-
A set of 4000-meter laser Doppler hydrothermal velocity measurement prototype suitable for deep sea in-situ measurement is developed in this work. In the system, an integrated design is adopted. The system is composed of a light source module, an optical module, and a Doppler signal processing module. The system is encapsulated in a pressure chamber with L500 mm × Φ205 mm to form an integrated optical measuring probe. An optical path of two-beam laser Doppler velocity measurement with strong local oscillator is proposed. The prototype is used to measure the simulated velocity in the laboratory. The measurement range is 0.01–10 m/s, and the flow velocity measurement resolution is 0.001 m/s. The experimental results preliminarily prove the feasibility of the laser Doppler velocity measurement system. After that, a withstanding voltage test on the system is conducted at the Qingdao Deep Sea Base, and the system obtains a normal signal under a high pressure of 40 MPa. A speed comparison measurement is carried out at the China Institute of Water Resources and Hydropower Research. In a low speed range from 0.01 m/s to 0.2 m/s, comparing with the acoustic Doppler velocity meter, the maximum measurement relative error is –9.43%. In a high speed range from 0.8 m/s to 9.6 m/s, comparing with the nozzle standard flow rate system, the maximum relative measurement error is –1.65%. The prototype system is tested in a shallow sea in Lingshui, Hainan. The sinking speed of the prototype system that sinks together with a crane down to a water depth of 50 m, and the towing speed of the system together with the ship at a depth of 2 m are tested. The test proves that the prototype system works normally in a shallow sea environment.
-
Keywords:
- laser Doppler velocimetry /
- in situ detection /
- hydrothermal vents
[1] 栾锡武, 赵一阳, 秦蕴珊, 初凤友 2002 海洋学报 24 59Google Scholar
Luan X W, Zhao Y Y, Qin Y S, Chu F Y 2002 Acta Oceanol. Sin. 24 59Google Scholar
[2] 张鑫 2009 博士学位论文 (青岛: 中国海洋大学)
Zhang X 2009 Ph. D. Dissertation (Qingdao: Ocean University of China) (in Chinese)
[3] 杜增丰, 张鑫, 郑荣儿 2020 大气与环境光学学报 15 2Google Scholar
Du Z F, Zhang X, Zheng R E 2020 J. Atmosph. Environ. Opt. 15 2Google Scholar
[4] 范慧琳, 唐德红 2019 仪表技术与传感器 2 51Google Scholar
Fan H L, Tang D H 2019 Instrum. Tech. Sens. 2 51Google Scholar
[5] 吴虎彪, 邹志军, 黄晨, 王非, 李浩, 王重超 2009 上海市制冷学会2009年学术年会 中国上海, 2009年12月18日 第4页
Wu H B, Zou Z J, Huang C, Wang F, Li H, Wang C C 2009 Shanghai Institute of Refrigeration 2009 Annual Conference Shanghai, China, December 18, 2009 p4
[6] 张俊 2012 硕士学位论文 (太原: 中北大学)
Zhang J 2012 M. S. Thesis (Taiyuan: North University of China) (in Chinese)
[7] LeDuff A, Plantier G, Valiere J C, Bosch T 2004 IEEE SENS. J. 4 257Google Scholar
[8] Saltzman A J, Lowe K T, Ng W F 2020 Meas. Sci. Technol. 31 095302Google Scholar
[9] Maru K, Yoshida Y, Yukinari M, Kimura R 2019 Opt. Rev. 26 487Google Scholar
[10] Abbas S H, Jang J K, Kim D H, Lee J R 2020 Opt. Lasers Eng. 132 106133Google Scholar
[11] Song N L, Zhang D, Li Q 2011 Adv. Mat. Res. 383 6319Google Scholar
