-
In this paper, two kinds of distributed Bragg reflectors (DBRs) with high-reflective-film structure and filter structure are designed and evaporated on the top of GaN-based resonant cavity light emitting diode (RCLED), respectively. Firstly, the reflectivity spectra of the two kinds of DBRs are simulated. Then, the differences in performance including optical longitudinal modes, spectral linewidth, and output light intensity between the two kinds of RCLED devices with different top mirrors, are compared and analyzed. Finally, the influence of the top mirror reflection characteristics on the output spectrum of the RCLED is studied in detail. The results show that the top mirror is an important part of RCLED, and its reflection characteristics determine the optical performance of the device. For the conventional DBR with high-reflective-film structure, its reflectivity spectrum has a wide high-reflection band. Accordingly, the spectral linewidth of the RCLED can be effectively narrowed by using the conventional DBR as the top mirror. However, the spectrum still consists of multi-longitudinal modes. For the DBR with filter structure, its reflectivity spectrum has a narrow high-transmittance band at the central wavelength. Depending on the modulation effect of the high-transmittance band to the output light, single longitudinal mode light emission is realized for the RCLED with the specially designed DBR as the top mirror, which shows a broad application prospect in optical communication and optical fiber sensing. Moreover, the spectral characteristics of the RCLED can be further optimized to meet its application requirements in much more fields, by designing the top mirror structure and changing its reflectivity spectrum characteristics.
-
Keywords:
- GaN-based RCLED /
- DBR with high-reflective-film structure /
- DBR with filter structure /
- single-longitudinal-mode light emission
[1] Strite S, Morkoc H 1992 J. Vac. Sci. Technol. B 10 1237Google Scholar
[2] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar
[3] Wang W L, Lin Y H, Li Y, Li X C, Huang L G, Zheng Y L, Lin Z T, Wang H Y, Li G Q 2018 J. Mater. Chem. C 6 1642Google Scholar
[4] Ricardo X G, Ferreira, Enyuan X, Jonathan J D, Sujan R, Hyunchae C, Grahame F, Scott W, Anthony E, Erdan G, Richard V, Ian H, Dominic C, Martin D 2019 IEEE Photonics Technol. Lett. 28 2023Google Scholar
[5] RoycroftB, Akhter M, Masskant P, Mierry P, Fernandez S, Naranjo F B, Calleja E, Mccormack T, Corbett B 2002 Phys. Stat. Sol. 192 97Google Scholar
[6] Benisty H, Neve H D, Weisbuch C 1998 IEEE J. Quantum Electron. 34 1612Google Scholar
[7] Chu Y C, Su Y K, Chao C H, Yeh W Y 2013 Jpn. J. Appl. Phys. 52 01AG03Google Scholar
[8] Tsai C L, Xu Z F 2013 IEEE Photonics Technol. Lett. 25 1793Google Scholar
[9] Tsai C L, Lu Y C, Ko S C 2016 IEEE Trans. Electron Devices 63 2802Google Scholar
[10] 李建军, 曹红康, 邓军, 文振宇, 邹德恕, 周晓倩, 杨启伟 2020 光学学报 40 1526002Google Scholar
Li J J, Cao H K, Deng J, Wen Z Y, Zou D S, Zhou X Q, Yang Q W 2020 Acta Opt. Sin. 40 1526002Google Scholar
[11] Schubert E F, Wang Y H, Cho A Y, Tu L W, Zydzik G J 1992 Appl. Phys. Lett. 60 921Google Scholar
[12] Horng R H, Wang W K, Huang S Y, Wuu D S 2006 IEEE Photonics Technol. Lett. 18 457Google Scholar
[13] Shaw A J, Bradley A L, Donegan J F, Lunney J G 2004 IEEE Photonics Technol. Lett. 16 2006Google Scholar
[14] Tsai C L, Lu Y C, Ko S C 2016 IEEE Transactions on Electron Devices 63 2802
[15] Dorsaz J, Carlin J F, Zellweger C M, Gradecak S, Ilegems M 2004 Phys. Stat. Sol. 201 2675Google Scholar
[16] Hu X L, Zhang J Y, Liu W J, Chen M, Zhang B P, Xu B S, Wang Q M 2001 Electron. Lett. 47 986Google Scholar
[17] Yang Y, Ji Q B, Zong H, Yan T X, Li J C, Wei T T, Hu X D 2016 Opt. Commun. 374 80Google Scholar
[18] Zhou LM, Ren B C, Zheng Z W, Ying L Y, Long H, Zhang B P 2018 ECS J. Solid State Sci. Technol. 7 34Google Scholar
[19] Cai W, Yuan J L, Ni S Y, Shi Z, Zhou W D, Liu Y H, Wang Y J, Hiroshi A 2019 Appl. Phys. Express 12 032004Google Scholar
[20] 李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地 2009 物理学报 58 6304Google Scholar
Li J J, Yang Z, HaN J, Deng J, Zou D S, Kang Y Z, Ding L, Shen G D 2009 Acta Phys. Sin. 58 6304Google Scholar
[21] 李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩 2010 物理学报 59 8615Google Scholar
Li Z X, Pei L, Qi C H, Peng W J, Ning T G, Zhao R F, Gao S 2010 Acta Phys. Sin. 59 8615Google Scholar
[22] Capmany J, Mriel M A, Sales S, Rubio J J, Pastor D 2003 J. Lightwave Technol. 21 3125Google Scholar
-
图 10 顶部没有蒸镀反射镜(黑色线)、蒸镀高反膜DBR(红色线)和滤波器结构DBR(蓝色线)RCLED器件在垂直出光面方向测试的电致发光光谱
Figure 10. Measured electroluminescence spectra perpendicular to the light emitting surface for the RCLEDs without DBR (black line), with top high-reflective-film structure DBR (red line) and with filter structure DBR (blue line), respectively.
