-
The determination of toxic or harmful gases in industrial parks is a challenge to monitoring exhaust contaminants due to the features of complex compositions and ubiquity. Blackbody sources play an important role in simultaneously detecting the multiple gas species in the presence of cross-interfering absorption lines due to their effective ultra-wide wavelength range. Nevertheless, the problem of lower intensity per wavelength and less stability persists as an obstacle for highly sensitive trace gas detection. In this study, a dual optical path (DOP) enhanced differential photoacoustic and spectral detection mode is developed for simultaneously detecting the multiple toxic or harmful gas through augmenting the weak effective absorption signals and suppressing the spurious coherent background noise. Two identical T-type photoacoustic resonators are introduced to enable the differential mode. Neverthelss, the pure optical approach cannot distinguish the absorption characteristics of acetylene (C2H2) with volume fraction 5 × 10–5 even with the DOP enhancement, whereas emerging peaks in the differential photoacoustic (PA) mode reveal the capability of PA spectroscopy to suppress coherent noise. The results demonstrate that the differential PA signal is improved by 1.91 times that obtained by the DOP design. Methane (NH3), acetylene (C2H2) and carbon dioxide (CO2) are used to verify the performance of this DOP enhanced differential PA gas sensor, and the volume fraction of the sensitivity is found to be 7.25 × 10–7 for CO2, 1.84 × 10–6 for C2H2, and 1.43 × 10–6 for NH3 at standard temperature and pressure, which is an order of magnitude higher than the original single mode PA value. Linear PA amplitude responses ranging from 0 to 3 × 10–3 in volume fraction with respect to the three target gases are observed, and the correction coefficients are all greater than 0.995. The DOP enhanced differential PA detection mode compensates for the weakness of the limited sensitivity associated with broadband spectroscopic methods based on blackbody radiator. Thus, the broadband DOP enhanced differential photoacoustic modality is demonstrated to be an effective approach to simultaneous, highly sensitive and selective detection of multiple trace gases.
-
Keywords:
- dual optical path enhanced differential mode /
- photoacoustic spectroscopy /
- toxic or harmful gas /
- multiple trace gas detection
[1] Hyde B P, Carton O T, Toole P O 2003 Atmos. Environ. 37 55Google Scholar
[2] Gong Z F, Gao T L, Mei L, Chen K, Zhang B, Peng W, Yu Q X 2021 Photoacoustics 21 100216Google Scholar
[3] Li Y, Wang R Z, Tittel F K, Ma Y F 2020 Opt. Laser Eng. 132 106155Google Scholar
[4] Wilson A D 2012 Procedia 1 453
[5] Marriott P J, Haglund P, Ong R C Y 2003 Clin. Chim. Acta 328 1Google Scholar
[6] Berbegal C, Khomenko I, Russo P, Spano G, Fragasso M, Biasioli F, Capozzi V 2020 Fermentation 6 55Google Scholar
[7] Korablev O, Vandaele A C, Montmessin F, et al. 2019 Nature 568 517Google Scholar
[8] Tombez L, Zhang E J, Orcutt J S, Kamlapurkar S, Green W M J 2017 Optica 4 1322Google Scholar
[9] 孙友文, 刘文清, 汪世美, 黄书华, 曾议, 谢品华, 陈军, 王亚萍, 司福祺 2012 物理学报 61 140704Google Scholar
Sun Y W, Liu W Q, Wang S M, Huang S H, Zeng Y, Xie P H, Chen J, Wang Y P, Si F Q 2012 Acta Phys. Sin. 61 140704Google Scholar
[10] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律 2017 物理学报 66 074212Google Scholar
Miao Y P, Le W, Yang F, Lin Y C, Tan Y Z, He H L 2017 Acta Phys. Sin. 66 074212Google Scholar
[11] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊 2012 物理学报 61 060702Google Scholar
Dong M L, Zhao W X, Cheng Y, Hu C J, Gu X J, Zhang W J 2012 Acta Phys. Sin. 61 060702Google Scholar
