Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser micro/nanomachining technology for soft matter

Guo Jin-Kun Zhao Ze-Jia Ling Jin-Zhong Yuan Ying Wang Xiao-Rui

Guo Jin-Kun, Zhao Ze-Jia, Ling Jin-Zhong, Yuan Ying, Wang Xiao-Rui. Laser micro/nanomachining technology for soft matter. Acta Phys. Sin., 2022, 71(17): 174203. doi: 10.7498/aps.71.20220625
Citation: Guo Jin-Kun, Zhao Ze-Jia, Ling Jin-Zhong, Yuan Ying, Wang Xiao-Rui. Laser micro/nanomachining technology for soft matter. Acta Phys. Sin., 2022, 71(17): 174203. doi: 10.7498/aps.71.20220625

Laser micro/nanomachining technology for soft matter

Guo Jin-Kun, Zhao Ze-Jia, Ling Jin-Zhong, Yuan Ying, Wang Xiao-Rui
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Laser micro/nanomachining technology for soft matter achieves the purpose of fabricating the spherical structures of soft matter by combing laser-assisted mechanical injection and controllable self-assembly, which has significant advantages in comparison with conventional methods like droplet microfluidics. In this study, the effects of laser parameters such as laser energy, beam size, and irradiation position on the injection are investigated. It is found that there also exists one upper limit of the laser energy, and if the laser irradiation is too strong, it can introduce a convection flow of liquid crystal rather than trigger off the injection of guest microdroplets. Thus, the laser injection can be achieved in a specific energy range of the laser irradiation. By manipulating the laser beam with a smaller size, the guest water microdroplets can be injected at the preselected location on the surface of a host liquid crystal droplet. In addition, the influences of material parameters such as the surfactant concentration, the material type and phase state of liquid crystal on the laser-assisted mechanical injection, and the size of the injected guest droplet are investigated. It is found that the liquid crystal droplet with higher surfactant concentration requires less energy from the laser irradiation to generate enough mechanical force to trigger off the injection. Because under the same temperature increment, the liquid crystal droplet with higher ion concentration enjoys a stronger surface tension gradient. By comparing several different types of liquid crystals, it is found the injection of guest droplets into a host with a higher elastic constant liquid crystal can be more difficult. The influences of the material type of liquid crystal and the concentration of surfactant on the critical size of guest microdroplets are summarized. Finally, the defect lines of liquid crystal are introduced as the self-assembly template, through which microdroplets of liquid crystal with the sophisticated spherical structure are fabricated. The self-assembly kinetic behaviors of guest droplets in the defect line are analyzed. The laser micro/nanomachining technology of soft matter can be applied to the extreme processing and application development of 3D spherical structures in the fields of optoelectronics, photonics, and biomedicine.
      PACS:
      42.62.-b(Laser applications)
      47.57.jb(Microemulsions)
      61.30.Pq(Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems)
      87.85.Va(Micromachining transducers, including)
      Corresponding author: Guo Jin-Kun, jkguo@xidian.edu.cn ; Wang Xiao-Rui, xrwang@mail.xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62005206, 62075176, 62005204), the Fundamental Research Funds for the Central Universities, China, the Funds for New experiment development of Xidian Univeristy, China (Grant No. 2021-79-104), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JM-313).

    软物质又称软凝聚态物质, 包含液晶、胶体、高分子、泡沫、薄膜、颗粒物质和生命体系物质等, 在自然界、生命体、日常生活和生产中广泛存在且影响深远[1]. 经数十年的发展, 固体材料的极端制造特别是激光制造技术从宏观跨越到了微观尺度, 实现了将复杂电子功能集成在微米尺度的电子器件上, 在半导体领域取得了革命性的成功, 创造了巨大的社会经济价值, 成为举足轻重的先进制造核心技术. 在软物质领域采用类似的微型化策略, 研究将其装配成介观尺度(毫米至纳米的范围)的液滴并加工其球体结构的微纳加工技术, 同样有着重要的科学和应用价值. 首先, 软物质微滴已被广泛运用于微型光电子器件[2-9]、防伪标识[10]、智能传感[11]、人造细胞[12]、生物检测[13-15]、体外诊断[16]等前沿技术领域的研究和开发. 其次, 软物质微滴具有试剂消耗量极小(成本低)、操控方便、交叉污染少等显著特征, 在药物递送[17]、微生物培养[18]、食品工程[19]、化妆品工程[20]和微化学[21]等多个领域有着巨大的应用价值.

    目前针对软物质微滴的微纳加工普遍采用液滴微流控技术[2,10], 该技术借助微流控芯片控制互不相溶的液体发生对流, 在剪切和挤压的作用下形成微滴并以两步或多步的方式装配微滴球体结构. 然而, 软物质包含诸如流动性、低剪切阻力、界面张力等特殊的物理性质限制了微流控技术的加工能力, 借其只能完成一些较大尺寸(亚毫米级)的简单球体结构的加工装配[22]. 更为重要的是软物质具有与液体类似的流动性的同时, 亦具有与晶体类似的长程有序性, 这意味着可凭借软物质分子的排列来诱导其介质中的微纳米颗粒自发地排列为某种有序结构(自组装). 中国吉林大学李云峰课题组和加拿大多伦多大学Kumacheva课题组[23]借助溶致型液晶的拓扑相错结构实现了纳米颗粒的可控自组装, 展示了利用自组装加工软物质微滴的巨大潜力, 但该方法仅对400 nm以下尺寸的纳米颗粒有效. 韩国成均馆大学Song课题组[24]将激光微纳加工引入了软物质领域, 报道了利用激光光束将水溶液注射进液晶微滴内, 从而以自下而上的方法装配液晶微滴球体结构, 展现出远超传统液滴微流控工艺的加工灵活度、加工尺度和可加工结构复杂度, 但该研究仅装配出沿球体径向排列的球体结构.

