Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Biological effects of terahertz waves

Peng Xiao-Yu Zhou Huan

Citation:

Biological effects of terahertz waves

Peng Xiao-Yu, Zhou Huan
PDF
HTML
Get Citation
  • There are numerous applications of terahertz (THz) waves in biomedicine due to their properties that can be absorbed strongly by water in biological systems and resonant with biological macromolecules and weak interactions among them in the biological systems. Though there is no direct ionization damage to the biological tissues due to their low photon energy, the THz waves can give rise to a series of biological effects on the biological cells and tissues with the increase of the intensity of the THz beam. Different irradiation conditions such as the different parameters of the THz waves and the different biological systems will result in different biological effects, including mainly the thermal effects and non-thermal effects. In this paper, we discuss first the physical mechanisms of these two kinds of effects, then introduce the existing main THz sources suitable for studying the biological effects, and summarize the typical biological effects in detail and the research progress in this field. Finally we prospect the potential applications and challenges of the THz wave biological effects.
      Corresponding author: Peng Xiao-Yu, xypeng@cigit.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0701000) and the NSAF Joint Fund, China (Grant No. U2030119).
    [1]

    Yi W T, Yu J P, Xu Y T, Wang F, Yu Q, Sun H J, Xu L, Liu Y F, Jiang L 2016 Instrum. Sci. Technol. 45 423Google Scholar

    [2]

    Shi C C, Ma Y T, Zhang J, Wei D S, Wang H B, Peng X Y, Tang M J, Yan S H, Zuo G K, Du C L, Cui H L 2018 Biomed. Opt. Express 9 1350Google Scholar

    [3]

    El-Shenawee M, Vohra N, Bowman T, Bailey K 2019 Biomed. Spectrosc. Imaging 8 1Google Scholar

    [4]

    Ladanyi B M, Skaf M S 1993 Annu. Rev. Phys. Chem. 44 335Google Scholar

    [5]

    Russo D, Hura G, Head-Gordon T 2004 Biophys. J. 86 1852Google Scholar

    [6]

    Yada H, Nagai M, Tanaka K 2008 Chem. Phys. Lett. 464 166Google Scholar

    [7]

    Kristensen T T, Withayachumnankul W, Jepsen P U, et al. 2010 Opt. Express 18 4727Google Scholar

    [8]

    Yu M, Yan S, Sun Y Q, Sheng W, Tang F, Peng X Y, Hu Y 2019 Sensors 19 1148Google Scholar

    [9]

    Pal S K, Zewail A H 2004 Chem. Rev. 104 2099Google Scholar

    [10]

    Alexandrov B S, Gelev V, Bishop A R, Usheva A, Rasmussen K Ø 2010 Phys. Lett. A 374 1214Google Scholar

    [11]

    Fischer B M, Walther M, Uhd J P 2002 Phys. Med. Biol. 47 3807Google Scholar

    [12]

    Cherkasova O P, Fedorov V I, Nemova E F, Pogodin A S 2009 Opt. Spectrosc. 107 534Google Scholar

    [13]

    Borovkova M, Serebriakova M, Fedorov V, Sedykh E, Vaks V, Lichutin A, Salnikova A, Khodzitsky M 2017 Biomed. Opt. Express 8 273Google Scholar

    [14]

    Perera P G T, Appadoo D R T, Cheeseman S, Wandiyanto J V, Linklater D, Dekiwadia C, Truong V K, Tobin M J, Vongsvivut J, Bazaka O, Bazaka K, Croft R J, Crawford R J, Ivanova E P 2019 Cancers 11 162Google Scholar

    [15]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [16]

    Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard P G, Rusby D R, McKenna P, Brenner Ce M, Woolsey N C, Wang W, Sheng Z, Zhang J 2019 Proc. Natl. Acad. Sci. U. S. A. 116 3994Google Scholar

    [17]

    Zhang D, Fakhari M, Cankaya H, Calendron A L, Matlis N H, Kärtner F X 2020 Phys. Rev. X 10 011067Google Scholar

    [18]

    Williams R, Schofield A, Holder G, Downes J, Edgar D, Harrison P, Siggel-King M, Surman M, Dunning D, Hill S, Holder D, Jackson F, Jones J, McKenzie J, Saveliev Y, Thomsen N, Williams P, Weightman P 2013 Phys. Med. Biol. 58 373

    [19]

