Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of NbOx memristive neuron and its application in spiking neural networks

Gu Ya-Na Liang Yan Wang Guang-Yi Xia Chen-Yang

Citation:

Design of NbOx memristive neuron and its application in spiking neural networks

Gu Ya-Na, Liang Yan, Wang Guang-Yi, Xia Chen-Yang
PDF
HTML
Get Citation
  • NbOx memristors show great application prospect in neuromorphic computing due to its nanoscale size, threshold switching, and locally active properties. The in-depth analysis and study of NbOx memristors’s dynamic properties are beneficial to the design and optimization of memristive neuron circuits. In this paper, based on the local active theory, the physical model of NbOx memristor is studied by using the small signal analysis method, and the region and conditions of the peak oscillation are quantitatively analyzed, and the quantitative relationship between the excitation signal amplitude and the peak frequency is determined. Based on the above theoretical analysis, NbOx memristor neurons are further designed and combined with the memristive synaptic crisscross array in order to construct a 25×10 spiking neural network (SNN). Finally, the recognitional function of digital 0 to 9 patterns is effectively realized by using frequency coding and time coding respectively.
      Corresponding author: Liang Yan, liangyan@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62171173) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20F010008).
    [1]

    Chua L O 1971 IEEE Trans. Circuits Syst. 18 5

    [2]

    Williams R S 2008 IEEE Spectr. 45 12

    [3]

    Zhou J, Cai F, Wang Q, Chen B, S Gaba, W D Lu 2016 IEEE Electron Device Lett. 37 4Google Scholar

    [4]

    王春华, 蔺海荣, 孙晶如, 周玲, 周超, 邓全利 2020 电子与信息学报 42 795Google Scholar

    Wang C H, Lin H R, Sun R J, Zhou L, Zhou C, Deng Q L 2020 J. Electron. Inf. Technol. 42 795Google Scholar

    [5]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 1Google Scholar

    [6]

    Wu H, Zhou J, Chen M, Xu Q, Bao B 2021 Chaos, Solitons Fractals. 154 2022

    [7]

    Kim S, Du C, Sheridan P, Ma W, Choi S H, Lu W D 2015 ACS Nano 15 3

    [8]

    Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Trans. Circuits Syst. 66 7

    [9]

    Strukov D B 2016 Appl. Phys. A 122 4Google Scholar

    [10]

    Kvatinsky S, Ramadan M, Friedman E G, Kolodny A 2015 IEEE Trans. Circuits Syst. Express Briefs. 62 8

    [11]

    Chua L O 2005 Int. J. Bifurcation Chaos 15 11

    [12]

    Ruan J Y, Sun K H, Mou J, He S B, Zhang L M 2018 Eur. Phys. J. Plus 133 3Google Scholar

    [13]

    Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Trans. Circuits Syst. Regul. Pap. 66 7

    [14]

    Liang Y, Wang G Y, Chen G R, Dong Y J, Yu D S, Iu H H C 2020 IEEE Trans Circuits Syst. 67 5139Google Scholar

    [15]

    Mannan Z I, Choi H, Kim H, Chua L O 2016 Int. J. Bifurcation Chaos 26 1630009Google Scholar

    [16]

    Jin P P, Wang G Y, Liang Y, Iu H H C, Chua L O 2021 IEEE Trans. Circuits Syst. 68 11

    [17]

    Yi W, Tsang K K, Lam S K, Bai X, Crowell J A, Flores E A 2018 Nat. Commun. 7 9

    [18]

    Lin H R, Wang C H, Sun Y C, Yao W 2020 Nonlinear Dyn. 100 4

    [19]

    Wei Q M, Tang J S, Li X Y, Zhong Y N, Gao B, Qian H, Wu H Q 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) Chengdu, China, April 8–11, 2021 pp1–3

    [20]

    Frank D J, Dennard R H, Nowak E, Solomon P M, Taur Y, Wong H S P 2001 Proc. IEEE. 89 3Google Scholar

    [21]

    Yeo I, Chu M, Gi S, Hwang H, Lee B 2019 IEEE Trans. Electron Devices 66 7Google Scholar

    [22]

