Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Operation characteristics of mid-infrared optical parametric oscillation pumped by layered WS2 modulated laser

Wang Jing Pang Jin-Bo Guo He-Ze Hu Xin-Yu Zhou Cheng-Chen Tang Wen-Jing Jiang Kai Xia Wei

Citation:

Operation characteristics of mid-infrared optical parametric oscillation pumped by layered WS2 modulated laser

Wang Jing, Pang Jin-Bo, Guo He-Ze, Hu Xin-Yu, Zhou Cheng-Chen, Tang Wen-Jing, Jiang Kai, Xia Wei
PDF
HTML
Get Citation
  • Optical parametric oscillator (OPO) is an important mid-infrared coherent light source. Two-dimensional (2D) transition metal dichalcogenide (TMDC) with nonlinear absorption of near-infrared-wavelength light is expected to be a prospective modulating switch for OPO’s fundamental laser. In this work, firstly, the characteristics of a home-made 3.5nm-thick tungsten disulfide (WS2) sample are measured and analyzed. The nonlinear transmission is figured and fitted, revealing the performance of WS2’s saturable absorption. Then, the output characteristics of WS2 saturable absorber (SA) modulated solid-state laser are measured experimentally. Although the photon energy of 1.06 μm-wavelength laser is less than the bandgap energy of 3.5nm WS2, the sample still exhibits the saturable absorption. This may be attributed to the mechanisms of defect-induced absorption, coexistence of states, edge-state of material, two-photon absorption, etc. Secondly, combined with active acousto-optic (AO) modulator, the active and passive Q-switched OPO with idler-light oscillation are implemented, and the nanometer pulse-width mid-infrared pulse is obtained. The implementation of AO modulator is to manage the regular switching time to reduce the pulse peak-to-peak vibration of fundamental light and improve the peak power. The optimal characteristics of WS2 for OPO are studied. Based on the saturable absorption characteristics, the output pulse is compressed by 60%, the peak power is improved by 191%, and the stability of pulse train is improved by 79.62%. Especially, the insertion of WS2 nanosheet could alleviate the “output saturation and drop” phenomenon in singly active-Q-switched OPO. This phenomenon may origin from the uneven refrigeration of KTA. Because the saturable absorption effect of WS2 can significantly reduce the transverse area of Gaussian beam, it can alleviate the temperature gradient distribution of KTA and optimize the output characteristics. Finally, based on the nonlinear transmittance curve measured for WS2, the absorption cross section of ground state and excited state are calculated to be1.732 × 10–17 cm2 and 4.758 × 10–19 cm2, respectively, and the lifetime of excited-state energy level and the initial population density of ground state are evaluated to be 400.6 μs and 1.741 × 1022 cm–3, respectively, by considering the inhomogeneous-broadening mechanism and unsaturated absorption under large signal. The rate equations of layered-WS2 modulated optical parametric oscillator are solved. This study shows the optimization effect of 2D TMDC on nonlinear conversion of laser, especially the mitigation of thermal effect. At the same time, it provides a parameter basis for the dynamic simulation of two-dimensional material modulated laser.
      Corresponding author: Wang Jing, ss_wangj@ujn.edu.cn ; Pang Jin-Bo, jinbo.pang@hotmail.com ; Xia Wei, sps_xiaw@ujn.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62005049, 51802116, 61308057), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019BEM040) and the Jinan Innovation Team Project Fundation, China (Grant No. 2018GXRC011)
    [1]

    Loparo Z E, Ninnemann E, Ru Q, Vodopyanov K L, Vasu S S 2020 Opt. Lett. 45 491Google Scholar

    [2]

    郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗 2020 物理学报 69 184205Google Scholar

    Hao Q Q, Zong M Y, Zhang Z, Huang H, Zhang F, Liu J, Liu D H, Su L B, Zhang H 2020 Acta Phys. Sin. 69 184205Google Scholar

    [3]

    Ashik A S, O’Donnell C F, Kumar S C, Ebrahim-Zadeh M, Tidemand-Lichtenberg P, Pedersen C 2019 Photonics Res. 7 783Google Scholar

    [4]

    Wang J, Zhao S, Yang K, Li D, Li G, An J 2007 J. Opt. Soc. Am. B 24 2521Google Scholar

    [5]

    于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 64 224215Google Scholar

    Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 224215Google Scholar

    [6]