    Miyoshi N, Idehara T, Khutoryan E, Fukunaga Y, Bibin A B, Ito S, Sabchevski S P 2016 J. Infrared Millimeter Terahz Waves 37 805Google Scholar

    [20]

    Song T, Qi X, Yan Z, Liang P S, Zhang C, Huang J, Wang W, Zhang K C, Hu M, Wu Z H, Zhao T, Liu D W 2021 IEEE Electron. Device Lett. 42 1232Google Scholar

    [21]

    Doria A, Gallerano G P, Giovenale E, Messina G, Spassovsky I 2004 Phys. Rev. Lett. 93 264801Google Scholar

    [22]

    Grosse E 2002 Phys. Med. Biol. 47 3755Google Scholar

    [23]

    Glyavin M Y, Luchiniin A G, Golubiatnikov G Y 2008 Phys. Rev. Lett. 100 015101Google Scholar

    [24]

    Daranciang D, Goodfellow J, Fuchs M, Wen H, Ghimire S, Reis D A, Loos H, Fisher A S, Lindenberg A M 2011 Appl. Phys. Lett. 99 141117Google Scholar

    [25]

    Tian Q L, Xu H X, Wang Y, Liang Y F, Tan Y M, Ning X N, Yan L X, Du Y C, Li R K, Hua J F, Huang W H, Tang C X 2021 Opt. Express 29 9624Google Scholar

    [26]

    Zhang B H, Ma Z Z, Ma J L, Wu X J, Ouyang C, Kong D Y, Hong T S, Wang X, Yang P D, Chen L M, Li Y T, Zhang J 2021 Laser & Photonics Rev. 15 2000295Google Scholar

    [27]

    Sheng W, Tang F, Zhang Z L, Chen Y P, Peng X Y, Sheng Z M 2021 Opt. Express 29 8676Google Scholar

    [28]

    Oh T I, You Y S, Jhajj N, Rosenthal E W, Milchberg H M, Kim K Y 2013 New J. Phys. 15 075002Google Scholar

    [29]

    余争平, 张蕾 2020 第三军医大学学报 42 2259Google Scholar

    Yu Z P, Zhang L 2020 J. Third Mil. Med. Univ. 42 2259Google Scholar

    [30]

    Bondar N P, Kovalenko I L, Avgustinovich D F, Khamoyan A G, Kudryavtseva N N 2008 Bull. Exp. Biol. Med. 145 401

    [31]

    Kirichuk V F, Antipova O N, Krylova Y A 2014 Bull. Exp. Biol. Med. 157 184Google Scholar

    [32]

    Kirichuk V F, Efimova N V, Andronov E V 2009 Bull. Exp. Biol. Med. 148 746Google Scholar

    [33]

    Ostrovskiy N V, Nikituk C M, Kirichuk V F, Krenitskiy A P, Majborodin A V, Tupikin V D, Shub G M 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13 th International Conference on Terahertz Electronics Williamsburg, USA, September 19–23, 2005 p301

    [34]

    Weismana N Y, Fedorov V I, Nemovab E F, Nikolaev N A 2013 Adv. Gerontology 26 631Google Scholar

    [35]

    Wilmink G J, Grundt J E 2011 J. Infrared. Millimeter Terahz Waves 32 1074Google Scholar

    [36]

    Bottauscio O, Chiampi M, Zilberti L 2015 IEEE 3 51Google Scholar

    [37]

    Dalzell D R, Quade J M, Vincelette R, Ibey B, Payne J, Thomas R, Roach W P, Roth C L, Wilmink G J 2010 Proc. SPIE 7562 75620Google Scholar

    [38]

    陈纯海, 马秦龙, 陶嘉雯, 卢永辉, 林敏, 高鹏, 邓平, 何旻蒂, 皮会丰, 张蕾, 张彦文, 余争平 2020 第三军医大学学报 42 2282Google Scholar

    Chen C H, Ma Q L, Tao J W, Lu Y H, Lin M, Gao P, Deng P, He M D, Pi H F, Zhang L, Zhang Y W, Yu Z P 2020 J. Third Mil. Med. Univ. 42 2282Google Scholar

    [39]

    高鹏, 卢永辉, 马秦龙, 李敏, 陈纯海, 何旻蒂, 余争平 2020 第三军医大学学报 42 2290Google Scholar

    Gao P, Lu Y H, Ma Q L, Li M, Chen C H, He M D, Yu Z P 2020 J. Third Mil. Med. Univ. 42 2290Google Scholar

