quan, Zhu Wen-Yue. Influence of low clouds on atmospheric refractive index structure constant based on radiosonde data. Acta Physica Sinica, 2022, 71(8): 089202. doi: 10.7498/aps.71.20211792
    [4] Zhang Ting-Long, Yu Hai, Chen Yang, Zhao Xiao-Ping, Chen Jie, Wen Zhong-Hai, Li Zhe, Jiang Xian-Ling, Zhang Mao-Hua. Sounding observation of vertical electric field in eyewall of Typhoon Wipha (No. 1907) during landing period. Acta Physica Sinica, 2021, 70(13): 139201. doi: 10.7498/aps.70.20202183
    [5] An Ming, Dong Shuai. Charge-mediated magnetoelectricity: from ferroelectric field effect to charge-ordering ferroelectrics. Acta Physica Sinica, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [6] Sun Ling, Qie Xiu-Shu, Edward R. Mansell, Chen Zhi-Xiong, Xu Yan, Jiang Ru-Bin, Sun Zhu-Ling. Feedback effect of electric field force on electrification and charge structure in thunderstorm. Acta Physica Sinica, 2018, 67(16): 169201. doi: 10.7498/aps.67.20180505
    [7] Zhang Lin-Cheng, Chen Gang-Jin, Xiao Hui-Ming, Cai Ben-Xiao, Huang Hua, Wu Ling. Preparation and charge storage property of FEP thin film electret with grid electric field distribution in millimeter scale. Acta Physica Sinica, 2015, 64(23): 237701. doi: 10.7498/aps.64.237701
    [8] Zhou Xun-Xiu, Wang Xin-Jian, Huang Dai-Hui, Jia Huan-Yu, Wu Chao-Yong. Simulation study on the correlation between the ground cosmic rays and the near earth thunderstorms electric field at Yangbajing (Tibet China). Acta Physica Sinica, 2015, 64(14): 149202. doi: 10.7498/aps.64.149202
    [9] Zhang Zhi-Sen, Feng Guo-Lin, Gong Zhi-Qiang, Wu Hao. Characteristics of information transfer of interaction between Mid and low-latitudes atmosphere. Acta Physica Sinica, 2014, 63(2): 029202. doi: 10.7498/aps.63.029202
    [10] Liu Dong-Xia, Qie Xiu-Shu, Wang Zhi-Chao, Wu Xue-Ke, Pan Lun-Xiang. Characteristics of lightning radiation source distribution and charge structure of squall line. Acta Physica Sinica, 2013, 62(21): 219201. doi: 10.7498/aps.62.219201
    [11] Tao Jian-Jun, Hu Xiang-Hui. The development and dissemination characteristic of disturbance in weak tropical cyclones. Acta Physica Sinica, 2012, 61(16): 169202. doi: 10.7498/aps.61.169202
    [12] Zhang Han, Guan Yu-Ping. Latitudinal distribution of landing tropical cyclones over mainland China. Acta Physica Sinica, 2012, 61(16): 169203. doi: 10.7498/aps.61.169203
    [13] Wang Jun-Fang, Qie Xiu-Shu, Lu Hong, Zhang Ji-Long, Yu Xiao-Xia, Shi Feng. Effect of thunderstorm electric field on intensity of cosmic ray muons. Acta Physica Sinica, 2012, 61(15): 159202. doi: 10.7498/aps.61.159202
    [14] Li Wan-Li, Liu Dong-Xia, Qie Xiu-Shu, Fu Shen-Ming, Duan Shu, Chen Yi-Chen. Evaluation of noninductive charging mechanisms and simulation of charge characteristic structure in the early thunderstorm based on RAMS V6.0. Acta Physica Sinica, 2012, 61(5): 059202. doi: 10.7498/aps.61.059202
    [15] Ping Fan, Luo Zhe-Xian. Simulation of the diurnal variation of the tropical convection. Acta Physica Sinica, 2009, 58(6): 4319-4327. doi: 10.7498/aps.58.4319
    [16] Yang Peng-Fei, Chen Wen-Xue. The distribution and origination of electric field and charge in interface layer of superconductor. Acta Physica Sinica, 2006, 55(12): 6622-6629. doi: 10.7498/aps.55.6622
    [17] Gou Xue-Qiang, Zhang Yi-Jun, Dong Wan-Sheng. Wavelet-based multifractal analysis of ground electric field before occurrence of strong discharge in thunderstorm. Acta Physica Sinica, 2006, 55(2): 957-961. doi: 10.7498/aps.55.957
    [18] Fang Jian, Qiao Ming, Li Zhao-Ji. Electric field distribution in charge imbalance super junction. Acta Physica Sinica, 2006, 55(7): 3656-3663. doi: 10.7498/aps.55.3656
    [19] Mo Jia-Qi, Lin Yi-Hua, Lin Wan-Tao. The perturbative solution for the tropic sea-air coupled oscillators. Acta Physica Sinica, 2005, 54(9): 3971-3974. doi: 10.7498/aps.54.3971
    [20] SUN WAN-JUN, ZHOU ZHONG-XIANG, JIANG YONG-YUAN, LI YAN, XU KE-BIN, ZHU GUI-ZHI. EFFECTS OF AN APPLIED ELECTRIC FIELD ON THE SPACE-CHARGE FIELD IN THE DOPED KNSBN CRYSTAL. Acta Physica Sinica, 1996, 45(6): 940-945. doi: 10.7498/aps.45.940
Metrics
  • Abstract views:  5407
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  02 October 2020
  • Accepted Date:  26 November 2020
  • Available Online:  06 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回