    Liu F Q, Xia H R, Pan S D 2007 Opt. Lase. Technol. 39 1449Google Scholar

    [7]

    Zhang H, Zhao J, Yang K, Zhao S, Li T, Li G, Zhao B 2014 IEEE J. Sel. Top. Quant. Electronics 21 79

    [8]

    Yang X, Peng Z, Xie W, Li L 2018 Opt. Lase. Technol. 98 19Google Scholar

    [9]

    龙慧, 胡建伟, 吴福根, 董华锋 2020 物理学报 69 188102Google Scholar

    Long H, Hu J W, Wu F G, Dong H F 2020 Acta Phys. Sin. 69 188102Google Scholar

    [10]

    Tian K, Li Y, Yang J 2019 Appl. Phys. B 125 2125

    [11]

    Su X, Zhang B, Wang Y, Guan H E, Guo L I, Lin N A 2018 Photonics Res. 6 498Google Scholar

    [12]

    Du W, Li H P, Lan C, Li C, Liu Y 2020 Opt. Express 28 11514Google Scholar

    [13]

    Ma Y, Sun H, Ran B, Zhang S, Lv Z 2020 Opt. Lase. Technol. 126 106084Google Scholar

    [14]

    Wang Y, Liu S, Wang J, Wang H, Wang T, Wang Y 2020 IEEE Photonic. Tech. L. 32 831Google Scholar

    [15]

    Niu Z, Feng T, Pan Z, Yang K, Gao K 2020 Opt. Mater. Express 10 752Google Scholar

    [16]

    Wang J, Pang J B, Liu S P 2019 Opt. Express 27 36474Google Scholar

    [17]

    Wang J, Pang J, Liu S, Song P, Xia W 2020 Infrared Phys. Techn. 8 103525

    [18]

    Sun Y, Bai Y, Li D 2018 Opt. Express 25 21037

    [19]

    Oshman M, Harris S 1968 IEEE J. Quantum Elect. 5 206

    [20]

    Kim Y S, Kang S, So J P, Kim J C, Lee C H 2021 Sci. Adv. 7 eabd7921Google Scholar

    [21]

    Li M, Sinev I, Benimetskiy F, Ivanova T, Khanikaev A B 2021 Nat. Commun. 12 1Google Scholar

    [22]

    Ling H, Li R, Davoyan A R 2021 ACS Photonics 8 721Google Scholar

    [23]

    Berkdemir A, Gutiérrez R, Humberto, Botello-Méndez R 2013 Sci. Rep. 3 1755Google Scholar

    [24]

    Cong C, Shang J, Wu X, et al. 2014 Adv. Opt. Mater. 2 131Google Scholar

    [25]

    Peimyoo N, Shang J, Cong C, Shen X, Wu X 2013 ACS Nano. 7 10985Google Scholar

    [26]

    Xu K, Wang Z, Du X 2013 Nanotechnology 24 465705Google Scholar

    [27]

    Liu Z, Amani M, Naimaei S 2014 Nat. Commun. 5 5246Google Scholar

    [28]

    Chen Y, Zhao C, Huang H, Chen S, Tang P, Wang Z, Lu S, Zhang H, Wen S, Tang D 2013 J. Lightwave Technol. 31 2857Google Scholar

    [29]

    Shimony Y, Burshtein Z, Kalisky Y 1995 IEEE J. Quantum Elect. 30 1738

    [30]

    Zhang S, Dong N, Mcevoy N 2015 Acs Nano 9 7142Google Scholar

    [31]

    Wang S, Yu H, Zhang H, Wang A, Wang J 2014 Adv. Mater. 26 3538Google Scholar

    [32]

    Iliev H, Chuchumishev D, Buchvarov I 2010 Opt. Express 18 5754Google Scholar

    [33]

    Yao J Q, Yu Y Z, Wang P, Wang T, Zhang B G, Ding X, Chen J 2001 Chinese Phys. Lett. 18 1214Google Scholar

    [34]

    Zheng J, Zhao S, Wang Q 2001 Opt. Commun. 199 207Google Scholar

    [35]

    朱雅琛, 兰戈, 李彤, 牛瑞华 2007 激光技术 5 551Google Scholar

    Zhu Y S, Lan G, Li T, Niu R H 2007 Laser Technol. 5 551Google Scholar

    [36]