    [40]

    Hwang Y, Ahn J, Mun J, Bae S, Uk J Y, Vinokurov N A, Kim P 2014 Opt. Express 22 11465Google Scholar

    [41]

    Zhou J, Ge Z Z, Jiang P D, Rao X, Wu S T, Qian J J, Wu D, Li P, Zhang P, Yan L G, Li M 2021 Proc. SPIE 11909 119090ZGoogle Scholar

    [42]

    Ge Z Z, Zhou J, Wu S T, Rao X, Qian J J, Zhu Z 2021 Proc. SPIE 11909 119090YGoogle Scholar

    [43]

    Alexandrov B S, Rasmussen K Ø, Bishop A R, Usheva A, Alexandrov L B, Chong S, Dagon Y, Booshehri L G, Mielke C H, Phipps M L, Martinez J S, Chen H T, Rodriguez G 2011 Biomed. Opt. Express 2 2679Google Scholar

    [44]

    马秦龙, 陈纯海, 林敏, 陶嘉雯, 邓平, 高鹏, 卢永辉, 皮会丰, 何旻蒂, 张蕾, 张彦文, 余争平 2020 第三军医大学学报 42 2267Google Scholar

    Ma Q L, Chen C H, Lin M, Tao J W, Deng P, Gao P, Lu Y H, Pi H F, He M D, Zhang L, Zhang Y W, Yu Z P 2020 J. Third Mil. Med. Univ. 42 2267Google Scholar

    [45]

    Ramundo-Orlando A, Gallerano G P, Stano P, Doria A, Giovenale E, Messina G, Cappelli M, D’Arienzo M, Spassovsky I 2007 Bioelectromagnetics 28 587Google Scholar

    [46]

    Ramundo-Orlando A, Gallerano G P 2009 J. Infrared Millimeter Terahz Waves 30 1308Google Scholar

    [47]

    Fedorov V I, Khamoyan A G, Shevela E Y, Chernykh E R 2007 Proc. SPIE. 6734 673404Google Scholar

    [48]

    Olshevskaya J S, Ratushnyak A S, Petrov A K, Kozlov A S, Zapara T A 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering Novosibirsk, Russia, July 21–25, 2008 p210

    [49]

    Hintzsche H, Jastrow C, Kleine-Ostmann T, Stopper H, Schmidc E, Schrader T 2011 Radiat. Res. 175 569Google Scholar

    [50]

    Wei C, Zhang Y C, Li R, Wang S G, Wang T, Liu J H, Liu Z, Wang K J, Liu J S, Liu X M 2018 Biomed. Opt. Express 9 3998Google Scholar

    [51]

    Wilmink G J, Ibey B L, Roth C L, Vincelette R L, Rivest B D, Horn C B, Bernhard J, Roberson D, Roach W P 2010 Proc. SPIE 7562 75620KGoogle Scholar

    [52]

    Govorun V M, Tretiakov V E, Tulyakov N N, Fleurov V B, Demin A I, Volkov A Y, Batanov V A, Kapitanov A B 1991 Intl J. Infra. Millimeter. Waves 12 1469Google Scholar

    [53]

    Lundholm I V, Rodilla H, Wahlgren W Y, Duelli A, Bourenkov I G, Vukusic J, Friedman R, Stake J, Schneider T, Katona G 2015 Struct. Dyn. 2 054702Google Scholar

    [54]

    Wang K C, Yang L X, Wang S M, Guo L H, Ma J L, Tang J C, Bo W F, Wu Z, Zeng B Q, Gong Y B 2020 Phys. Chem. Chem. Phys. 22 9316Google Scholar

    [55]

    Korenstein-Ilan A, Barbul A, Hasin P, Eliran A, Govern A, Korenstein R 2008 Radiat. Res. 170 224Google Scholar

    [56]

    Homenko A, Kapilevich B, Kornstein R, Firer M A 2009 Bioelectromagnetics 30 167Google Scholar

    [57]

    Titova L V, Ayesheshim A K, Golubov A, Rodriguez-Juarez R, Woycicki R, Hegmann F A, Kovalcuk O 2013 Sci. Rep. 3 2363Google Scholar

    [58]

    Echchgadda I, Cerna C Z, Sloan M A, Elam D P, Ibey B L 2014 Proc. SPIE. 9321 93210QGoogle Scholar

    [59]

