Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Blood flow image by multi-angle composite ultrasonic Doppler vector

Wang Kang-Yu Zhou Yu-Lin He Li-Yuan Lu Chun-Yao Yu Run Wu Da-Wei

Citation:

Blood flow image by multi-angle composite ultrasonic Doppler vector

Wang Kang-Yu, Zhou Yu-Lin, He Li-Yuan, Lu Chun-Yao, Yu Run, Wu Da-Wei
PDF
HTML
Get Citation
  • Precise measurement of blood flow is of vital importance in studying the formation of thrombus and atherosclerotic plaque. However, conventional color Doppler methods are limited to obtaining the velocity component along the ultrasound beam and have poor accuracy. Several Doppler flow imaging methods based on the plane wave emission can estimate the blood velocity vectors and visualize hemodynamic parameters, which provide more detailed blood flow information and effectively improve the capability of clinical diagnosis treatment. Considering the low accuracy of the Doppler flow methods for measuring velocity in complex flow fields, an optimization technique is used to improve the imaging quality and the accuracy of velocity estimation. In this study we propose a modified vector Doppler method through combining multi-angle compound technique, to reconstruct blood velocity vectors of carotid bifurcations obtained from 3D printing. Since the multi-angle compound technology can effectively improve the quality of imaging, this technology is applied to Doppler imaging to achieve high-accuracy velocity estimation. It can significantly reduce the velocity estimation errors. Comparing the velocity estimation accuracy of different angle compound numbers (n = 1, 3, 5, and 7) in the simulation, it is found that the accuracy of velocity estimation increases with angle compound increasing. Beside, the 5-angle compound method is more robust for velocity estimation and can obtain higher frames. The experiments were carried out using a programmable ultrasonic array system and a high-frequency linear array transducer L12-5c with a central frequency of 8.125 MHz. The sample rate is set to be 31.25 MHz. The imaging results of carotid bifurcation also show that the vector Doppler based on 5-angle compound can obtain a clear image of intravascular vector flow, which is beneficial to the identifying of complex flow state, and realize intravascular dynamic imaging. Especially, it can capture the vortex phenomenon in the blood stream. The quantitative results indicate that this method significantly reduces the error between the flow calculation results and the reference results, making the estimation results more accurate. In conclusion, the vector Doppler method based on multi-angle compound has the good performance of visualizing complex blood flow and calculating hemodynamic parameters. It also provides the reference for the diagnosis of cardiovascular disease and the research of flow imaging methods.
      Corresponding author: Wu Da-Wei, dwu@nuaa.edu.cn
    • Funds: Project supported by the National Key Research and Development Project (Grant No. 2019YFE0109300), and the Fundamental Research Funds for the Central Universities , China (Grant No. kfjj20200101)
    [1]

    Stein J H, Korcarz C E, Hurst R T, Lonn E, Kendall C B, Mohler E R, Najjar S S, Rembold C M and Post W S 2008 J. Am. Soc. Echocardiogr. 21 93Google Scholar

    [2]

    Kornblum H I, Araujo D M, Annala A J, Tatsukawa K J, Phelps M E, Cherry S R 2000 Nat. Biotechnol. 18 655Google Scholar

    [3]

    Ogawa S, Lee T M, Kay A R, Tank D W 1990 Proc. Natl. Acad. Sci. U. S. A. 87 9868Google Scholar

    [4]

    Denarie B, Tangen T A, Ekroll I K, Rolim N, Torp H, Bjastad T, Lovstakken L 2013 IEEE Trans. Med. Imaging 32 1265Google Scholar

    [5]

    Cloutier G, Zhao Q, Durand L G, Teh B G 1996 IEEE Trans. Biomed. Eng. 43 441Google Scholar

    [6]

    Tanter M, Bercoff J, Sandrin L, Fink M 2002 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49 1363Google Scholar

    [7]

    Mace E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M 2011 Nat. Methods 8 662Google Scholar

    [8]

    臧佳琦, 许凯亮, 韩清见, 陆起涌, 梅永丰, 他得安 2020 物理学报 70 114303Google Scholar

    Zang J Q, Xu K L, Han Q J, Lu Q Y, Mei Y F, Ta D A 2020 Acta. Phys. Sin 70 114303Google Scholar

    [9]