    卞进田, 孔辉, 徐海萍, 叶庆, 孙晓泉 2021 中国激光 48 249

    Bian J T, Kong H, Xu H P, Ye Q, Sun X Q 2021 Chinese J. of Lasers 48 249

    [37]

    Tang Y, Rae C F, Rahlff C, Dunn M H 1997 J. Opt. Soc. Am. B 14 3442Google Scholar

    [38]

    Coehoorn R, Haas C, Dijkstra J 1987 Phys. Rev. B 35 6195Google Scholar

    [39]

    Zhao S, He D, He J 2018 Nanoscale 10 9536

    [40]

    Xiao G, Bass M, Acharekar M 1998 IEEE J. Quantum Elect. 34 2241Google Scholar

  • 图 1  WS2纳米片的表征 (a) 532 nm激光激发的拉曼光谱; (b) A1g模峰值强度的拉曼映射; (c)光学显微光谱; (d)原子力显微镜成像

    Figure 1.  Characterization of WS2 nanosheet: (a) Raman spectrum collected with excitation laser of 532 nm wavelength; (b) Raman mapping of peak intensity at A1g mode; (c) optical microscopy; (d) atomic force microscopy.

    图 2  功率扫描法测量WS2纳米片的透过率 (a)实验装置; (b)非线性透过率曲线; (c)低功率密度下的线性拟合

    Figure 2.  Measurement of nonlinear transmittance for WS2 SA by use of the double optical path method: (a) Experimental setup; (b) nonlinear transmission; (c) linear relation for low-power density.

    图 3  WS2 SA被动调Q的1.06 μm激光 (a)实验装置; (b)平均输出功率; (c)脉冲宽度; (d)脉冲重复率; (e)峰值功率; (f) WS2Q、1.06 μm脉冲波形; (g) WS2+AO调Q的1.06 μm脉冲波形, fp = 15 kHz

    Figure 3.  WS2 SA passively Q-switched 1.06 μm laser: (a) Experimental setup; (b) average output power; (c) pulse width; (d) pulse repetition rate; (e) peak power; (f) temporal pulse train from WS2 Q-switched 1.06μm laser; (g) temporal pulse train from WS2+AO Q-switched 1.06 μm laser, fp = 15 kHz.

    图 4  少层 WS2+AO调制KTA IOPO的实验装置图

    Figure 4.  Few-layer WS2+AO modulated KTA IOPO.

    图 5  基频光(a)、信号光(b)和闲频光(c)的光谱

    Figure 5.  The spectra of the fundamental (a), signal (b), and idler (c) light.

    图 6  Q IOPO的中红外闲频光输出特性 (a), (e)平均输出功率; (b), (f)输出脉冲宽度; (c), (g)峰值功率; (d), (h)输出脉冲序列. (a)—(d) AO单调Q IOPO的输出结果; (e)—(h)WS2 SA+AO 双调Q IOPO的输出结果

    Figure 6.  Output characteristics of Q-switched IOPOs: (a), (e) Average output power; (b), (f) pulse width; (c), (g) peak power; (d), (h) pulse train; (a)–(d) output of AO Q-switched IOPO; (e)–(h) output of WS2 SA+AO Q-switched IOPO.

    图 7  (a)走离角、有效非线性系数与相位匹配角θ的关系; (b) AO单调Q的 1.06 μm基频光的光斑, 高斯光束质量因子 ${M}_{x}^{2} = $$ 3.02,\; {M}_{y}^{2} = 2.19$, 光束半径为798 μm; (c) WS2+AO双调Q的 1.06 μm基频光的光斑, 高斯光束质量因子${M}_{x}^{2} = 1.69,\; {M}_{y}^{2} = $$ 1.51$, 光束半径为451 μm

    Figure 7.  (a) Walk-off angle and deff versus θ; (b) 1.06 μm fundamental-light beam from AO Q-switched laser, ${M}_{x}^{2} = 3.02, $$ {M}_{y}^{2} = 2.19$, beam radius of 798 μm; (c) 1.06 μm fundamental-light beam from WS2+AO Q-switched laser, ${M}_{x}^{2} = 1.69, $$ {M}_{y}^{2} = 1.51,$ beam radius of 451 μm.