    本研究搭建了软物质激光辅助机械加工系统, 对软物质微纳加工技术进行了深入的研究和进一步的拓展. 研究了激光能量、光束尺寸、曝光位置等激光参数对注射的影响; 研究了表面活性剂浓度、液晶种类和相态等材料因素对注射机械力形成, 以及注入子液滴尺寸的影响; 最后, 引入具有拓扑相错线的胆甾相液晶为加工目标微滴, 利用激光注射技术将微米尺度的子液滴精准的载入到相错线上, 分析了子液滴在相错线上的自组装动力学, 最 终借助相错线装配出全新的软物质微滴球体结构.

    激光辅助机械注射系统如图1所示. 通过流体注射器将液晶(MLC-7026-000, Merck)微滴水溶液送入玻璃微流控芯片的腔体中, 水溶液中掺有质量分数为5%的表面活性剂十二烷基硫酸钠(SDS, Sigma-Aldrich)材料. 溶液中的SDS分子会停留在水和液晶的界面处, 在降低微滴表面张力的同时诱导液晶分子垂直于界面排列. 微流控芯片中的腔体厚度为1.5 mm, 液晶微滴会稳定地悬浮在腔体的水溶液中(图1(b)). 微滴内掺有质量分数0.1%的香豆素–6(coumrain-6, Sigma-Aldrich)染料用以增强液晶对光的吸收, 基于同样的原理实验中选用一台接近染料吸收波峰的455 nm的连续型激光器(LL445T, 长春亮丽光电)作为加工光源. 激光光束通过显微物镜(数值孔径NA = 0.75, 尼康)被聚焦到微流控芯片的腔体中, 相应的微流控芯片底部的玻璃厚度为0.15 mm. 微流控芯片置于压电平移台上, 借其可将激光聚焦到芯片腔体内任意指定位置.

    图 1 软物质激光辅助机械加工系统结构示意图\r\nFig. 1. Schematic of the laser-assisted micromachining system for soft matter.
    图 1  软物质激光辅助机械加工系统结构示意图
    Fig. 1.  Schematic of the laser-assisted micromachining system for soft matter.

    在光路部分为获得能量密度更高的激光加工光束, 我们摒弃了采用小孔控制光斑尺寸的方案[24], 如图1(a)所示, 在光路中加入可调谐扩束器(索雷博光电)选用先扩束再聚焦的方法, 在获得2—60 μm可调激光光斑的同时可将其单位能量密度提高3个量级(最大值3.18 mW/μm2). 此外, 在激光光路中插入一组偏振片和半波片, 通过旋转半波片在0.01—100.00 mW范围内连续调节激光的功率. 借助照明光源和高清CCD相机(TrueChrome, 福州鑫图光电)可对激光辅助机械加工以及被注入液滴子结构的自组装过程进行实时观测和分析.

    激光注射是借助光与物质的相互作用, 利用高斯激光光束照射水溶液中液晶微滴的表面, 光被材料吸收后形成温度梯度, 从而在液晶/水界面产生张力梯度进而形成机械力将水溶液注入到液晶微滴内[24]. 当激光能量高于最低值(激光功率 × 曝光时间, 如0.16 mW × 20 s), 即形成足够强的机械力时, 将水溶液注入到液晶微滴内. 有趣的是在激光注射实验中, 我们发现激光注射亦存在一个最高能量边界(见图2(a)). 如图2(b)所示, 当选用0.365 mW的激光照射目标微滴时, 可以观察到微滴中心相错点会朝着(黄色箭头)激光光斑的位置移动, 表明激光照射在微滴内诱发了热毛细作用, 使得液晶材料产生流动[25]. 当激光功率升高到50 mW时, 微滴内材料流动加剧形成对流, 甚至驱动整个目标微滴发生位移(图2(c), 从黄色虚线圈运动到实线圈位置). 在剧烈的热毛细作用下, 微滴内液晶材料的对流促进了热量的交换, 从而降低了界面处温度的梯度, 难以形成足够强的机械力将水溶液注入到液晶微液滴中.

    图 2 激光光束参量对激光注射的影响 (a) 激光辅助机械注射在特定能量区间内可行; (b), (c) 超出最高能量的激光会诱发液晶发生流动; (d)—(g) 光束尺寸和曝光位置对激光注入的影响(标尺20 μm)\r\nFig. 2. The impact of parameters of laser beam on the laser injection: (a) Laser injection is feasible within a specific energy range; (b), (c) laser irradiation with the energy above the maximum range would induce the flow of liquid crystal; (d)–(g) the impact of beam size and irradiation location on the laser injection (Scale bars, 20 μm).
    图 2  激光光束参量对激光注射的影响 (a) 激光辅助机械注射在特定能量区间内可行; (b), (c) 超出最高能量的激光会诱发液晶发生流动; (d)—(g) 光束尺寸和曝光位置对激光注入的影响(标尺20 μm)
    Fig. 2.  The impact of parameters of laser beam on the laser injection: (a) Laser injection is feasible within a specific energy range; (b), (c) laser irradiation with the energy above the maximum range would induce the flow of liquid crystal; (d)–(g) the impact of beam size and irradiation location on the laser injection (Scale bars, 20 μm).

    图2(d)(g)所示, 通过调节激光光斑尺寸和曝光位置, 可以观察到水溶液被注入目标微滴时的位置与曝光区域高度吻合(蓝绿色圆圈内). 从而可通过灵活地操控激光并降低激光光斑尺寸的方法, 精确地将水溶液注入到目标微滴内指定位置(图2(g)). 在激光注射的能量区间内(图2(a)阴影区域), 提高激光功率或延长曝光时间可以将更多的水溶液注入到液晶微滴内. 我们之前的工作利用激光在微滴球形腔体内的回音壁效应, 测量并分析了被注入水溶液形成子液滴的尺寸, 在液晶/水界面附近被注入的子液滴的尺寸分布范围为0.4—1.2 μm[24].