    Zhang X M, Wu Z H, Lu J K, et al. 2020 IEEE International Electron Devices Meeting(IEDM) Electr Network, December 12–18, 2020

    [23]

    Wang Z R, Joshi S, Savel’ ev S, et al. 2018 Nat. Electron. 1 2Google Scholar

    [24]

    Sheridan P, Ma W, Lu W 2014 IEEE International Symposium on Circuits and Systems (ISCAS) Melbourne, June 1–5, 2014 pp1078–1081

    [25]

    Kumar S, Strachan J P, Williams R S 2017 Nature 548 7667

    [26]

    Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M 2004 Nature 430 6999

    [27]

    Sawicki M, Chiba D, Korbecka A, Nishitani Y, Majewski J A, Matsukura F, Dietl T, Ohno H 2008 Nature 455 7212

    [28]

    Ascoli1 A, Demirkol1 A S, Tetzlaff R, Slesazeck S, Mikolajick T, Chua L O 2021 Front. Neurosci. 15 651452Google Scholar

    [29]

    Liang Y, Zhu Q, Wang G Y, Nath S K, Iu H H C, Nandi S K, Elliman R G 2021 IEEE Trans. Circuits Syst. Regul. Pap. 68 1278Google Scholar

    [30]

    徐泠风, 李传东, 陈玲 2016 物理学报 65 240701Google Scholar

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701Google Scholar

    [31]

    Zhang Y, Wang X, Li Y, Friedman E G 2017 IEEE Trans. Circuits Syst. Express Briefs. 64 7

    [32]

    洪庆辉 2019 博士学位论文 (武汉: 华中科技大学)

    Hong Q H 2019 Ph.D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

  • 图 1  S型NbOx LAM响应于1 MHz, 10 MHz, 1 GHz的正弦信号的捏滞曲线

    Figure 1.  Pinch hysteresis curves of S-type NbOx LAM in response to sinusoidal signals at 1 MHz, 10 MHz and 1 GHz.

    图 2  NbOx LAM的直流V-I图 (a) 浅蓝色部分是忆阻器的NDR区; (b) 红色线是负载线, 插图为电压偏置电路

    Figure 2.  DC V-I plot of NbOx LAM: (a) The light blue part is the NDR region of the memristor; (b) the red line is the load line and the inset is the bias circuit with DC voltage supply.

    图 3  h (V0 , T)与温度T的关系图

    Figure 3.  Relationship between h (V0 , T) and temperature T.

    图 4  (a) NbOx-Mott忆阻器在工作点Q (0.008 A, 0.3003 V)处的小信号等效电路模型; (b) Rx对工作点的依赖性; (c) Lx对工作点的依赖性; (d) Ry对工作点的依赖性

    Figure 4.  (a) Small-signal equivalent circuit model of NbOx-Mott memristor at the operating point Q (0.008 A, 0.3003 V); (b) the dependence of Rx on the operating point; (c) the dependence of Lx on the operating point; (d) the dependence of Ry on the operating point.

    图 5  (a) I = 0.008 A时的实部虚部的频率响应; (b) 奈奎斯特图

    Figure 5.  (a) Frequency responses of the real and imaginary parts at I = 0.008 A; (b) Nyquist plot.

    图 6  二阶振荡电路

    Figure 6.  Second-order oscillator circuit.

    图 7  雅可比矩阵的特征值在0.042 nF < C < 10 nF范围内的变化

    Figure 7.  Variations of the eigenvalues of the Jacobian matrix for 0.042 nF < C < 10 nF.

    图 8  I = 0.008 A, C = 0.3 nF时, NbOx LAM的二阶振荡器的仿真结果 (a)电压vm、状态变量T和电流im的瞬态波形; (b)稳定点的im-T相图; 当I = 0.008 A, C = 0.8 nF时, NbOx LAM的二阶振荡器的仿真结果: (c)电压vm、状态变量T和电流im的瞬态波形; (d) 振荡状态的im-T相图

    Figure 8.  Simulation results of the NbOx LAM second-order oscillator: (a) The transient waveforms of vm, T and im at I = 0.008 A and C = 0.3 nF; (b) the stable equilibrium on im-T phase plane at I = 0.008 A and C = 0.3 nF; (c) the transient waveforms of vm, T and im at I = 0.008 A and C = 0.8 nF; (d) the limit cycle on the im-T phase plane at I = 0.008 A and C = 0.8 nF.