    Fredriksen T D, Avdal J, Ekroll IK, Dahl T, Løvstakken L, Torp H 2014 IEEE Trans. Ultrason. Ferroelect. Freq. Control 61 1161Google Scholar

    [10]

    Tortoli P, Dallai A, Boni E, Francalanci L, Ricci S 2010 Ultrasound Med. Biol. 36 488Google Scholar

    [11]

    Jensen J, Hoyos C A V, Stuart M B, Ewertsen C, Nielsen M B, Jensen J A 2017 IEEE Trans. Ultrason. Ferroelect. Freq. Control 64 1050Google Scholar

    [12]

    Behar V, Adanm D, Friedman Z 2003 Ultrasonics 41 377Google Scholar

    [13]

    Lovstakken L, Torp H 2010 IEEE International Ultrasonics Symposium San Diego, CA, USA, Oct 11–14, 2010 p1198

    [14]

    Wan M X, Gong X Z, Qian M 1999 IEEE Trans. Biomed. Eng. 46 1074Google Scholar

    [15]

    Steel R, Fish P J 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Control 49 1375Google Scholar

    [16]

    Girault J M, Kouame D, Ouahabi A 2000 Ultrasonics 38 682Google Scholar

    [17]

    Peronneau P, Bournat J P, Bugnon A, Barbet A, Xhaard M 1974 Cardiovascular Applications of Ultrasound Netherlands, North Holland, 1974 p66

    [18]

    Tortoli P, Bambi G, Ricci S 2006 IEEE Trans. Ultrason. Ferroelect. Freq. Control 53 1425Google Scholar

    [19]

    Dunmire B, Beach K W, Labs K H, Plett M, Strandness D E 2000 Ultrasound Med. Biol. 26 1213Google Scholar

    [20]

    Phillips P J, Kadi A P, Von Ramm O T 1995 Ultrasound Med. Biol. 21 217Google Scholar

    [21]

    Scabia M, Calzolai M, Capineri L, Masotti L, Fort A 2000 Ultrasound Med. Biol. 26 121Google Scholar

    [22]

    Tsang I K H, Yiu B Y S, Yu A C H 2009 IEEE International Ultrasonics Symposium Rome, Italy, Sept 20–23, 2009 p1387

    [23]

    Ricci S, Ramalli A, Bassi L, Boni E, Tortoli P 2017 IEEE Trans. Ultrason. Ferroelect. Freq. Control 65 201Google Scholar

    [24]

    Bjaerum S, Torp H, and Kristoffersen K, 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Control 49 204Google Scholar

    [25]

    Revellin R, Rousset F, Baud D, Bonjour J 2009 Theor. Biol. Med. Modell. 6 1Google Scholar

  • 图 1  方法流程图

    Figure 1.  Flow chart of the proposed method.

    图 2  (a)平面波传输示意图; (b)无偏转角的平面波传输路径; (c)偏转角为$ \alpha $时声波传输的路径

    Figure 2.  (a) Plane wave transmission; (b) time delays for a plane wave emission and reception; (c) time delays for a plane wave of the angle $ \alpha $.

    图 3  交叉波速示意图.

    Figure 3.  Schematic diagram of crossed-beam vector Doppler.

    图 4  实验系统原理图

    Figure 4.  Schematic diagram of the experimental system.

    图 5  颈动脉分叉实验装置图

    Figure 5.  Experimental setup of carotid bifurcation.

    图 6  多角度复合多普勒成像结果 (a) 单角度复合; (b) 3个角度复合; (c) 5个角度复合; (d) 7个角度复合

    Figure 6.  Multi-angle compound Doppler imaging results: (a) Single angle compound; (b) 3 angles compound; (c) 5 angles compound; (d) 7 angles compound.

    图 7  多角度复合多普勒估算速度与标准参考值的散点分布图 (a)单角度; (b) 3个角度复合; (c) 5个角度复合; (d) 7个角度复合

    Figure 7.  Scatter plots showing the relation between reference and estimated velocities: (a) Single angle; (b) 3 angles compound; (c) 5 angles compound; (d) 7 angles compound.

    图 8  血管沿深度方向的速度分布曲线.

    Figure 8.  Velocity distribution along the depth direction of the blood vessel.