    激光注射所产生的机械力与激光照射下目标液晶微滴表面形成的界面张力梯度值成正比. 依据图3(a)中所测数据在此对其进行简略估算, 在典型激光照射能量为4 mJ (0.2 mW × 20.0 s)时, 可引起的液晶微滴 (典型尺寸L = 100 μm)升温大约为6 ℃, 所形成的界面张力梯度值为8 N/m2 (σ Δσ/L). 根据马兰戈尼效应公式[26]

    图 3 离子浓度对激光注射机械力的影响 (a) 水溶液中SDS浓度会影响激光注射所需的最低能量阈值; (b) 相同升温条件下, 更高的SDS浓度形成的界面张力梯度值更大, 进而形成更强的注射机械力; (c) 升温形成不同界面张力梯度的原因是溶液中离子浓度的差异\r\nFig. 3. The impact of ion concentration on the mechanical force of laser injection: (a) SDS concentration in water solution can change the minimum laser energy required to inject guest droplets; (b) it can generate higher interfacial tension gradient in a solution with higher SDS concentration under the same temperature increment, resulting a stronger mechanical force for injection; (c) the ionic concentration is the key factor to drive the difference in thermal induced interfacial tension gradient.
    图 3  离子浓度对激光注射机械力的影响 (a) 水溶液中SDS浓度会影响激光注射所需的最低能量阈值; (b) 相同升温条件下, 更高的SDS浓度形成的界面张力梯度值更大, 进而形成更强的注射机械力; (c) 升温形成不同界面张力梯度的原因是溶液中离子浓度的差异
    Fig. 3.  The impact of ion concentration on the mechanical force of laser injection: (a) SDS concentration in water solution can change the minimum laser energy required to inject guest droplets; (b) it can generate higher interfacial tension gradient in a solution with higher SDS concentration under the same temperature increment, resulting a stronger mechanical force for injection; (c) the ionic concentration is the key factor to drive the difference in thermal induced interfacial tension gradient.
    F=8π r23dσdT|dTdγ|
    (1)

    其可产生方向垂直于液晶/水界面大小为167.4 nN的注射机械力F. (1)式中r为液晶微滴半径, dσ/dT为界面张力随温度的变化值, dT/dγ为所形成的温度梯度. 注射机械力的估计值与文献[27]中所报道激光照射对油溶液中水滴所施加180 nN的机械力处于相同量级.

    除了改变激光能量之外, 液晶和水界面处的表面活性剂浓度对所形成机械力的大小有重要影响. 如图3(a)所示, 在质量分数分别为5.0%和9.2%的SDS水溶液中, 分别向相同种类的液晶 (MLC-7026-000)微滴中注入水溶液, 后者 (绿色曲线)所需功率仅为前者(红色曲线)的37.5% (曝光10 s). 其主要原因是在相同的升温条件下, 质量分数9.2%为SDS水溶液中目标微液的界面张力梯度值增加更为迅速(图3(b)). 当温度从20 ℃升到50 ℃时, 质量分数为9.2% SDS水溶液中液晶微滴 (典型尺寸100 μm)的界面张力σ从6.0 mN/m增加到19.6 mN/m, 产生的界面张力梯度值(σ)可以达到136 N/m2的量级. 通过在水溶液中加入NaCl离子, 研究发现表面活性剂浓度对界面张力影响的实质来源于离子浓度对界面张力梯度的影响. 如图3(c)所示, 在质量分数0.50% (SDS的临界胶束浓度) SDS水溶液中分别加入质量分数0.17%和1.16%的NaCl, 当温度从20 ℃上升到50 ℃时, 液晶微滴的界面张力分别增加134.8%和419.8%. 在相同升温条件下, 高离子浓度可以加剧微滴的界面张力梯度变化, 从而形成更强的注射机械力.

    此外, 研究了液晶弹性常数K值(K = (K11 + K22 + K33)/3)对激光注射的影响. 用0.2 mW的激光对质量分数为5.0% SDS水溶液中不同成分的液晶微滴分别照射20 s, 注入水溶液形成的液滴数量分别为4个 (MLC-7026-000, K = 15.00)、50多个 (E7, K = 12.70)、几百个 (5CB, K = 3.85) (图4(a)). 虽然这3种液晶微滴内注入的水滴尺寸不同, 但不难比较得出注入水溶液的体积差别巨大, 主要原因是液晶分子的弹性作用阻碍水分子进入液晶介质, 而液晶的弹性常数K值越大, 注入水溶液的难度越大. 有意思的是, 当液晶微滴所处环境温度提高到40 ℃使其相变为各向同性(isotropic, 5CB的相变温度为38 ℃)时, 激光注射的方法依然适用(图4(b)), 该实验表明激光注射技术可广泛适用于针对水/油界面的激光辅助机械注射.

    图 4 液晶种类和相态对激光注射的影响 (a) 液晶材料弹性系数K值越高, 注入难度越大; (b) 激光辅助机械注射针对各向同性的材料依然有效 (标尺20 μm)\r\nFig. 4. The impact of material type and phase state of liquid crystal on the laser injection: (a) It could be harder to inject guest droplets into a host liquid crystal droplet with higher elastic constant K; (b) the laser assisted mechanical injection remains effective for the processing of isotropic materials (Scale bars, 20 μm).
    图 4  液晶种类和相态对激光注射的影响 (a) 液晶材料弹性系数K值越高, 注入难度越大; (b) 激光辅助机械注射针对各向同性的材料依然有效 (标尺20 μm)
    Fig. 4.  The impact of material type and phase state of liquid crystal on the laser injection: (a) It could be harder to inject guest droplets into a host liquid crystal droplet with higher elastic constant K; (b) the laser assisted mechanical injection remains effective for the processing of isotropic materials (Scale bars, 20 μm).