    图 9  (a) 输入的直流电流激励取10, 30和 50 mA时, 忆阻器电流的时域图; (b) 不同电流激励对应的尖峰数量关系图

    Figure 9.  (a) The time-domain waveforms of im at different input DC current excitations of 10, 30 and 50 mA; (b) the number of spikes corresponding to different current excitations.

    图 10  基于NbOx忆阻器的神经元电路

    Figure 10.  Neuron circuit based on NbOx memristor.

    图 11  (a) 忆阻突触处于ON状态时, Vi1vm时域图; (b) 忆阻突触处于ON状态时, im时域图; (c) 忆阻突触处于OFF状态时, Vi1vm时域图; (d) 忆阻突触处于OFF状态时, im时域图

    Figure 11.  (a) The time-domain waveforms of Vi1 and vm when the memristive synapse is at ON state; (b) the time-domain waveforms of im at ON state; (c) the time-domain waveforms of Vi1 and vm when the memristive synapse is at OFF state; (d) the time-domain waveforms of im at OFF state.

    图 12  5×5的10种数字模式

    Figure 12.  10 digital patterns of 5×5.

    图 13  电压突触电路实现

    Figure 13.  Implementation of voltage synapse circuit.

    图 14  由25×10的突触阵列以及10个输出神经元构成的尖峰神经网络

    Figure 14.  A spiking neural network consisting of a 25×10 synaptic array and 10 output neurons.

    图 15  (a) 数字2输入尖峰神经网络, 10个输出神经元的电流im输出时域图; (b) 10种模式输入尖峰神经网络时各输出神经元输出电流频率的情况

    Figure 15.  (a) The time-domain waveforms of im of 10 output neurons when “2” mode is input to SNN; (b) the output current frequencies of each output neuron when ten modes are input to the spiking neural network.

    图 16  基于TC SNN的神经元电路

    Figure 16.  Neuron circuit based on TC SNN.

    图 17  (a) 单尖峰电路的仿真结果图; (b) 未应用单尖峰电路方案的仿真结果

    Figure 17.  (a) The simulation results with the single-spike circuit; (b) the simulation results without the single-spike circuit.

    图 18  (a)“2”模式输入SNN时, 10个输出神经元的电流时域图; (b) 不同输入模式对应的神经元输出首个脉冲的时间

    Figure 18.  (a) The time-domain waveforms of im of 10 output neurons when “2” mode is input to SNN; (b) the time of outputting the first pulse of neurons corresponding to different input modes.

  • [1]

    Chua L O 1971 IEEE Trans. Circuits Syst. 18 5

    [2]

    Williams R S 2008 IEEE Spectr. 45 12

    [3]

    Zhou J, Cai F, Wang Q, Chen B, S Gaba, W D Lu 2016 IEEE Electron Device Lett. 37 4Google Scholar

    [4]

    王春华, 蔺海荣, 孙晶如, 周玲, 周超, 邓全利 2020 电子与信息学报 42 795Google Scholar

    Wang C H, Lin H R, Sun R J, Zhou L, Zhou C, Deng Q L 2020 J. Electron. Inf. Technol. 42 795Google Scholar

    [5]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 1Google Scholar

    [6]

    Wu H, Zhou J, Chen M, Xu Q, Bao B 2021 Chaos, Solitons Fractals. 154 2022

    [7]

    Kim S, Du C, Sheridan P, Ma W, Choi S H, Lu W D 2015 ACS Nano 15 3

    [8]

    Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Trans. Circuits Syst. 66 7

    [9]

    Strukov D B 2016 Appl. Phys. A 122 4Google Scholar

    [10]

    Kvatinsky S, Ramadan M, Friedman E G, Kolodny A 2015 IEEE Trans. Circuits Syst. Express Briefs. 62 8

    [11]

    Chua L O 2005 Int. J. Bifurcation Chaos 15 11

    [12]

    Ruan J Y, Sun K H, Mou J, He S B, Zhang L M 2018 Eur. Phys. J. Plus 133 3Google Scholar