    图 9  单角度平面波发射的颈动脉分叉血流成像结果 (a)偏转接收角度为12°时三种流量入口条件的彩色多普勒图像; (b)偏转接收角度为–12°的彩色多普勒图像; (c)矢量合成得到的速度矢量图像; (d)分叉处放大图

    Figure 9.  Blood flow imaging of carotid bifurcation by single angle plane wave composite imaging: (a) Color Doppler imaging of three flow inlet conditions at 12° deflection receiving angle; (b) color Doppler imaging with a deflected reception angle of –12°; (c) the dual-mode imaging of velocity vector and B mode; (d) Enlarged view of partial bifurcation.

    图 10  单角度平面波成像和5个角度复合的颈动脉分叉成像结果对比 (a), (b)和(c)分别为单角度平面波发射情况下流量为200, 250和300 mL/min的血流矢量成像结果; (e), (f)和(d)为5个角度复合的成像结果. 白色线框表示用于估算平均速度的区域

    Figure 10.  Blood flow imaging of carotid bifurcation by single plane wave and 5-angle plane wave compound: (a), (b), (c) The imaging results of 200, 250 and 300 mL/min under the condition of single plane wave emission; (e), (f), (d) the imaging results of 5-angle composite. The white box represents the area used to estimate the average speed.

    表 1  声场仿真的参数设置

    Table 1.  Simulation parameters setting.

    参数
    发射阵元数128
    接收阵元数128
    中心频率/MHz5
    阵元宽度/mm0.208
    阵元高度/mm4.5
    阵元间距/mm0.35
    声速/(m·s–1)1540
    幅度变迹Hanning
    激励脉冲4-period sinusoid
    最大脉冲重复频率/kHz15
    角度复合数3, 5, 7
    采样频率/MHz100
    直径/mm10
    峰值速度/(m·s–1)1
    DownLoad: CSV

    表 2  多普勒速度估算的标准偏差

    Table 2.  Standard deviation of Doppler velocity estimation.

    $ {N}_{\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}\mathrm{s}} $1357
    归一化标准差0.1640.0730.0670.0659
    DownLoad: CSV

    表 3  矢量多普勒方法计算流量与设定值的误差

    Table 3.  The error between the estimated flow rate and the reference value.

    $ {V}_{\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{e}} $/(mL·min–1)200250300
    Error($ {N}_{\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}\mathrm{s}} $ = 1)0.1250.2080.107
    Error($ {N}_{\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}\mathrm{s}} $ = 5)0.1200.0800.053
    DownLoad: CSV
  • [1]

    Stein J H, Korcarz C E, Hurst R T, Lonn E, Kendall C B, Mohler E R, Najjar S S, Rembold C M and Post W S 2008 J. Am. Soc. Echocardiogr. 21 93Google Scholar

    [2]

    Kornblum H I, Araujo D M, Annala A J, Tatsukawa K J, Phelps M E, Cherry S R 2000 Nat. Biotechnol. 18 655Google Scholar

    [3]

    Ogawa S, Lee T M, Kay A R, Tank D W 1990 Proc. Natl. Acad. Sci. U. S. A. 87 9868Google Scholar

    [4]

    Denarie B, Tangen T A, Ekroll I K, Rolim N, Torp H, Bjastad T, Lovstakken L 2013 IEEE Trans. Med. Imaging 32 1265Google Scholar

    [5]

    Cloutier G, Zhao Q, Durand L G, Teh B G 1996 IEEE Trans. Biomed. Eng. 43 441Google Scholar

    [6]

    Tanter M, Bercoff J, Sandrin L, Fink M 2002 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49 1363Google Scholar

    [7]

    Mace E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M 2011 Nat. Methods 8 662Google Scholar

    [8]

    臧佳琦, 许凯亮, 韩清见, 陆起涌, 梅永丰, 他得安 2020 物理学报 70 114303Google Scholar

    Zang J Q, Xu K L, Han Q J, Lu Q Y, Mei Y F, Ta D A 2020 Acta. Phys. Sin 70 114303Google Scholar

    [9]

    Fredriksen T D, Avdal J, Ekroll IK, Dahl T, Løvstakken L, Torp H 2014 IEEE Trans. Ultrason. Ferroelect. Freq. Control 61 1161Google Scholar

    [10]

    Tortoli P, Dallai A, Boni E, Francalanci L, Ricci S 2010 Ultrasound Med. Biol. 36 488Google Scholar

    [11]

    Jensen J, Hoyos C A V, Stuart M B, Ewertsen C, Nielsen M B, Jensen J A 2017 IEEE Trans. Ultrason. Ferroelect. Freq. Control 64 1050Google Scholar