    图5(a)所示, 操控0.15 mW的激光在目标微滴表面照射20 s后, 可以观察到注射区域中水溶液被注入形成小水滴. 而这些小水滴(子液滴)会自发地合并以减小总的表面积来降低系统的自由能. 同时, 一部分SDS分子也会随着水溶液被注入液晶介质中影响液晶分子的排列(图5(b), (c)中灰色线条代表液晶分子方向场). 当子液滴的尺寸达到一定值S (S = K/W)后[28], 在液晶介质中的子液滴旁会相伴产生一个拓扑相错点(绿色箭头)与其组成一对弹性偶极矩[28], 图5(d)所示为十字偏光显微镜下液晶介质中子水滴行成的弹性偶极矩. 相错点会阻碍其他小水滴接近而进行进一步合并, 同时不同弹性偶极矩之间存在长程弹性作用力, 吸引不同的偶极矩组成子液滴链(图5(d))[29]. 因此, 在300 s后被注入的水溶液行成了两个1.8 μm的子液滴并组成液滴链. 为了降低自由能, 子液滴链会自发地沿着液晶的方向(图5(d))或拓扑相错结构排列(图5(e)). 子液滴的尺寸S取决于液晶介质的弹性常数K和表面锚定常数W (受SDS浓度影响)[30]. 图4(a)比较了不同K值液晶材料中的子液滴尺寸分别为2.6 μm (MLC-7026-000), 2.2 μm (E7)和0.7 μm (5CB). 图5(e)比较了不同SDS浓度下, 相同液晶 (MLC-7026-000)介质中注入子液滴的尺寸分别为0.9 μm (质量分数为9.2% SDS), 1.8 μm (质量分数为5.0% SDS)和2.7 μm (质量分数为0.5% SDS). 总之, 通过选用不同K值的液晶材料或调节SDS浓度的方法可以实现对注入子液滴的尺寸进行精确调控.

    图 5 注入水溶液在液晶微滴内的自组装 (a)—(c) 被注入水溶液自发合并为均匀尺寸的子液滴, 并自组装为子液滴链; (d) 液晶介质中子液滴的偏振显微纹理图; (e) SDS浓度可以控制注入子液滴的尺寸(标尺10 μm)\r\nFig. 5. The self-assembly of injected water within the host liquid crystal droplet: (a)–(c) The injected water spontaneously merges into guest droplets with uniform size which subsequently self-assemble into droplet chains; (d) the cross-polarized microscopic texture of guest droplets in a liquid crystal medium; (e) the critical size of guest droplets can be tuned by varying the SDS concentration (Scale bars, 10 μm).
    图 5  注入水溶液在液晶微滴内的自组装 (a)—(c) 被注入水溶液自发合并为均匀尺寸的子液滴, 并自组装为子液滴链; (d) 液晶介质中子液滴的偏振显微纹理图; (e) SDS浓度可以控制注入子液滴的尺寸(标尺10 μm)
    Fig. 5.  The self-assembly of injected water within the host liquid crystal droplet: (a)–(c) The injected water spontaneously merges into guest droplets with uniform size which subsequently self-assemble into droplet chains; (d) the cross-polarized microscopic texture of guest droplets in a liquid crystal medium; (e) the critical size of guest droplets can be tuned by varying the SDS concentration (Scale bars, 10 μm).

    液晶微滴内的子液滴链倾向于随着液晶的方向进行排列以降低总的自由能[24]. 本文尝试引入具有拓扑相错线的胆甾型液晶微滴作为目标加工微滴[31,32], 通过精准操控激光将子液滴注入到微滴内相错线附近, 在相错线的弹性吸引力的作用下子液滴成功地被相错线所捕获(图6(a)). 同时, 相错线会对子液滴施加1000kBT (kB为玻尔兹曼常数)量级的能陷[33], 使其牢牢地卡在这个“轨道”上像“微型货车”一样运动. 图6研究分析了两个尺寸为2 μm的子液滴在相错线上的自组装运动(红色和蓝色虚线所示为子液滴的运动轨迹), 发现二者会以接近匀速的方式相互靠近(T = 0—27.6 s), 当二者的间距接近子液滴尺寸的3—4倍时在子液滴间吸引力的作用下二者会加速接近(T = 27.6—29.2 s, 图6(c)), 直至组成一个液滴链. 分析发现子液滴在相错线上的自组装运动中二者的间距s与相对速度v服从幂律, V ≈ 23/s 2.1 (图6(d)).

    图 6 子液滴在相错线上的自组装动力学过程 (a)—(c)两个子液滴在相错线上相向运动, 最终组成一个液滴链; (d)两个子液滴的相对速度与间距服从幂律\r\nFig. 6. Self-assembly kinetics of guest droplet in the defect line: (a)–(c) Two guest droplets move in opposite direction in the defect line and eventually attach into a droplet chain; (d) their relative velocity and separation distance follow a power law dependence.
    图 6  子液滴在相错线上的自组装动力学过程 (a)—(c)两个子液滴在相错线上相向运动, 最终组成一个液滴链; (d)两个子液滴的相对速度与间距服从幂律
    Fig. 6.  Self-assembly kinetics of guest droplet in the defect line: (a)–(c) Two guest droplets move in opposite direction in the defect line and eventually attach into a droplet chain; (d) their relative velocity and separation distance follow a power law dependence.

    操控激光进行精确注射, 将子液滴不断地从不同位置注入到目标微滴内, 不断被注入的子液滴(图7)会随着目标微滴内的相错线自组装形成液滴链条(蓝箭头). 直到目标微滴内的相错线完全被子液滴占据, 子液滴沿着相错线的几何结构在微滴的球体空间内均与分布组成“液滴项链”结构(图7(b)).