    Zhao J W, He M X, Dong L J, Li S X, Liu L Y, Bu S C, Ouyang C M, Wang P F, Sun L L 2019 Chin. Phys. B 28 048703Google Scholar

    [60]

    Shang S, Wu X J, Zhang Q, Zhao J P, Hu E L, Wang L L, Lu X Y 2021 Biomed. Opt. Express 12 3729Google Scholar

    [61]

    Titova L V, Ayesheshim A K, Golubov A, Fogen D, Rodriguez-Juarez R, Hegmann F A, Kovalchuk O 2013 Biomed. Opt. Express 4 559Google Scholar

    [62]

    Cheon H, Paik J H, Choi M, Yang H J, Son J H 2019 Sci. Rep. 9 6413Google Scholar

    [63]

    Cheon H, Yang H J, Choi M, Son J H 2019 Biomed. Opt. Express 10 4931Google Scholar

    [64]

    Romanenko S, Begley R, Harvey A R, Hool L, Wallace V P 2017 J. R. Soc. Interface 14 0585

  • 图 1  DNA/RNA其中3种碱基的太赫兹波吸收光谱[8] (a) 腺嘌呤; (b)鸟嘌呤 ; (c) 胞嘧啶

    Figure 1.  Absorption spectra of three DNA/RNA nucleobases [8]: (a) Adenine; (b) Guanine; (c) Cytosine.

    图 2  肿瘤分别受频率为(a) 0.203 THz和(b) 0.107 THz的太赫兹波辐照后与对照肿瘤的生长曲线图[19]

    Figure 2.  Growth curves of the tumors after the irradiation at (a) 0.203 THz and (b) 0.107 THz compared with that of the control tumors, respectively [19].

    图 3  小鼠干细胞受太赫兹辐照后发生形态变化的显微镜照片 (a)对照组; (b) 宽带太赫兹波辐照2 h; (c) 宽带太赫兹波辐照9 h; (d) 单频连续波太赫兹波辐照2 h; 图(c)中的箭头表示细胞中含有大量的脂滴包涵含物 [43]

    Figure 3.  Light microscopy image: (a) Control cultures; mouse stem cells after (b) 2 h and (c) 9 hours of pulsed broad-band irradiation; (d) mouse stem cells after 2 h of irradiation from the CW laser source. The arrows in panel (c) indicate cells with an elevated number of lipid droplets inclusions [43].

    图 4  PC12细胞受太赫兹波辐照10 min后纳米球的摄入情况. 共聚焦激光扫描显微图像显示受太赫兹波辐照的细胞中摄入了纳米球, 而未受辐照的对照组细胞没有摄入任何纳米球[14]

    Figure 4.  Nanosphere internalization of PC12 cells following a 10 min exposure of THz radiation. Confocal laser scanning microscopy (CLSM) images illustrate the uptake of silica nanospheres by the THz treated cells whereas the untreated control does not exhibit any nanosphere uptake[14].

    图 5  太赫兹波辐照效应对精子细胞内钙浓度的影响[50]

    Figure 5.  Effect of terahertz irradiation on the intracellular calcium concentration in sperm[50].

    图 6  样品中存活细胞、早凋亡细胞、晚凋亡细胞与太赫兹波辐照时间的关系[13]

    Figure 6.  Number of live cells and cells at early and late stages of apoptosis in the sample in relation of the THz radiation exposure time[13].

    图 7  强太赫兹脉冲诱导的人类皮肤的基因表达. 维恩图概括了EpiDermFT组织受1.0 μJ或者0.1 μJ太赫兹脉冲辐照后基因表达的变化[57]

    Figure 7.  Intense THz-pulse-induced gene expression in human skin. Venn diagrams summarizing differentially-expressed genes in EpiDermFT tissues exposed to either 1.0 μJ or 0.1 μJ THz pulses[57].

    图 8  黑色素瘤细胞内DNA去甲基化程度随太赫兹波辐照时间的变化曲线[63]

    Figure 8.  THz demethylation dependence on exposure time in M-293T DNA[63].

    图 9  包括太赫兹波主要生物效应的本文逻辑结构图

    Figure 9.  Logical structure diagram including the main bio-effects of THz waves summarized in this paper.