    [13]

    Weiher M, Herzig M, Tetzlaff R, Ascoli A, Mikolajick T, Slesazeck S 2019 IEEE Trans. Circuits Syst. Regul. Pap. 66 7

    [14]

    Liang Y, Wang G Y, Chen G R, Dong Y J, Yu D S, Iu H H C 2020 IEEE Trans Circuits Syst. 67 5139Google Scholar

    [15]

    Mannan Z I, Choi H, Kim H, Chua L O 2016 Int. J. Bifurcation Chaos 26 1630009Google Scholar

    [16]

    Jin P P, Wang G Y, Liang Y, Iu H H C, Chua L O 2021 IEEE Trans. Circuits Syst. 68 11

    [17]

    Yi W, Tsang K K, Lam S K, Bai X, Crowell J A, Flores E A 2018 Nat. Commun. 7 9

    [18]

    Lin H R, Wang C H, Sun Y C, Yao W 2020 Nonlinear Dyn. 100 4

    [19]

    Wei Q M, Tang J S, Li X Y, Zhong Y N, Gao B, Qian H, Wu H Q 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) Chengdu, China, April 8–11, 2021 pp1–3

    [20]

    Frank D J, Dennard R H, Nowak E, Solomon P M, Taur Y, Wong H S P 2001 Proc. IEEE. 89 3Google Scholar

    [21]

    Yeo I, Chu M, Gi S, Hwang H, Lee B 2019 IEEE Trans. Electron Devices 66 7Google Scholar

    [22]

    Zhang X M, Wu Z H, Lu J K, et al. 2020 IEEE International Electron Devices Meeting(IEDM) Electr Network, December 12–18, 2020

    [23]

    Wang Z R, Joshi S, Savel’ ev S, et al. 2018 Nat. Electron. 1 2Google Scholar

    [24]

    Sheridan P, Ma W, Lu W 2014 IEEE International Symposium on Circuits and Systems (ISCAS) Melbourne, June 1–5, 2014 pp1078–1081

    [25]

    Kumar S, Strachan J P, Williams R S 2017 Nature 548 7667

    [26]

    Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M 2004 Nature 430 6999

    [27]

    Sawicki M, Chiba D, Korbecka A, Nishitani Y, Majewski J A, Matsukura F, Dietl T, Ohno H 2008 Nature 455 7212

    [28]

    Ascoli1 A, Demirkol1 A S, Tetzlaff R, Slesazeck S, Mikolajick T, Chua L O 2021 Front. Neurosci. 15 651452Google Scholar

    [29]

    Liang Y, Zhu Q, Wang G Y, Nath S K, Iu H H C, Nandi S K, Elliman R G 2021 IEEE Trans. Circuits Syst. Regul. Pap. 68 1278Google Scholar

    [30]

    徐泠风, 李传东, 陈玲 2016 物理学报 65 240701Google Scholar

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701Google Scholar

    [31]

    Zhang Y, Wang X, Li Y, Friedman E G 2017 IEEE Trans. Circuits Syst. Express Briefs. 64 7

    [32]

    洪庆辉 2019 博士学位论文 (武汉: 华中科技大学)