    图 8  Ppump = 11.2 W, fp = 15 kHz时, 基频光、闲频光、信号光的时域波形 (a) WS2+AO调Q IOPO的基频光波形; (b) WS2+AO调Q IOPO的闲频光波形; (c) WS2+AO调Q IOPO的信号光波形; (d) AO调Q IOPO的基频光波形; (e) AO调Q IOPO的闲频光波形; (f) AO调Q IOPO的信号光波形

    Figure 8.  Temporal pulses of fundamental light, idler light, and signal light at Ppump = 11.2 W, fp = 15 kHz: (a) Fundamental pulse from WS2+AO Q-switched IOPO; (b) idler pulse from WS2+AO Q-switched IOPO; (c) signal pulse from WS2+AO Q-switched IOPO; (d) fundamental pulse from AO Q-switched IOPO; (e) idler pulse from AO Q-switched IOPO; (f) signal pulse from AO Q-switched IOPO.

    表 1  实验制备3.5 nm WS2 SA可饱和吸收特性的关键参数

    Table 1.  The key parameters for saturable absorption properties of 2D-WS2 SA.

    ParametersValues
    σg/cm21.732 × 10–17
    σe/cm24.758 × 10–19
    τy/μs400.6
    ly/nm3.5
    ny0/cm–31.741 × 1022
    DownLoad: CSV

    表 2  速率方程中的其它参数

    Table 2.  The other parameters in rate equations.

    ParametersMeaningValues
    σ/cm2Nd:YVO4的受激发射截面1.3 × 10–18
    tAO/ns声光的开关时间14
    τ/μsNd:YVO4的受激发射寿命95
    deff/(pm·V–1)KTA的有效非线性系数4.47
    n11064 nm激光在 Nd:YVO4
    中的折射率
    2.183
    n21064 nm激光在 AO中的折射率1.600
    np1064 nm激光在 KTA中的折射率1.868
    ns1536 nm激光在 KTA中的折射率1.854
    ni3467 nm激光在 KTA中的折射率1.817
    DownLoad: CSV
  • [1]

    Loparo Z E, Ninnemann E, Ru Q, Vodopyanov K L, Vasu S S 2020 Opt. Lett. 45 491Google Scholar

    [2]

    郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗 2020 物理学报 69 184205Google Scholar

    Hao Q Q, Zong M Y, Zhang Z, Huang H, Zhang F, Liu J, Liu D H, Su L B, Zhang H 2020 Acta Phys. Sin. 69 184205Google Scholar

    [3]

    Ashik A S, O’Donnell C F, Kumar S C, Ebrahim-Zadeh M, Tidemand-Lichtenberg P, Pedersen C 2019 Photonics Res. 7 783Google Scholar

    [4]

    Wang J, Zhao S, Yang K, Li D, Li G, An J 2007 J. Opt. Soc. Am. B 24 2521Google Scholar

    [5]

    于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 64 224215Google Scholar

    Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 224215Google Scholar

    [6]

    Liu F Q, Xia H R, Pan S D 2007 Opt. Lase. Technol. 39 1449Google Scholar

    [7]

    Zhang H, Zhao J, Yang K, Zhao S, Li T, Li G, Zhao B 2014 IEEE J. Sel. Top. Quant. Electronics 21 79

    [8]

    Yang X, Peng Z, Xie W, Li L 2018 Opt. Lase. Technol. 98 19Google Scholar

    [9]

    龙慧, 胡建伟, 吴福根, 董华锋 2020 物理学报 69 188102Google Scholar

    Long H, Hu J W, Wu F G, Dong H F 2020 Acta Phys. Sin. 69 188102Google Scholar

    [10]

    Tian K, Li Y, Yang J 2019 Appl. Phys. B 125 2125

    [11]

    Su X, Zhang B, Wang Y, Guan H E, Guo L I, Lin N A 2018 Photonics Res. 6 498Google Scholar

    [12]

    Du W, Li H P, Lan C, Li C, Liu Y 2020 Opt. Express 28 11514Google Scholar

    [13]

    Ma Y, Sun H, Ran B, Zhang S, Lv Z 2020 Opt. Lase. Technol. 126 106084Google Scholar

    [14]

    Wang Y, Liu S, Wang J, Wang H, Wang T, Wang Y 2020 IEEE Photonic. Tech. L. 32 831Google Scholar

    [15]

    Niu Z, Feng T, Pan Z, Yang K, Gao K 2020 Opt. Mater. Express 10 752Google Scholar