  • [1]

    Yi W T, Yu J P, Xu Y T, Wang F, Yu Q, Sun H J, Xu L, Liu Y F, Jiang L 2016 Instrum. Sci. Technol. 45 423Google Scholar

    [2]

    Shi C C, Ma Y T, Zhang J, Wei D S, Wang H B, Peng X Y, Tang M J, Yan S H, Zuo G K, Du C L, Cui H L 2018 Biomed. Opt. Express 9 1350Google Scholar

    [3]

    El-Shenawee M, Vohra N, Bowman T, Bailey K 2019 Biomed. Spectrosc. Imaging 8 1Google Scholar

    [4]

    Ladanyi B M, Skaf M S 1993 Annu. Rev. Phys. Chem. 44 335Google Scholar

    [5]

    Russo D, Hura G, Head-Gordon T 2004 Biophys. J. 86 1852Google Scholar

    [6]

    Yada H, Nagai M, Tanaka K 2008 Chem. Phys. Lett. 464 166Google Scholar

    [7]

    Kristensen T T, Withayachumnankul W, Jepsen P U, et al. 2010 Opt. Express 18 4727Google Scholar

    [8]

    Yu M, Yan S, Sun Y Q, Sheng W, Tang F, Peng X Y, Hu Y 2019 Sensors 19 1148Google Scholar

    [9]

    Pal S K, Zewail A H 2004 Chem. Rev. 104 2099Google Scholar

    [10]

    Alexandrov B S, Gelev V, Bishop A R, Usheva A, Rasmussen K Ø 2010 Phys. Lett. A 374 1214Google Scholar

    [11]

    Fischer B M, Walther M, Uhd J P 2002 Phys. Med. Biol. 47 3807Google Scholar

    [12]

    Cherkasova O P, Fedorov V I, Nemova E F, Pogodin A S 2009 Opt. Spectrosc. 107 534Google Scholar

    [13]

    Borovkova M, Serebriakova M, Fedorov V, Sedykh E, Vaks V, Lichutin A, Salnikova A, Khodzitsky M 2017 Biomed. Opt. Express 8 273Google Scholar

    [14]

    Perera P G T, Appadoo D R T, Cheeseman S, Wandiyanto J V, Linklater D, Dekiwadia C, Truong V K, Tobin M J, Vongsvivut J, Bazaka O, Bazaka K, Croft R J, Crawford R J, Ivanova E P 2019 Cancers 11 162Google Scholar

    [15]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [16]

    Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard P G, Rusby D R, McKenna P, Brenner Ce M, Woolsey N C, Wang W, Sheng Z, Zhang J 2019 Proc. Natl. Acad. Sci. U. S. A. 116 3994Google Scholar

    [17]

    Zhang D, Fakhari M, Cankaya H, Calendron A L, Matlis N H, Kärtner F X 2020 Phys. Rev. X 10 011067Google Scholar

    [18]

    Williams R, Schofield A, Holder G, Downes J, Edgar D, Harrison P, Siggel-King M, Surman M, Dunning D, Hill S, Holder D, Jackson F, Jones J, McKenzie J, Saveliev Y, Thomsen N, Williams P, Weightman P 2013 Phys. Med. Biol. 58 373

    [19]

    Miyoshi N, Idehara T, Khutoryan E, Fukunaga Y, Bibin A B, Ito S, Sabchevski S P 2016 J. Infrared Millimeter Terahz Waves 37 805Google Scholar

    [20]

    Song T, Qi X, Yan Z, Liang P S, Zhang C, Huang J, Wang W, Zhang K C, Hu M, Wu Z H, Zhao T, Liu D W 2021 IEEE Electron. Device Lett. 42 1232Google Scholar

    [21]

    Doria A, Gallerano G P, Giovenale E, Messina G, Spassovsky I 2004 Phys. Rev. Lett. 93 264801Google Scholar

    [22]

    Grosse E 2002 Phys. Med. Biol. 47 3755Google Scholar

    [23]

    Glyavin M Y, Luchiniin A G, Golubiatnikov G Y 2008 Phys. Rev. Lett. 100 015101Google Scholar

    [24]

    Daranciang D, Goodfellow J, Fuchs M, Wen H, Ghimire S, Reis D A, Loos H, Fisher A S, Lindenberg A M 2011 Appl. Phys. Lett. 99 141117Google Scholar

    [25]

    Tian Q L, Xu H X, Wang Y, Liang Y F, Tan Y M, Ning X N, Yan L X, Du Y C, Li R K, Hua J F, Huang W H, Tang C X 2021 Opt. Express 29 9624Google Scholar

    [26]