    Hong Q H 2019 Ph.D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

  • [1] Wang Xuan, Du Jian-Rong, Li Zhi-Jun, Ma Ming-Lin, Li Chun-Lai. Coexisting discharge and synchronization of heterogeneous discrete neural network with crosstalk memristor synapses. Acta Physica Sinica, 2024, 73(11): 110503. doi: 10.7498/aps.73.20231972
    [2] Jia Mei-Mei, Cao Jia-Wei, Bai Ming-Ming. Firing modes and predefined-time chaos synchronization of novel memristor-coupled heterogeneous neuron. Acta Physica Sinica, 2024, 73(17): 170502. doi: 10.7498/aps.73.20240872
    [3] Wang Meng-Jiao, Yang Chen, He Shao-Bo, Li Zhi-Jun. A novel compound exponential locally active memristor coupled Hopfield neural network. Acta Physica Sinica, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888
    [4] Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi. Simplification of Chua corsage memristor and hardware implementation of its neuron circuit. Acta Physica Sinica, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [5] Huang Ying, Gu Chang-Gui, Yang Hui-Jie. Junk-neuron-deletion strategy for hyperparameter optimization of neural networks. Acta Physica Sinica, 2022, 71(16): 160501. doi: 10.7498/aps.71.20220436
    [6] Ding Da-Wei, Lu Xiao-Qi, Hu Yong-Bing, Yang Zong-Li, Wang Wei, Zhang Hong-Wei. Multistability of fractional-order memristor-coupled heterogeneous neurons and its hardware realization. Acta Physica Sinica, 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525
    [7] Wu Chang-Chun, Zhou Pu-Jun, Wang Jun-Jie, Li Guo, Hu Shao-Gang, Yu Qi, Liu Yang. Memristor based spiking neural network accelerator architecture. Acta Physica Sinica, 2022, 71(14): 148401. doi: 10.7498/aps.71.20220098
    [8] Zhu Jia-Xue, Zhang Xu-Meng, Wang Rui, Liu Qi. Flexible memristive spiking neuron for neuromorphic sensing and computing. Acta Physica Sinica, 2022, 71(14): 148503. doi: 10.7498/aps.71.20212323
    [9] Wen Xin-Yu, Wang Ya-Sai, He Yu-Hui, Miao Xiang-Shui. Memristive brain-like computing. Acta Physica Sinica, 2022, 71(14): 140501. doi: 10.7498/aps.71.20220666
    [10] Wang Shi-Chang, Lu Zhen-Zhou, Liang Yan, Wang Guang-Yi. Neuromorphic behaviors of N-type locally-active memristor. Acta Physica Sinica, 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [11] Bai Jing, Guan Fu-Rong, Tang Guo-Ning. Various effects induced by local synchronization in neural networks. Acta Physica Sinica, 2021, 70(17): 170502. doi: 10.7498/aps.70.20210142
    [12] Huang Zhi-Jing, Li Qian-Yun, Bai Jing, Tang Guo-Ning. Entropy measurement of ordered patterns in neuronal network with repulsive coupling. Acta Physica Sinica, 2019, 68(11): 110503. doi: 10.7498/aps.68.20190231
    [13] Wang Peng, Li Qian-Yun, Huang Zhi-Jing, Tang Guo-Ning. Spontaneous formation of ordered waves in chaotic neuronal network with excitory-inhibitory connections. Acta Physica Sinica, 2018, 67(17): 170501. doi: 10.7498/aps.67.20180506
    [14] Li Zhi-Jun, Zeng Yi-Cheng, Li Zhi-Bin. Memristive chaotic circuit based on modified SC-CNNs. Acta Physica Sinica, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [15] Liu Yu-Dong, Wang Lian-Ming. Application of memristor-based spiking neural network in image edge extraction. Acta Physica Sinica, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [16] Li Chun-Guang, Chen Jun. Chaos in a neuron model with adaptive feedback synapse: Electronic circuit design. Acta Physica Sinica, 2011, 60(5): 050503. doi: 10.7498/aps.60.050503
    [17] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [18] HE GUO-GUANG, CAO ZHI-TONG. CONTROLLING CHAOS IN CHAOTIC NEURAL NETWORK. Acta Physica Sinica, 2001, 50(11): 2103-2107. doi: 10.7498/aps.50.2103
    [19] Yu Li-juan, Zhu Chang-chun. Neural Networks Models on Threshold Electric Field of Field Emission. Acta Physica Sinica, 2000, 49(1): 170-173. doi: 10.7498/aps.49.170
    [20] CHANG SHENG-JIANG, LIU YUE, ZHANG WEN-WEI, SHEN JIN-YUAN, ZHAI HONG-CHEN, ZHANG YAN-XIN. A NEURAL NETWORK MODEL FOR UNEQUALLY DISTRIBUTED NEURON STATES AND ITS OPTICAL IMPLEMENTATION. Acta Physica Sinica, 1998, 47(7): 1101-1109. doi: 10.7498/aps.47.1101
Metrics
  • Abstract views:  6340
  • PDF Downloads:  245
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2022
  • Accepted Date:  13 February 2022
  • Available Online:  04 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回