    [12]

    Behar V, Adanm D, Friedman Z 2003 Ultrasonics 41 377Google Scholar

    [13]

    Lovstakken L, Torp H 2010 IEEE International Ultrasonics Symposium San Diego, CA, USA, Oct 11–14, 2010 p1198

    [14]

    Wan M X, Gong X Z, Qian M 1999 IEEE Trans. Biomed. Eng. 46 1074Google Scholar

    [15]

    Steel R, Fish P J 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Control 49 1375Google Scholar

    [16]

    Girault J M, Kouame D, Ouahabi A 2000 Ultrasonics 38 682Google Scholar

    [17]

    Peronneau P, Bournat J P, Bugnon A, Barbet A, Xhaard M 1974 Cardiovascular Applications of Ultrasound Netherlands, North Holland, 1974 p66

    [18]

    Tortoli P, Bambi G, Ricci S 2006 IEEE Trans. Ultrason. Ferroelect. Freq. Control 53 1425Google Scholar

    [19]

    Dunmire B, Beach K W, Labs K H, Plett M, Strandness D E 2000 Ultrasound Med. Biol. 26 1213Google Scholar

    [20]

    Phillips P J, Kadi A P, Von Ramm O T 1995 Ultrasound Med. Biol. 21 217Google Scholar

    [21]

    Scabia M, Calzolai M, Capineri L, Masotti L, Fort A 2000 Ultrasound Med. Biol. 26 121Google Scholar

    [22]

    Tsang I K H, Yiu B Y S, Yu A C H 2009 IEEE International Ultrasonics Symposium Rome, Italy, Sept 20–23, 2009 p1387

    [23]

    Ricci S, Ramalli A, Bassi L, Boni E, Tortoli P 2017 IEEE Trans. Ultrason. Ferroelect. Freq. Control 65 201Google Scholar

    [24]

    Bjaerum S, Torp H, and Kristoffersen K, 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Control 49 204Google Scholar

    [25]

    Revellin R, Rousset F, Baud D, Bonjour J 2009 Theor. Biol. Med. Modell. 6 1Google Scholar