    图 7 借助微滴内的拓扑相错线装配液晶微滴球体结构 (a)操控激光将子液滴注入液晶微滴内的拓扑相错线上; (b)注入的子液滴沿着相错线的几何结构排列\r\nFig. 7. Processing of microdroplet structure of liquid crystal with the help of the defect line: (a) Inject and load guest droplets in the topological defect line of a host liquid crystal microdroplet; (b) the injected guest droplets arrange along the geometric structure of the defect line.
    图 7  借助微滴内的拓扑相错线装配液晶微滴球体结构 (a)操控激光将子液滴注入液晶微滴内的拓扑相错线上; (b)注入的子液滴沿着相错线的几何结构排列
    Fig. 7.  Processing of microdroplet structure of liquid crystal with the help of the defect line: (a) Inject and load guest droplets in the topological defect line of a host liquid crystal microdroplet; (b) the injected guest droplets arrange along the geometric structure of the defect line.

    本文搭建了全新的激光辅助机械加工系统, 实现了对激光更加灵活和精准的操控, 同时对软物质激光微纳加工技术中激光参数和材料参数进行了系统研究和讨论. 得到了最佳的激光参数条件范围, 发现过高的激光强度可诱发液晶材料的对流而不注入子液滴. 揭示了表面活性剂浓度影响激光注射机械力的实质, 即溶液中更高的离子浓度可以使相同升温条件下液晶/水界面张力的梯度更大. 发现液晶的相态对激光注射没有影响, 而液晶的种类会改变注入的难度(弹性常数K值越高越难注入). 总结了液晶材料种类和表面活性剂浓度对注入子液滴尺寸的影响. 引入了具有拓扑相错线的胆甾相液晶微滴作为目标微滴, 借助激光注射技术研究了子液滴在相错线上的自组装动力学过程, 实现了利用相错线控制子液滴在微滴内空间的分布.

    虽然采用了液晶作为目标加工材料, 但激光注射对各向同性液滴的注射实验证实了激光辅助机械注射或可同样适用于其他材料的油/水界面的材料注射. 此外, 液晶作为一种性能优异的光电材料, 若将其封装在独立的微滴中并借助软物质激光微纳加工技术定制其三维结构赋予其特定功能, 每个液晶微滴均可以独立地进行观测、操控, 甚至执行特定的操作. 进一步地, 若将不同功能的微滴组成微滴阵列以集成和实现某些复杂功能, 或可应用于光子学、光电子学、集成光学和生物传感器等前沿领域的研究探索和应用开发.

    [1]

    Ouyang Z C 2009 Encyclopedia of China (Vol. 74) (Encyclopedia of China Publishing House) p389 (in Chinese) [欧阳钟灿 2009 中国大百科全书 (第74卷) (中国大百科全书出版社) 第389页

    [2]

    Lin P, Chen H, Li A, Zhuang H, Chen Z, Xie Y, Zhou H, Mo S, Chen Y, Lu X, Cheng Z 2020 ACS Appl. Mater. Interfaces 12 46788Google Scholar

    [3]

    Lin P, Yan Q, Wei Z, Chen Y, Chen S, Wang H, Huang Z, Wang X, Cheng Z 2018 ACS Appl. Mater. Interfaces 10 18289Google Scholar

    [4]

    Lee S S, Kim S K, Won J C, Kim Y H, Kim S H 2015 Angew. Chem. Int. Ed. Engl. 54 15266Google Scholar

    [5]

    Park S, Lee S S, Kim S H 2020 Adv. Mater. 32 2002166Google Scholar

    [6]

    Lee S S, Kim J B, Kim Y H, Kim S H 2018 Sci. Adv. 4 eaat8276Google Scholar

    [7]

    Che K J, Yang Y J, Lin Y L, Shan Y W, Ge Y H, Li S S, Chen L J, Yang C J 2019 Lab. Chip. 19 3116Google Scholar

    [8]

    王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青 2019 物理学报 084205Google Scholar

    Wang L, Xiao R W, Ge S J, Shen Z X, Lu P, Hu W, Lu Y Q 2019 Acta Phys. Sin. 084205Google Scholar

    [9]

    王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐 2020 物理学报 69 064203Google Scholar

    Wang Z P, Zhang F, Yang J W, Li P T, Guan B L 2020 Acta Phys. Sin. 69 064203Google Scholar

    [10]

    Shan Y W, You L Q, Bisoyi H K, Yang Y J, Ge Y H, Che K J, Li S S, Chen L J, Li Q 2020 Adv. Opt. Mater. 8 2000692Google Scholar

    [11]

    Schwartz M, Lenzini G, Geng Y, Ronne P B, Ryan P Y A, Lagerwall J P F 2018 Adv. Mater. 30 e1707382Google Scholar

    [12]

    Martino C, deMello A J 2016 Interface Focus 6 20160011Google Scholar

    [13]

    Iglesias W, Abbott N L, Mann E K, Jakli A 2012 ACS Appl. Mater. Interfaces 4 6884Google Scholar

    [14]

    Yelleswarapu V, Buser J R, Haber M, Baron J, Inapuri E, Issadore D 2019 Proc. Natl. Acad. Sci. USA. 116 4489Google Scholar

    [15]

    Kang Y, Yao Y P, Kang Z H, Ma L, Zhang T Y 2015 J. Opt. Soc. Am. A 32 1063Google Scholar

    [16]

    Kim Y J, Park S Y 2020 ACS Appl. Mater. Interfaces 12 47342Google Scholar

    [17]

    Yang X L, Ju X J, Mu X T, Wang W, Xie R, Liu Z, Chu L Y 2016 ACS Appl. Mater. Interfaces 8 10524Google Scholar

    [18]

    Mahler L, Niehs S P, Martin K, Weber T, Scherlach K, Hertweck C, Roth M, Rosenbaum M A 2021 Elife 10 64774Google Scholar

    [19]

    Dickinson E 2011 Food Biophys. 6 1Google Scholar

    [20]

    Grigoriev D O, Miller R 2009 Curr. Opin. Colloid In 14 48Google Scholar

    [21]

    Lorber N, Sarrazin F, Guillot P, Panizza P, Colin A, Pavageau B, Hany C, Maestro P, Marre S, Delclos T 2011 Lab. Chip. 11 779Google Scholar

    [22]

    Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A 2007 Angew. Chem. Int. Edit. 46 8970Google Scholar

    [23]

    Li Y, Khuu N, Prince E, Alizadehgiashi M, Galati E, Lavrentovich O D, Kumacheva E 2019 Sci. Adv. 5 eaav1035Google Scholar

    [24]

    Guo J K, Hong S H, Yoon H J, Babakhanova G, Lavrentovich O D, Song J K 2019 Adv. Sci. 6 1900785Google Scholar

    [25]

    Yoshioka J, Fukao K 2019 Phys. Rev. E 99 022702Google Scholar

    [26]

    Yan X, Xu J, Meng Z, Xie J, Wang H, 2020 Small 16 e2001548Google Scholar

    [27]

    Verneuil E, Cordero M, Gallaire F, Baroud C N 2009 Langmuir. 25 5127Google Scholar

    [28]

    Poulin P, Stark H, Lubensky T C, Weitz D A 1997 Science 275 1770Google Scholar

    [29]

    Muševič I, Škarabot M, Tkalec U, Ravnik M, Žumer S 2006 Science 313 954Google Scholar

    [30]

    Loudet J C, Barois P, Poulin P 2000 Nature 407 611Google Scholar

    [31]

    Guo J K, Song J K 2016 Opt. Express 24 7381Google Scholar

    [32]

    Guo J K, Vij J K, Song J K 2017 Adv. Opt. Mater. 5 1700119Google Scholar

    [33]

    Yoshida H, Asakura K, Fukuda J, Ozaki M 2015 Nat. Commun. 6 7180Google Scholar

    期刊类型引用(4)

    1. 侯宏涛. 传统法与规划求解法计算单缝缝宽对比分析. 应用激光. 2024(02): 131-137 . 百度学术
    2. 陈楚浜,张巧芬,吴铭扬,王桂棠,吴黎明,邓耀华. 色散渐减光纤对增益光纤生成的自相似脉冲的优化研究. 量子光学学报. 2024(01): 79-87 . 百度学术
    3. 侯宏涛. 激光衍射法测量金属丝直径. 应用激光. 2024(08): 47-62 . 百度学术
    4. 袁天语,邵尚坤,孙学鹏,李惠泉,华陆,孙天希. 一种用于软X射线激光去相干的单玻璃管光学透镜设计. 物理学报. 2023(03): 130-136 . 百度学术

    其他类型引用(0)

  • 图 1  软物质激光辅助机械加工系统结构示意图

    Figure 1.  Schematic of the laser-assisted micromachining system for soft matter.

    图 2  激光光束参量对激光注射的影响 (a) 激光辅助机械注射在特定能量区间内可行; (b), (c) 超出最高能量的激光会诱发液晶发生流动; (d)—(g) 光束尺寸和曝光位置对激光注入的影响(标尺20 μm)

    Figure 2.  The impact of parameters of laser beam on the laser injection: (a) Laser injection is feasible within a specific energy range; (b), (c) laser irradiation with the energy above the maximum range would induce the flow of liquid crystal; (d)–(g) the impact of beam size and irradiation location on the laser injection (Scale bars, 20 μm).

    图 3  离子浓度对激光注射机械力的影响 (a) 水溶液中SDS浓度会影响激光注射所需的最低能量阈值; (b) 相同升温条件下, 更高的SDS浓度形成的界面张力梯度值更大, 进而形成更强的注射机械力; (c) 升温形成不同界面张力梯度的原因是溶液中离子浓度的差异

    Figure 3.  The impact of ion concentration on the mechanical force of laser injection: (a) SDS concentration in water solution can change the minimum laser energy required to inject guest droplets; (b) it can generate higher interfacial tension gradient in a solution with higher SDS concentration under the same temperature increment, resulting a stronger mechanical force for injection; (c) the ionic concentration is the key factor to drive the difference in thermal induced interfacial tension gradient.

    图 4  液晶种类和相态对激光注射的影响 (a) 液晶材料弹性系数K值越高, 注入难度越大; (b) 激光辅助机械注射针对各向同性的材料依然有效 (标尺20 μm)

    Figure 4.  The impact of material type and phase state of liquid crystal on the laser injection: (a) It could be harder to inject guest droplets into a host liquid crystal droplet with higher elastic constant K; (b) the laser assisted mechanical injection remains effective for the processing of isotropic materials (Scale bars, 20 μm).

    图 5  注入水溶液在液晶微滴内的自组装 (a)—(c) 被注入水溶液自发合并为均匀尺寸的子液滴, 并自组装为子液滴链; (d) 液晶介质中子液滴的偏振显微纹理图; (e) SDS浓度可以控制注入子液滴的尺寸(标尺10 μm)

    Figure 5.  The self-assembly of injected water within the host liquid crystal droplet: (a)–(c) The injected water spontaneously merges into guest droplets with uniform size which subsequently self-assemble into droplet chains; (d) the cross-polarized microscopic texture of guest droplets in a liquid crystal medium; (e) the critical size of guest droplets can be tuned by varying the SDS concentration (Scale bars, 10 μm).

    图 6  子液滴在相错线上的自组装动力学过程 (a)—(c)两个子液滴在相错线上相向运动, 最终组成一个液滴链; (d)两个子液滴的相对速度与间距服从幂律

    Figure 6.  Self-assembly kinetics of guest droplet in the defect line: (a)–(c) Two guest droplets move in opposite direction in the defect line and eventually attach into a droplet chain; (d) their relative velocity and separation distance follow a power law dependence.

    图 7  借助微滴内的拓扑相错线装配液晶微滴球体结构 (a)操控激光将子液滴注入液晶微滴内的拓扑相错线上; (b)注入的子液滴沿着相错线的几何结构排列

    Figure 7.  Processing of microdroplet structure of liquid crystal with the help of the defect line: (a) Inject and load guest droplets in the topological defect line of a host liquid crystal microdroplet; (b) the injected guest droplets arrange along the geometric structure of the defect line.