    Zhang B H, Ma Z Z, Ma J L, Wu X J, Ouyang C, Kong D Y, Hong T S, Wang X, Yang P D, Chen L M, Li Y T, Zhang J 2021 Laser & Photonics Rev. 15 2000295Google Scholar

    [27]

    Sheng W, Tang F, Zhang Z L, Chen Y P, Peng X Y, Sheng Z M 2021 Opt. Express 29 8676Google Scholar

    [28]

    Oh T I, You Y S, Jhajj N, Rosenthal E W, Milchberg H M, Kim K Y 2013 New J. Phys. 15 075002Google Scholar

    [29]

    余争平, 张蕾 2020 第三军医大学学报 42 2259Google Scholar

    Yu Z P, Zhang L 2020 J. Third Mil. Med. Univ. 42 2259Google Scholar

    [30]

    Bondar N P, Kovalenko I L, Avgustinovich D F, Khamoyan A G, Kudryavtseva N N 2008 Bull. Exp. Biol. Med. 145 401

    [31]

    Kirichuk V F, Antipova O N, Krylova Y A 2014 Bull. Exp. Biol. Med. 157 184Google Scholar

    [32]

    Kirichuk V F, Efimova N V, Andronov E V 2009 Bull. Exp. Biol. Med. 148 746Google Scholar

    [33]

    Ostrovskiy N V, Nikituk C M, Kirichuk V F, Krenitskiy A P, Majborodin A V, Tupikin V D, Shub G M 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13 th International Conference on Terahertz Electronics Williamsburg, USA, September 19–23, 2005 p301

    [34]

    Weismana N Y, Fedorov V I, Nemovab E F, Nikolaev N A 2013 Adv. Gerontology 26 631Google Scholar

    [35]

    Wilmink G J, Grundt J E 2011 J. Infrared. Millimeter Terahz Waves 32 1074Google Scholar

    [36]

    Bottauscio O, Chiampi M, Zilberti L 2015 IEEE 3 51Google Scholar

    [37]

    Dalzell D R, Quade J M, Vincelette R, Ibey B, Payne J, Thomas R, Roach W P, Roth C L, Wilmink G J 2010 Proc. SPIE 7562 75620Google Scholar

    [38]

    陈纯海, 马秦龙, 陶嘉雯, 卢永辉, 林敏, 高鹏, 邓平, 何旻蒂, 皮会丰, 张蕾, 张彦文, 余争平 2020 第三军医大学学报 42 2282Google Scholar

    Chen C H, Ma Q L, Tao J W, Lu Y H, Lin M, Gao P, Deng P, He M D, Pi H F, Zhang L, Zhang Y W, Yu Z P 2020 J. Third Mil. Med. Univ. 42 2282Google Scholar

    [39]

    高鹏, 卢永辉, 马秦龙, 李敏, 陈纯海, 何旻蒂, 余争平 2020 第三军医大学学报 42 2290Google Scholar

    Gao P, Lu Y H, Ma Q L, Li M, Chen C H, He M D, Yu Z P 2020 J. Third Mil. Med. Univ. 42 2290Google Scholar

    [40]

    Hwang Y, Ahn J, Mun J, Bae S, Uk J Y, Vinokurov N A, Kim P 2014 Opt. Express 22 11465Google Scholar

    [41]

    Zhou J, Ge Z Z, Jiang P D, Rao X, Wu S T, Qian J J, Wu D, Li P, Zhang P, Yan L G, Li M 2021 Proc. SPIE 11909 119090ZGoogle Scholar

    [42]

    Ge Z Z, Zhou J, Wu S T, Rao X, Qian J J, Zhu Z 2021 Proc. SPIE 11909 119090YGoogle Scholar

    [43]

    Alexandrov B S, Rasmussen K Ø, Bishop A R, Usheva A, Alexandrov L B, Chong S, Dagon Y, Booshehri L G, Mielke C H, Phipps M L, Martinez J S, Chen H T, Rodriguez G 2011 Biomed. Opt. Express 2 2679Google Scholar

    [44]

    马秦龙, 陈纯海, 林敏, 陶嘉雯, 邓平, 高鹏, 卢永辉, 皮会丰, 何旻蒂, 张蕾, 张彦文, 余争平 2020 第三军医大学学报 42 2267Google Scholar

    Ma Q L, Chen C H, Lin M, Tao J W, Deng P, Gao P, Lu Y H, Pi H F, He M D, Zhang L, Zhang Y W, Yu Z P 2020 J. Third Mil. Med. Univ. 42 2267Google Scholar