    [16]

    Wang J, Pang J B, Liu S P 2019 Opt. Express 27 36474Google Scholar

    [17]

    Wang J, Pang J, Liu S, Song P, Xia W 2020 Infrared Phys. Techn. 8 103525

    [18]

    Sun Y, Bai Y, Li D 2018 Opt. Express 25 21037

    [19]

    Oshman M, Harris S 1968 IEEE J. Quantum Elect. 5 206

    [20]

    Kim Y S, Kang S, So J P, Kim J C, Lee C H 2021 Sci. Adv. 7 eabd7921Google Scholar

    [21]

    Li M, Sinev I, Benimetskiy F, Ivanova T, Khanikaev A B 2021 Nat. Commun. 12 1Google Scholar

    [22]

    Ling H, Li R, Davoyan A R 2021 ACS Photonics 8 721Google Scholar

    [23]

    Berkdemir A, Gutiérrez R, Humberto, Botello-Méndez R 2013 Sci. Rep. 3 1755Google Scholar

    [24]

    Cong C, Shang J, Wu X, et al. 2014 Adv. Opt. Mater. 2 131Google Scholar

    [25]

    Peimyoo N, Shang J, Cong C, Shen X, Wu X 2013 ACS Nano. 7 10985Google Scholar

    [26]

    Xu K, Wang Z, Du X 2013 Nanotechnology 24 465705Google Scholar

    [27]

    Liu Z, Amani M, Naimaei S 2014 Nat. Commun. 5 5246Google Scholar

    [28]

    Chen Y, Zhao C, Huang H, Chen S, Tang P, Wang Z, Lu S, Zhang H, Wen S, Tang D 2013 J. Lightwave Technol. 31 2857Google Scholar

    [29]

    Shimony Y, Burshtein Z, Kalisky Y 1995 IEEE J. Quantum Elect. 30 1738

    [30]

    Zhang S, Dong N, Mcevoy N 2015 Acs Nano 9 7142Google Scholar

    [31]

    Wang S, Yu H, Zhang H, Wang A, Wang J 2014 Adv. Mater. 26 3538Google Scholar

    [32]

    Iliev H, Chuchumishev D, Buchvarov I 2010 Opt. Express 18 5754Google Scholar

    [33]

    Yao J Q, Yu Y Z, Wang P, Wang T, Zhang B G, Ding X, Chen J 2001 Chinese Phys. Lett. 18 1214Google Scholar

    [34]

    Zheng J, Zhao S, Wang Q 2001 Opt. Commun. 199 207Google Scholar

    [35]

    朱雅琛, 兰戈, 李彤, 牛瑞华 2007 激光技术 5 551Google Scholar

    Zhu Y S, Lan G, Li T, Niu R H 2007 Laser Technol. 5 551Google Scholar

    [36]

    卞进田, 孔辉, 徐海萍, 叶庆, 孙晓泉 2021 中国激光 48 249

    Bian J T, Kong H, Xu H P, Ye Q, Sun X Q 2021 Chinese J. of Lasers 48 249

    [37]

    Tang Y, Rae C F, Rahlff C, Dunn M H 1997 J. Opt. Soc. Am. B 14 3442Google Scholar

    [38]

    Coehoorn R, Haas C, Dijkstra J 1987 Phys. Rev. B 35 6195Google Scholar

    [39]

    Zhao S, He D, He J 2018 Nanoscale 10 9536

    [40]