  • [1]

    Ouyang Z C 2009 Encyclopedia of China (Vol. 74) (Encyclopedia of China Publishing House) p389 (in Chinese) [欧阳钟灿 2009 中国大百科全书 (第74卷) (中国大百科全书出版社) 第389页

    [2]

    Lin P, Chen H, Li A, Zhuang H, Chen Z, Xie Y, Zhou H, Mo S, Chen Y, Lu X, Cheng Z 2020 ACS Appl. Mater. Interfaces 12 46788Google Scholar

    [3]

    Lin P, Yan Q, Wei Z, Chen Y, Chen S, Wang H, Huang Z, Wang X, Cheng Z 2018 ACS Appl. Mater. Interfaces 10 18289Google Scholar

    [4]

    Lee S S, Kim S K, Won J C, Kim Y H, Kim S H 2015 Angew. Chem. Int. Ed. Engl. 54 15266Google Scholar

    [5]

    Park S, Lee S S, Kim S H 2020 Adv. Mater. 32 2002166Google Scholar

    [6]

    Lee S S, Kim J B, Kim Y H, Kim S H 2018 Sci. Adv. 4 eaat8276Google Scholar

    [7]

    Che K J, Yang Y J, Lin Y L, Shan Y W, Ge Y H, Li S S, Chen L J, Yang C J 2019 Lab. Chip. 19 3116Google Scholar

    [8]

    王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青 2019 物理学报 084205Google Scholar

    Wang L, Xiao R W, Ge S J, Shen Z X, Lu P, Hu W, Lu Y Q 2019 Acta Phys. Sin. 084205Google Scholar

    [9]

    王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐 2020 物理学报 69 064203Google Scholar

    Wang Z P, Zhang F, Yang J W, Li P T, Guan B L 2020 Acta Phys. Sin. 69 064203Google Scholar

    [10]

    Shan Y W, You L Q, Bisoyi H K, Yang Y J, Ge Y H, Che K J, Li S S, Chen L J, Li Q 2020 Adv. Opt. Mater. 8 2000692Google Scholar

    [11]

    Schwartz M, Lenzini G, Geng Y, Ronne P B, Ryan P Y A, Lagerwall J P F 2018 Adv. Mater. 30 e1707382Google Scholar

    [12]

    Martino C, deMello A J 2016 Interface Focus 6 20160011Google Scholar

    [13]

    Iglesias W, Abbott N L, Mann E K, Jakli A 2012 ACS Appl. Mater. Interfaces 4 6884Google Scholar

    [14]

    Yelleswarapu V, Buser J R, Haber M, Baron J, Inapuri E, Issadore D 2019 Proc. Natl. Acad. Sci. USA. 116 4489Google Scholar

    [15]

    Kang Y, Yao Y P, Kang Z H, Ma L, Zhang T Y 2015 J. Opt. Soc. Am. A 32 1063Google Scholar

    [16]

    Kim Y J, Park S Y 2020 ACS Appl. Mater. Interfaces 12 47342Google Scholar

    [17]

    Yang X L, Ju X J, Mu X T, Wang W, Xie R, Liu Z, Chu L Y 2016 ACS Appl. Mater. Interfaces 8 10524Google Scholar

    [18]

    Mahler L, Niehs S P, Martin K, Weber T, Scherlach K, Hertweck C, Roth M, Rosenbaum M A 2021 Elife 10 64774Google Scholar

    [19]

    Dickinson E 2011 Food Biophys. 6 1Google Scholar

    [20]

    Grigoriev D O, Miller R 2009 Curr. Opin. Colloid In 14 48Google Scholar

    [21]

    Lorber N, Sarrazin F, Guillot P, Panizza P, Colin A, Pavageau B, Hany C, Maestro P, Marre S, Delclos T 2011 Lab. Chip. 11 779Google Scholar

    [22]

    Chu L Y, Utada A S, Shah R K, Kim J W, Weitz D A 2007 Angew. Chem. Int. Edit. 46 8970Google Scholar

    [23]

    Li Y, Khuu N, Prince E, Alizadehgiashi M, Galati E, Lavrentovich O D, Kumacheva E 2019 Sci. Adv. 5 eaav1035Google Scholar

    [24]

    Guo J K, Hong S H, Yoon H J, Babakhanova G, Lavrentovich O D, Song J K 2019 Adv. Sci. 6 1900785Google Scholar

    [25]

    Yoshioka J, Fukao K 2019 Phys. Rev. E 99 022702Google Scholar

    [26]

    Yan X, Xu J, Meng Z, Xie J, Wang H, 2020 Small 16 e2001548Google Scholar

    [27]

    Verneuil E, Cordero M, Gallaire F, Baroud C N 2009 Langmuir. 25 5127Google Scholar

    [28]

    Poulin P, Stark H, Lubensky T C, Weitz D A 1997 Science 275 1770Google Scholar

    [29]

    Muševič I, Škarabot M, Tkalec U, Ravnik M, Žumer S 2006 Science 313 954Google Scholar

    [30]

    Loudet J C, Barois P, Poulin P 2000 Nature 407 611Google Scholar

    [31]

    Guo J K, Song J K 2016 Opt. Express 24 7381Google Scholar

    [32]

    Guo J K, Vij J K, Song J K 2017 Adv. Opt. Mater. 5 1700119Google Scholar

    [33]