    [45]

    Ramundo-Orlando A, Gallerano G P, Stano P, Doria A, Giovenale E, Messina G, Cappelli M, D’Arienzo M, Spassovsky I 2007 Bioelectromagnetics 28 587Google Scholar

    [46]

    Ramundo-Orlando A, Gallerano G P 2009 J. Infrared Millimeter Terahz Waves 30 1308Google Scholar

    [47]

    Fedorov V I, Khamoyan A G, Shevela E Y, Chernykh E R 2007 Proc. SPIE. 6734 673404Google Scholar

    [48]

    Olshevskaya J S, Ratushnyak A S, Petrov A K, Kozlov A S, Zapara T A 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering Novosibirsk, Russia, July 21–25, 2008 p210

    [49]

    Hintzsche H, Jastrow C, Kleine-Ostmann T, Stopper H, Schmidc E, Schrader T 2011 Radiat. Res. 175 569Google Scholar

    [50]

    Wei C, Zhang Y C, Li R, Wang S G, Wang T, Liu J H, Liu Z, Wang K J, Liu J S, Liu X M 2018 Biomed. Opt. Express 9 3998Google Scholar

    [51]

    Wilmink G J, Ibey B L, Roth C L, Vincelette R L, Rivest B D, Horn C B, Bernhard J, Roberson D, Roach W P 2010 Proc. SPIE 7562 75620KGoogle Scholar

    [52]

    Govorun V M, Tretiakov V E, Tulyakov N N, Fleurov V B, Demin A I, Volkov A Y, Batanov V A, Kapitanov A B 1991 Intl J. Infra. Millimeter. Waves 12 1469Google Scholar

    [53]

    Lundholm I V, Rodilla H, Wahlgren W Y, Duelli A, Bourenkov I G, Vukusic J, Friedman R, Stake J, Schneider T, Katona G 2015 Struct. Dyn. 2 054702Google Scholar

    [54]

    Wang K C, Yang L X, Wang S M, Guo L H, Ma J L, Tang J C, Bo W F, Wu Z, Zeng B Q, Gong Y B 2020 Phys. Chem. Chem. Phys. 22 9316Google Scholar

    [55]

    Korenstein-Ilan A, Barbul A, Hasin P, Eliran A, Govern A, Korenstein R 2008 Radiat. Res. 170 224Google Scholar

    [56]

    Homenko A, Kapilevich B, Kornstein R, Firer M A 2009 Bioelectromagnetics 30 167Google Scholar

    [57]

    Titova L V, Ayesheshim A K, Golubov A, Rodriguez-Juarez R, Woycicki R, Hegmann F A, Kovalcuk O 2013 Sci. Rep. 3 2363Google Scholar

    [58]

    Echchgadda I, Cerna C Z, Sloan M A, Elam D P, Ibey B L 2014 Proc. SPIE. 9321 93210QGoogle Scholar

    [59]

    Zhao J W, He M X, Dong L J, Li S X, Liu L Y, Bu S C, Ouyang C M, Wang P F, Sun L L 2019 Chin. Phys. B 28 048703Google Scholar

    [60]

    Shang S, Wu X J, Zhang Q, Zhao J P, Hu E L, Wang L L, Lu X Y 2021 Biomed. Opt. Express 12 3729Google Scholar

    [61]

    Titova L V, Ayesheshim A K, Golubov A, Fogen D, Rodriguez-Juarez R, Hegmann F A, Kovalchuk O 2013 Biomed. Opt. Express 4 559Google Scholar

    [62]

    Cheon H, Paik J H, Choi M, Yang H J, Son J H 2019 Sci. Rep. 9 6413Google Scholar

    [63]

    Cheon H, Yang H J, Choi M, Son J H 2019 Biomed. Opt. Express 10 4931Google Scholar

    [64]

    Romanenko S, Begley R, Harvey A R, Hool L, Wallace V P 2017 J. R. Soc. Interface 14 0585