  • [1] Yan Shao-Yuan, Ding Yi-Ming, Ma Guo-Ao, Fu Ya-Peng, Xu Kai-Liang, Ta De-An. Ultrafast ultrasound coded vector Doppler imaging of blood flow velocity and resistivity. Acta Physica Sinica, 2025, 74(1): . doi: 10.7498/aps.74.20241454
    [2] Liu Shu-Qian, Zhang Hai-Yan, Zhang Hui, Zhu Wen-Fa, Chen Yi-Ting, Liu Ya-Jie. Ultrasonic phase shift migration imaging of wrinkled defects in composite materials fused with circular statistical vectors. Acta Physica Sinica, 2024, 73(17): 174301. doi: 10.7498/aps.73.20240714
    [3] Li Hai-Ning, Yu Li-Da, Gan Ren-Jie, Zhang Wei-Bin, Yang Zhan-Feng. High signal-to-noise-ratio ultrasonic imaging of crack defects in particles filled composite explosives. Acta Physica Sinica, 2023, 72(15): 154301. doi: 10.7498/aps.72.20230522
    [4] Fu Ya-Peng, Sun Qian-Dong, Li Bo-Yi, Ta De-An, Xu Kai-Liang. Three-dimensional ultrafast ultrasound imaging of blood flow using row-column addressing array: A simulation study. Acta Physica Sinica, 2023, 72(7): 074302. doi: 10.7498/aps.72.20222106
    [5] Zhang Hai-Yan, Song Jia-Xin, Ren Yan, Zhu Qi, Ma Xue-Fen. Ultrasonic imaging of wrinkles in carbon-fiber-reinforce-polymer composites. Acta Physica Sinica, 2021, 70(11): 114301. doi: 10.7498/aps.70.20210032
    [6] Wang Chuan-Wei, Li Ning, Huang Xiao-Long, Weng Chun-Sheng. Two-stage velocity distribution measurement from multiple projections by tunable diode laser absorption spectrum. Acta Physica Sinica, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [7] Zheng Feng-Xun, Hou Wei-Zhen, Li Zheng-Qiang. Optimal estimation retrieval for directional polarimetric camera onboard Chinese Gaofen-5 satellite: an analysis on multi-angle dependence and a posteriori error. Acta Physica Sinica, 2019, 68(4): 040701. doi: 10.7498/aps.68.20181682
    [8] Qian Hong-Hu, Meng Bing-Huan, Yuan Yin-Lin, Hong Jin, Zhang Miao-Miao, Li Shuang, Qiu Zhen-Wei. Full field of view polarization effect measurement and error analysis of non-polarized channels of spaceborne directional polarimetric camera. Acta Physica Sinica, 2017, 66(10): 100701. doi: 10.7498/aps.66.100701
    [9] Xu Song-Lin, Zhu Dong. Movement of fat particles in carotid artery and its influence on hemodynamics. Acta Physica Sinica, 2015, 64(20): 208701. doi: 10.7498/aps.64.208701
    [10] Xiang Kun-Sheng, Cheng Tian-Hai, Gu Xing-Fa, Guo Hong, Chen Hao, Wang Ying, Wei Xi, Bao Fang-Wen. Polarized properties of typical surface types over China based on the multi-angular polarized remote sensing measurements. Acta Physica Sinica, 2015, 64(22): 227801. doi: 10.7498/aps.64.227801
    [11] Zhou Tian, Li Hai-Sen, Zhu Jian-Jun, Wei Yu-Kuo. A geoacoustic estimation scheme based on bottom backscatter signals from multiple angles. Acta Physica Sinica, 2014, 63(8): 084302. doi: 10.7498/aps.63.084302
    [12] Wang Da-Yong, Wang Yun-Xin, Guo Sha, Rong Lu, Zhang Yi-Zhuo. Research on speckle denoising by lensless Fourier transform holographic imaging with angular diversity. Acta Physica Sinica, 2014, 63(15): 154205. doi: 10.7498/aps.63.154205
    [13] Liu Guo-Zhong, Zhou Zhe-Hai, Qiu Jun, Wang Xiao-Fei, Liu Gui-Li, Wang Rui-Kang. Application of amplitude and phase registration in blood flow imaging using optical coherence tomography. Acta Physica Sinica, 2013, 62(15): 158702. doi: 10.7498/aps.62.158702
    [14] Yu Wen-Ying, An Li-Qian. Analytical model of range-doppler of cone-cylinder combination. Acta Physica Sinica, 2012, 61(21): 218703. doi: 10.7498/aps.61.218703
    [15] Huang Liang-Min, Ding Zhi-Hua, Hong Wei, Wang Chuan. Correlated Doppler optical coherence tomography. Acta Physica Sinica, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [16] Xie Dong-Hai, Gu Xing-Fa, Cheng Tian-Hai, Yu Tao, Li Zheng-Qiang, Chen Xing-Feng, Chen Hao, Guo Jing. Research on the bidirectional reflectance of typical urban surface types measured by the directional polarimetric camera. Acta Physica Sinica, 2012, 61(7): 077801. doi: 10.7498/aps.61.077801
    [17] Peng Jing-Si, Peng Hu. Chaotic frequency-modulating continuous wave for an ultrasonic doppler blood flow velocity measurement system. Acta Physica Sinica, 2012, 61(24): 248701. doi: 10.7498/aps.61.248701
    [18] Xie Dong-Hai, Gu Xing-Fa, Chen Xing-Feng, Li Zheng-Qiang, Cheng Tian-Hai, Yu Tao, Xu Hua. In-flight polarization calibration methods of directional polarizedremote sensing camera DPC. Acta Physica Sinica, 2011, 60(7): 070702. doi: 10.7498/aps.60.070702
    [19] Cheng Tian-Hai, Gu Xing-Fa, Chen Liang-Fu, Yu Tao, Tian Guo-Liang. Multi-angular polarized characteristics of cirrus clouds. Acta Physica Sinica, 2008, 57(8): 5323-5332. doi: 10.7498/aps.57.5323
    [20] ZHU WEI-YONG, BANG YAO-JUN, NING WEI. ULTRASONIC ATTENUATION IN FIBER REINFORCED COMPOSITES. Acta Physica Sinica, 1996, 45(1): 58-64. doi: 10.7498/aps.45.58
Metrics
  • Abstract views:  6689
  • PDF Downloads:  181
  • Cited By: 0
Publishing process
  • Received Date:  30 September 2021
  • Accepted Date:  26 January 2022
  • Available Online:  15 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回