[12] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏 2021 物理学报 70 170701
Yin X K, Dong L, Wu H P, Liu L X, Shao X P 2021 Acta Phys. Sin. 70 170701
[13] 马欲飞 2021 物理学报 70 160702Google Scholar
Ma Y F 2021 Acta Phys. Sin. 70 160702Google Scholar
[14] He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Lett. 44 1904Google Scholar
[15] Li S Z, Wu H P, C R Y, Sampaolo A, Patimisco P, Spagnolo V, Tittel F K, Dong L 2019 Opt. Express 27 35267Google Scholar
[16] Zhang B, Chen K, Chen Y W, et al. 2020 Opt. Express 28 6618Google Scholar
[17] Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sens. Actuators, B 251 632Google Scholar
[18] Yin X K, Wu H P, Dong L, et al. 2019 Sens. Actuators, B 282 567Google Scholar
[19] Liu L X, Mandelis A, Huan H T, Michaelian K H 2017 Opt. Lett. 42 1424Google Scholar
[20] Liu L X, Mandelis A, Huan H T, Melnikov A 2016 Appl. Phys. B 122 268
[21] Liu L X, Huan H T, Li W, Mandelis A, Wang Y F, Zhang L, Zhang X S, Yin X K, Wu Y X, Xiao X P 2021 Photoacoustics 21 100228Google Scholar
[22] Liu L X, Huan H T, Mandelis A, Zhang L, Guo C F, Li W, Zhang X S, Yin X K, Shao X P, Wang D T, 2022 Opt. Laser Technol. 148 107695Google Scholar
-
-
[1] Hyde B P, Carton O T, Toole P O 2003 Atmos. Environ. 37 55Google Scholar
[2] Gong Z F, Gao T L, Mei L, Chen K, Zhang B, Peng W, Yu Q X 2021 Photoacoustics 21 100216Google Scholar
[3] Li Y, Wang R Z, Tittel F K, Ma Y F 2020 Opt. Laser Eng. 132 106155Google Scholar
[4] Wilson A D 2012 Procedia 1 453
[5] Marriott P J, Haglund P, Ong R C Y 2003 Clin. Chim. Acta 328 1Google Scholar
[6] Berbegal C, Khomenko I, Russo P, Spano G, Fragasso M, Biasioli F, Capozzi V 2020 Fermentation 6 55Google Scholar
[7] Korablev O, Vandaele A C, Montmessin F, et al. 2019 Nature 568 517Google Scholar
[8] Tombez L, Zhang E J, Orcutt J S, Kamlapurkar S, Green W M J 2017 Optica 4 1322Google Scholar
[9] 孙友文, 刘文清, 汪世美, 黄书华, 曾议, 谢品华, 陈军, 王亚萍, 司福祺 2012 物理学报 61 140704Google Scholar
Sun Y W, Liu W Q, Wang S M, Huang S H, Zeng Y, Xie P H, Chen J, Wang Y P, Si F Q 2012 Acta Phys. Sin. 61 140704Google Scholar
[10] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律 2017 物理学报 66 074212Google Scholar
Miao Y P, Le W, Yang F, Lin Y C, Tan Y Z, He H L 2017 Acta Phys. Sin. 66 074212Google Scholar
[11] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊 2012 物理学报 61 060702Google Scholar
Dong M L, Zhao W X, Cheng Y, Hu C J, Gu X J, Zhang W J 2012 Acta Phys. Sin. 61 060702Google Scholar
[12] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏 2021 物理学报 70 170701
Yin X K, Dong L, Wu H P, Liu L X, Shao X P 2021 Acta Phys. Sin. 70 170701
[13] 马欲飞 2021 物理学报 70 160702Google Scholar
Ma Y F 2021 Acta Phys. Sin. 70 160702Google Scholar
[14] He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Lett. 44 1904Google Scholar
[15] Li S Z, Wu H P, C R Y, Sampaolo A, Patimisco P, Spagnolo V, Tittel F K, Dong L 2019 Opt. Express 27 35267Google Scholar
[16] Zhang B, Chen K, Chen Y W, et al. 2020 Opt. Express 28 6618Google Scholar
[17] Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sens. Actuators, B 251 632Google Scholar
[18] Yin X K, Wu H P, Dong L, et al. 2019 Sens. Actuators, B 282 567Google Scholar
[19] Liu L X, Mandelis A, Huan H T, Michaelian K H 2017 Opt. Lett. 42 1424Google Scholar
[20] Liu L X, Mandelis A, Huan H T, Melnikov A 2016 Appl. Phys. B 122 268
[21] Liu L X, Huan H T, Li W, Mandelis A, Wang Y F, Zhang L, Zhang X S, Yin X K, Wu Y X, Xiao X P 2021 Photoacoustics 21 100228Google Scholar
[22] Liu L X, Huan H T, Mandelis A, Zhang L, Guo C F, Li W, Zhang X S, Yin X K, Shao X P, Wang D T, 2022 Opt. Laser Technol. 148 107695Google Scholar
Catalog
Metrics
- Abstract views: 5056
- PDF Downloads: 90
- Cited By: 0