    Xiao G, Bass M, Acharekar M 1998 IEEE J. Quantum Elect. 34 2241Google Scholar

  • [1] HOU Liumin, HOU Yunlong, LIU Yuankai, LI Yuanhua, LIN Jia, CHEN Xianfeng. Breathers in mode-locked lasers based on saturable absorbers. Acta Physica Sinica, 2025, 74(4): 044206. doi: 10.7498/aps.74.20241505
    [2] Sun Tao, Yuan Jian-Mei. Prediction of band gap of transition metal sulfide with Janus structure by deep learning atomic feature representation method. Acta Physica Sinica, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [3] Deng Lin-Mei, Si Jun-Shan, Wu Xu-Cai, Zhang Wei-Bing. Study of transition metal dichalcogenides/chromium trihalides van der Waals heterostructure by band unfolding method. Acta Physica Sinica, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [4] Tao Guang-Yi, Qi Peng-Fei, Dai Yu-Chen, Shi Bei-Bei, Huang Yi-Jing, Zhang Tian-Hao, Fang Zhe-Yu. Enhancement of photoluminescence of monolayer transition metal dichalcogenide by subwavelength TiO2 grating. Acta Physica Sinica, 2022, 71(8): 087801. doi: 10.7498/aps.71.20212358
    [5] Operation characteristics of Mid-infrared optical parametric oscillation pumped by layered WS2 modulated laser. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211409
    [6] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [7] Zeng Zhou-Xiao-Song, Wang Xiao, Pan An-Lian. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [8] Zhang Qian, Jin Xin-Xin, Zhang Meng, Zheng Zheng. Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser. Acta Physica Sinica, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [9] Hao Qian-Qian, Zong Meng-Yu, Zhang Zhen, Huang Hao, Zhang Feng, Liu Jie, Liu Dan-Hua, Su Liang-Bi, Zhang Han. Bismuth nanosheets based saturable-absorption passively Q-switching mid-infrared single-crystal fiber laser. Acta Physica Sinica, 2020, 69(18): 184205. doi: 10.7498/aps.69.20200337
    [10] Gao Hui, Song Ling-Li, Li Bing. Influence of reflected neutrons of wall on waveform of burst reactors. Acta Physica Sinica, 2018, 67(17): 172801. doi: 10.7498/aps.67.20180085
    [11] Li Wei-Sheng, Zhou Jian, Wang Han-Chen, Wang Shu-Xian, Yu Zhi-Hao, Li Song-Lin, Shi Yi, Wang Xin-Ran. Logical integration device for two-dimensional semiconductor transition metal sulfide. Acta Physica Sinica, 2017, 66(21): 218503. doi: 10.7498/aps.66.218503
    [12] Wang Shao-Qi, Deng Ying, Zhang Yong-Liang, Li Chao, Wang Fang, Kang Min-Qiang, Luo Yun, Xue Hai-Tao, Hu Dong-Xia, Su Jing-Qin, Zheng Kui-Xing, Zhu Qi-Hua. Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er3+: ZBLAN fiber laser. Acta Physica Sinica, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [13] Fang Shao-Yin, Lu Hai-Ming, Lai Tian-Shu. Effects of spin polarization on absorption saturation and recombination dynamics of carriers in (001) GaAs quantum wells. Acta Physica Sinica, 2015, 64(15): 157201. doi: 10.7498/aps.64.157201
    [14] Ge Ye, Hu Yi-Hua, Shu Rong, Hong Guang-Lie. A novel frequency stabilization method for the seed laser of the pulse optical parametric oscillator in differential absorption lidar. Acta Physica Sinica, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [15] Feng De-Jun, Hang Wen-Yu, Jiang Shou-Zhen, Ji Wei, Jia Dong-Fang. Few-layer graphene membrane as an ultrafast mode-locker in erbium-doped fiber laser. Acta Physica Sinica, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [16] Ge Wei-Kuan. Mei symmetries of a type of dynamical equations. Acta Physica Sinica, 2007, 56(1): 1-4. doi: 10.7498/aps.56.1
    [17] Dong Quan-Lin, Wang Kun, Zhang Chun-Xi, Liu Bin. An integral solution for the relative-rotation dynamic equation of a cylinder. Acta Physica Sinica, 2004, 53(2): 337-342. doi: 10.7498/aps.53.337
    [18] Hua Cun-Cai, Lu Qi-Shao. . Acta Physica Sinica, 2000, 49(4): 733-740. doi: 10.7498/aps.49.733
    [19] OU FA, CAI YONG-QIANG. THE GENERALIZED DYNAMICAL EQUATION OF OPTICAL BISTABILITY AND LASER AND ITS STABILITY ANALYSIS. Acta Physica Sinica, 1988, 37(2): 330-334. doi: 10.7498/aps.37.330
    [20] XIA MENG-FEN, HU HUI-LING. KINETIC EQUATION IN A STOCHASTIC MAGNETIC FIELD. Acta Physica Sinica, 1980, 29(10): 1254-1262. doi: 10.7498/aps.29.1254
Metrics
  • Abstract views:  4378
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  30 July 2021
  • Accepted Date:  30 August 2021
  • Available Online:  13 January 2022
  • Published Online:  20 January 2022

/

返回文章
返回