  • [1] He Yu, Chen Wei-Bin, Hong Bin, Huang Wen-Tao, Zhang Kun, Chen Lei, Feng Xue-Qiang, Li Bo, Liu Guo, Sun Xiao-Han, Zhao Meng, Zhang Yue. Significant role of thermal effects in current-induced exchange bias field switching at antiferromagnet/ferromagnet interface. Acta Physica Sinica, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [2] Lian Tian-Hong, Dou Yi-Qun, Zhou Lei, Liu Yun, Kou Ke, Jiao Ming-Xing. Modal structure of high power thin-disk vortex laser under thermal effect. Acta Physica Sinica, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [3] Zhang Mei-Mei, Wu Yi-Yun, Yu Jie, Tu Juan, Zhang Dong. Effect of pulse duty ratio on temperature rise induced by focused ultrasound combined with magnetic microbubbles. Acta Physica Sinica, 2023, 72(8): 084301. doi: 10.7498/aps.72.20230068
    [4] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [5] Biological effects of terahertz waves. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20211996
    [6] Wang Hong-Xia, Zhang Qing-Hua, Hou Wei-Jun, Wei Yi-Wei. Analysis of terahertz wave attenuated by sand and dust storms with different modes. Acta Physica Sinica, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [7] Li Hao, Yang Xin, Zhang Zheng-Ping. Analysis of transmission characteristics of THz waves magnetized at different angles in non-uniform magnetized plasma. Acta Physica Sinica, 2021, 70(7): 075202. doi: 10.7498/aps.70.20201450
    [8] Chen Wei, Guo Li-Xin, Li Jiang-Ting, Dan Li. Propagation characteristics of terahertz waves in temporally and spatially inhomogeneous plasma sheath. Acta Physica Sinica, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [9] Chen Gui-Bo, Zhang Jia-Jia, Wang Chao-Qun, Bi Juan. A parameter inversion method of film based on thermal effects induced by laser irradiation. Acta Physica Sinica, 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [10] Hu Miao, Zhang Hui, Zhang Fei, Liu Chen-Xi, Xu Guo-Rui, Deng Jing, Huang Qian-Feng. Thermally induced frequency difference characteristics of dual-frequency microchip laser used optical generation millimeter-wave. Acta Physica Sinica, 2013, 62(20): 204205. doi: 10.7498/aps.62.204205
    [11] Zhou Ying, Dai Yu, Yao Shu-Na, Liu Jun, Chen Jia-Bin, Chen Shu-Fen, Xin Jian-Guo. Three-dimensional thermal effects of the diode-pumped Nd:YVO4 slab. Acta Physica Sinica, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [12] Zheng Ling, Zhao Qing, Liu Shu-Zhang, Xing Xiao-Jun. Studies of terahertz wave propagation in non-magnetized plasma. Acta Physica Sinica, 2012, 61(24): 245202. doi: 10.7498/aps.61.245202
    [13] Le Li-Wei, Wang Yan, Wang Yue, Wu Yu-Ming, Fu Jia-Hui, Wang Dong-Xing, Wu Qun. Theoretical study and numerical verification of terahertz radiation emitted by carbon nanotubes. Acta Physica Sinica, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [14] Liu Quan-Xi, Zhong Ming. Analysis on thermal effect of laser-diode array end-pumped composite rod laser by finite element method. Acta Physica Sinica, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [15] Wang Yue, Wu Qun, Shi Wei, He Xun-Jun, Yin Jing-Hua. Terahertz antenna based on the carbon nano-tube in the nano-scopic domain. Acta Physica Sinica, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [16] Song Xiao-Lu, Guo Zhen, Li Bing-Bin, Wang Shi-Yu, Cai De-Fang, Wen Jian-Guo. Time-varying thermal effect of laser crystal in pulsed diode laser side-pumped Nd∶YAG laser. Acta Physica Sinica, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [17] Dong Hao, Ren Min, Zhang Lei, Deng Ning, Chen Pei-Yi. Thermal effect in current induced magnetic switching. Acta Physica Sinica, 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [18] Wang Li-Shi, Pan Chun-Xu, Cai Qi-Zhou, Wei Bo-Kang. Study of the heat effect of single steady-state microdischarge during plasma electrolytic oxidation. Acta Physica Sinica, 2007, 56(9): 5341-5346. doi: 10.7498/aps.56.5341
    [19] Wu Jian. Analytical thermal model and characterization of lateral thermal effects in AlInGaAs vertical-cavity top-emitting lasers. Acta Physica Sinica, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [20] Ji Xiao-Ling, Tao Xiang-Yang, Lü Bai-Da. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
Metrics
  • Abstract views:  11512
  • PDF Downloads:  348
  • Cited By: 0
Publishing process
  • Received Date:  27 October 2021
  • Accepted Date:  04 December 2021
  • Available Online:  10 December 2021
  • Published Online:  20 December 2021

/

返回文章
返回