    Yoshida H, Asakura K, Fukuda J, Ozaki M 2015 Nat. Commun. 6 7180Google Scholar

  • [1] MA Chenwen, CHEN Fangfang, ZHENG Jihong. Characteristics of reflective liquid crystal polarization holographic cylindrical lenses. Acta Physica Sinica, 2025, 74(7): 076101. doi: 10.7498/aps.74.20241794
    [2] Han Xu, Xue Bin, Cao Yi, Wang Wei. Self-assembled biomolecular soft materials and their physical properties. Acta Physica Sinica, 2024, 73(17): 178103. doi: 10.7498/aps.73.20240947
    [3] Wang Zhi-Peng, Guan Bao-Lu, Zhang Feng, Yang Jia-Wei. Liquid crystal tunable vertical cavity surface emission laser with inner cavity sub-wavelength grating. Acta Physica Sinica, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [4] Wang Zhi-Peng, Zhang Feng, Yang Jia-Wei, Li Peng-Tao, Guan Bao-Lu. Thermal characteristics of surface liquid crystal vertical cavity surface emitting laser arrays. Acta Physica Sinica, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [5] Yan Hao-Lan, Cheng Ya-Qing, Wang Kai-Li, Wang Ya-Xin, Chen Yang-Wei, Yuan Qiu-Lin, Ma Heng. Terahertz wave absorption for alkylcyclohexyl-isothiocyanatobenzene liquid crystal materials. Acta Physica Sinica, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [6] Wang Lei, Xiao Rui-Wen, Ge Shi-Jun, Shen Zhi-Xiong, Lü Peng, Hu Wei, Lu Yan-Qing. Research progress of terahertz liquid crystal materials and devices. Acta Physica Sinica, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [7] Zhang Xin-Zheng, Xia Feng, Xu Jing-Jun. The mechanisms and research progress of laser fabrication technologies beyond diffraction limit. Acta Physica Sinica, 2017, 66(14): 144207. doi: 10.7498/aps.66.144207
    [8] Liang Qin, Jeff Z. Y. Chen. Recent theoretical development in confined liquid-crystal polymers. Acta Physica Sinica, 2016, 65(17): 174201. doi: 10.7498/aps.65.174201
    [9] Chen Ze-Zhang. Theoretical study on the polarizability properties of liquid crystal in the THz range. Acta Physica Sinica, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [10] Wu Jin-Bo, Wen Wei-Jia. Research progress of field-inducedd soft smart materials. Acta Physica Sinica, 2016, 65(18): 188301. doi: 10.7498/aps.65.188301
    [11] Chen En-Hui, Yang Jin-Hong, Li Dong, Zhao Ya-Pu. On the theoretical basis of rational continuum mechanics in softmatter. Acta Physica Sinica, 2016, 65(18): 188103. doi: 10.7498/aps.65.188103
    [12] Wu Chen-Xu, Yan Da-Dong, Xing Xiang-Jun, Hou Mei-Ying. A summary of soft matter theories. Acta Physica Sinica, 2016, 65(18): 186102. doi: 10.7498/aps.65.186102
    [13] Wang Jia-Lu, Du Mu-Qing, Zhang Ling-Li, Liu Yong-Jun, Sun Wei-Min. Transmission characteristics of photonic crystal fibers based on filling different kinds of liquid crystals. Acta Physica Sinica, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [14] Wang Qi-Dong, Peng Zeng-Hui, Liu Yong-Gang, Yao Li-Shuang, Ren Gan, Xuan Li. Rotational viscosity comparison of liquid crystals based on the molecular dynamics of mixtures. Acta Physica Sinica, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [15] Zhou Jian-Wei, Liang Jing-Qiu, Liang Zhong-Zhu, Tian Chao, Qin Yu-Xin, Wang Wei-Biao. Tunable two-dimensional photonic crystal cavity all-optical switching infiltrated with liquid-crystal. Acta Physica Sinica, 2013, 62(13): 134208. doi: 10.7498/aps.62.134208
    [16] Wang Xiao-Dong, Ouyang Jie, Su Jin. Simulation of microstructure of liquid-crystalline polymers in nonhomogenous shear flow by EFG method. Acta Physica Sinica, 2010, 59(9): 6369-6376. doi: 10.7498/aps.59.6369
    [17] Zheng Zhi-Gang, Li Wen-Cui, Liu Yong-Gang, Xuan Li. Electrically tunable multiplexed grating with alternate liquid crystal-polymer structure. Acta Physica Sinica, 2008, 57(11): 7344-7348. doi: 10.7498/aps.57.7344
    [18] Yin Jian-Ling, Huang Xu-Guang, Liu Song-Hao, Hu She-Jun. Photonic crystal field-sensitive polarizer and switch modulated by nemaic liquid crystals. Acta Physica Sinica, 2006, 55(10): 5268-5276. doi: 10.7498/aps.55.5268
    [19] Miao Ming-Chuan, Xu Ze-Da, Hou Gang, Fan Shang-Chun. Transient and steady-state multi-wave nonlinear optical properties of liquid crystal film. Acta Physica Sinica, 2005, 54(10): 4776-4781. doi: 10.7498/aps.54.4776
    [20] Yu Tao, Peng Zeng-Hui, Ruan Sheng-Ping, Xuan Li. Vertically aligned films for liquid crystals fabricated by monomer photo-crosslinking. Acta Physica Sinica, 2004, 53(1): 316-319. doi: 10.7498/aps.53.316
  • 期刊类型引用(4)

    1. 侯宏涛. 传统法与规划求解法计算单缝缝宽对比分析. 应用激光. 2024(02): 131-137 . 百度学术
    2. 陈楚浜,张巧芬,吴铭扬,王桂棠,吴黎明,邓耀华. 色散渐减光纤对增益光纤生成的自相似脉冲的优化研究. 量子光学学报. 2024(01): 79-87 . 百度学术
    3. 侯宏涛. 激光衍射法测量金属丝直径. 应用激光. 2024(08): 47-62 . 百度学术
    4. 袁天语,邵尚坤,孙学鹏,李惠泉,华陆,孙天希. 一种用于软X射线激光去相干的单玻璃管光学透镜设计. 物理学报. 2023(03): 130-136 . 百度学术

    其他类型引用(0)

Metrics
  • Abstract views:  5002
  • PDF Downloads:  94
  • Cited By: 4
Publishing process
  • Received Date:  06 April 2022
  • Accepted Date:  06 May 2022
  • Available Online:  25 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回