-
[1] Strite S, Morkoc H 1992 J. Vac. Sci. Technol. B 10 1237Google Scholar
[2] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar
[3] Wang W L, Lin Y H, Li Y, Li X C, Huang L G, Zheng Y L, Lin Z T, Wang H Y, Li G Q 2018 J. Mater. Chem. C 6 1642Google Scholar
[4] Ricardo X G, Ferreira, Enyuan X, Jonathan J D, Sujan R, Hyunchae C, Grahame F, Scott W, Anthony E, Erdan G, Richard V, Ian H, Dominic C, Martin D 2019 IEEE Photonics Technol. Lett. 28 2023Google Scholar
[5] RoycroftB, Akhter M, Masskant P, Mierry P, Fernandez S, Naranjo F B, Calleja E, Mccormack T, Corbett B 2002 Phys. Stat. Sol. 192 97Google Scholar
[6] Benisty H, Neve H D, Weisbuch C 1998 IEEE J. Quantum Electron. 34 1612Google Scholar
[7] Chu Y C, Su Y K, Chao C H, Yeh W Y 2013 Jpn. J. Appl. Phys. 52 01AG03Google Scholar
[8] Tsai C L, Xu Z F 2013 IEEE Photonics Technol. Lett. 25 1793Google Scholar
[9] Tsai C L, Lu Y C, Ko S C 2016 IEEE Trans. Electron Devices 63 2802Google Scholar
[10] 李建军, 曹红康, 邓军, 文振宇, 邹德恕, 周晓倩, 杨启伟 2020 光学学报 40 1526002Google Scholar
Li J J, Cao H K, Deng J, Wen Z Y, Zou D S, Zhou X Q, Yang Q W 2020 Acta Opt. Sin. 40 1526002Google Scholar
[11] Schubert E F, Wang Y H, Cho A Y, Tu L W, Zydzik G J 1992 Appl. Phys. Lett. 60 921Google Scholar
[12] Horng R H, Wang W K, Huang S Y, Wuu D S 2006 IEEE Photonics Technol. Lett. 18 457Google Scholar
[13] Shaw A J, Bradley A L, Donegan J F, Lunney J G 2004 IEEE Photonics Technol. Lett. 16 2006Google Scholar
[14] Tsai C L, Lu Y C, Ko S C 2016 IEEE Transactions on Electron Devices 63 2802
[15] Dorsaz J, Carlin J F, Zellweger C M, Gradecak S, Ilegems M 2004 Phys. Stat. Sol. 201 2675Google Scholar
[16] Hu X L, Zhang J Y, Liu W J, Chen M, Zhang B P, Xu B S, Wang Q M 2001 Electron. Lett. 47 986Google Scholar
[17] Yang Y, Ji Q B, Zong H, Yan T X, Li J C, Wei T T, Hu X D 2016 Opt. Commun. 374 80Google Scholar
[18] Zhou LM, Ren B C, Zheng Z W, Ying L Y, Long H, Zhang B P 2018 ECS J. Solid State Sci. Technol. 7 34Google Scholar
[19] Cai W, Yuan J L, Ni S Y, Shi Z, Zhou W D, Liu Y H, Wang Y J, Hiroshi A 2019 Appl. Phys. Express 12 032004Google Scholar
[20] 李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地 2009 物理学报 58 6304Google Scholar
Li J J, Yang Z, HaN J, Deng J, Zou D S, Kang Y Z, Ding L, Shen G D 2009 Acta Phys. Sin. 58 6304Google Scholar
[21] 李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩 2010 物理学报 59 8615Google Scholar
Li Z X, Pei L, Qi C H, Peng W J, Ning T G, Zhao R F, Gao S 2010 Acta Phys. Sin. 59 8615Google Scholar
[22] Capmany J, Mriel M A, Sales S, Rubio J J, Pastor D 2003 J. Lightwave Technol. 21 3125Google Scholar
Catalog
Metrics
- Abstract views: 5012
- PDF Downloads: 131
- Cited By: 0