[12] Castellini P, Martarelli M, Tomasini E P 2006 Mech. Syst. Signal Process 20 1265Google Scholar
[13] Dubnishchev Y N 2010 Quantum Elec. 40 551Google Scholar
[14] Charrett T O H, James S W, Tatam R P 2012 Meas. Sci. Technol. 23 032001Google Scholar
[15] Maru K 2011 Opt. Express 19 5960Google Scholar
[16] Maru K, Watanabe K 2014 Opt. Lett. 39 135Google Scholar
[17] Maru K 2015 Opt. Commun. 349 164Google Scholar
[18] Maru K, Katsumi S, Matsuda R 2017 Rev. Sci. Instrum. 88 045001Google Scholar
[19] Lawson 2004 Proc. Instn Mech. Engrs. 218 33Google Scholar
[20] 吴嘉 2005 计测技术 25 1Google Scholar
Wu J 2005 Metrol. Meas. Technol. 25 1Google Scholar
[21] 邓锴 2019 海洋信息 34 8Google Scholar
Deng K 2019 Mar. Info. 34 8Google Scholar
[22] 张同伟, 秦升杰, 唐嘉陵, 王向鑫, 李正光 2019 舰船电子工程 39 142Google Scholar
Zhang T W, Qing S J, Tang J L, Wang X X, Li Z G 2019 Ship Electro. Eng. 39 142Google Scholar
-
-
[1] 栾锡武, 赵一阳, 秦蕴珊, 初凤友 2002 海洋学报 24 59Google Scholar
Luan X W, Zhao Y Y, Qin Y S, Chu F Y 2002 Acta Oceanol. Sin. 24 59Google Scholar
[2] 张鑫 2009 博士学位论文 (青岛: 中国海洋大学)
Zhang X 2009 Ph. D. Dissertation (Qingdao: Ocean University of China) (in Chinese)
[3] 杜增丰, 张鑫, 郑荣儿 2020 大气与环境光学学报 15 2Google Scholar
Du Z F, Zhang X, Zheng R E 2020 J. Atmosph. Environ. Opt. 15 2Google Scholar
[4] 范慧琳, 唐德红 2019 仪表技术与传感器 2 51Google Scholar
Fan H L, Tang D H 2019 Instrum. Tech. Sens. 2 51Google Scholar
[5] 吴虎彪, 邹志军, 黄晨, 王非, 李浩, 王重超 2009 上海市制冷学会2009年学术年会 中国上海, 2009年12月18日 第4页
Wu H B, Zou Z J, Huang C, Wang F, Li H, Wang C C 2009 Shanghai Institute of Refrigeration 2009 Annual Conference Shanghai, China, December 18, 2009 p4
[6] 张俊 2012 硕士学位论文 (太原: 中北大学)
Zhang J 2012 M. S. Thesis (Taiyuan: North University of China) (in Chinese)
[7] LeDuff A, Plantier G, Valiere J C, Bosch T 2004 IEEE SENS. J. 4 257Google Scholar
[8] Saltzman A J, Lowe K T, Ng W F 2020 Meas. Sci. Technol. 31 095302Google Scholar
[9] Maru K, Yoshida Y, Yukinari M, Kimura R 2019 Opt. Rev. 26 487Google Scholar
[10] Abbas S H, Jang J K, Kim D H, Lee J R 2020 Opt. Lasers Eng. 132 106133Google Scholar
[11] Song N L, Zhang D, Li Q 2011 Adv. Mat. Res. 383 6319Google Scholar
[12] Castellini P, Martarelli M, Tomasini E P 2006 Mech. Syst. Signal Process 20 1265Google Scholar
[13] Dubnishchev Y N 2010 Quantum Elec. 40 551Google Scholar
[14] Charrett T O H, James S W, Tatam R P 2012 Meas. Sci. Technol. 23 032001Google Scholar
[15] Maru K 2011 Opt. Express 19 5960Google Scholar
[16] Maru K, Watanabe K 2014 Opt. Lett. 39 135Google Scholar
[17] Maru K 2015 Opt. Commun. 349 164Google Scholar
[18] Maru K, Katsumi S, Matsuda R 2017 Rev. Sci. Instrum. 88 045001Google Scholar
[19] Lawson 2004 Proc. Instn Mech. Engrs. 218 33Google Scholar
[20] 吴嘉 2005 计测技术 25 1Google Scholar
Wu J 2005 Metrol. Meas. Technol. 25 1Google Scholar
[21] 邓锴 2019 海洋信息 34 8Google Scholar
Deng K 2019 Mar. Info. 34 8Google Scholar
[22] 张同伟, 秦升杰, 唐嘉陵, 王向鑫, 李正光 2019 舰船电子工程 39 142Google Scholar
Zhang T W, Qing S J, Tang J L, Wang X X, Li Z G 2019 Ship Electro. Eng. 39 142Google Scholar
Catalog
Metrics
- Abstract views: 5995
- PDF Downloads: 103
- Cited By: 0