Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Two-dimensional magnetic transition metal halides: molecular beam epitaxy growth and physical property modulation

Li Pei-Gen Zhang Ji-Hai Tao Ye Zhong Ding-Yong

Citation:

Two-dimensional magnetic transition metal halides: molecular beam epitaxy growth and physical property modulation

Li Pei-Gen, Zhang Ji-Hai, Tao Ye, Zhong Ding-Yong
PDF
HTML
Get Citation
  • The spontaneous magnetization of two-dimensional (2D) magnetic materials can be maintained down to the monolayer limit, providing an ideal platform for understanding and manipulating magnetic-related properties on a 2D scale, and making it important for potential applications in optoelectronics and spintronics. Transition metal halides (TMHs) are suitable 2D magnetic candidates due to partially filled d orbitals and weak interlayer van der Waals interactions. As a sophisticated thin film growth technique, molecular beam epitaxy (MBE) can precisely tune the growth of 2D magnetic materials reaching the monolayer limit. Moreover, combining with the advanced experimental techniques such as scanning tunneling microscopy, the physical properties of 2D magnetic materials can be characterized and manipulated on an atomic scale. Herein, we introduce the crystalline and magnetic structures of 2D magnetic TMHs, and show the 2D magnetic TMHs grown by MBE and their electronic and magnetic characterizations. Then, the MBE-based methods for tuning the physical property of 2D magnetic TMHs, including tuning interlayer stacking, defect engineering, and constructing heterostructures, are discussed. Finally, the future development opportunities and challenges in the field of the research of 2D magnetic TMHs are summarized and prospected.
      Corresponding author: Zhong Ding-Yong, dyzhong@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974431, 92165204, 11832019) and the Guangdong Major Project of Basic and Applied Basic Research, China (Grant No. 2021B0301030002).
    [1]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Tao W, Kong N, Ji X Y, Zhang Y P, Sharma A, Ouyang J, Qi B W, Wang J Q, Xie N, Kang C, Zhang H, Farokhzad O C, Kim J S 2019 Chem. Soc. Rev. 48 2891Google Scholar

    [4]

    Pang J B, Mendes R G, Bachmatiuk A, Zhao L, Ta H Q, Gemming T, Liu H, Liu Z F, Rummeli M H 2019 Chem. Soc. Rev. 48 72Google Scholar

    [5]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [6]

    Song L, Ci L J, Lu H, Sorokin P B, Jin C H, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209Google Scholar

    [7]

    Jariwala D, Marks T J, Hersam M C 2017 Nat. Mater. 16 170Google Scholar

    [8]

    Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 16042Google Scholar

    [9]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [10]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1307Google Scholar

    [11]

    González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, José Palacios J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437Google Scholar

    [12]

    Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408Google Scholar

    [13]

    Ugeda M M, Brihuega I, Guinea F, Gómez-Rodríguez J M 2010 Phys. Rev. Lett. 104 096804Google Scholar

    [14]

    Mishra R, Zhou W, Pennycook S J, Pantelides S T, Idrobo J C 2013 Phys. Rev. B 88 144409Google Scholar

    [15]

    Wang Z Y, Tang C, Sachs R, Barlas Y, Shi J 2015 Phys. Rev. Lett. 114 016603Google Scholar

    [16]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [17]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [18]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [19]

    Liu Z L, Wu X, Shao Y, Qi J, Cao Y, Huang L, Liu C, Wang J O, Zheng Q, Zhu Z L, Ibrahim K, Wang Y L, Gao H J 2018 Sci. Bull. 63 419Google Scholar

    [20]

    Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar

    [21]

    Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [22]

    Bedoya-Pinto A, Ji J R, Pandeya A K, Gargiani P, Valvidares M, Sessi P, Taylor J M, Radu F, Chang K, Parkin S S P 2021 Science 374 616Google Scholar

    [23]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [24]

    Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [25]

    Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H, Zhang Y B 2020 Science 367 895Google Scholar

    [26]

    Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522Google Scholar

    [27]

    Griffiths R B 1964 Phys. Rev. 136 A437Google Scholar

    [28]

    Samarth N 2017 Nature 546 216Google Scholar

    [29]

    Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [30]

    Lin Z, Huang B, Hwangbo K, Jiang Q N, Zhang Q, Liu Z Y, Fei Z Y, Lv H Y, Millis A, McGuire M, Xiao D, Chu J H, Xu X D 2021 Nano Lett. 21 9180Google Scholar

    [31]

    Lyu B B, Gao Y F, Zhang Y J, Wang L, Wu X H, Chen Y N, Zhang J S, Li G M, Huang Q L, Zhang N P, Chen Y Z, Mei J W, Yan H G, Zhao Y, Huang L, Huang M Y 2020 Nano Lett. 20 6024Google Scholar

    [32]

    Li J, Zhao B, Chen P, Wu R X, Li B, Xia Q L, Guo G H, Luo J, Zang K T, Zhang Z W, Ma H F, Sun G Z, Duan X D, Duan X F 2018 Adv. Mater. 30 1801043Google Scholar

    [33]

    Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H F, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y, Huang Y, Xu X D, Duan X D, Ji W, Duan X F 2021 Nat. Mater. 20 818Google Scholar

    [34]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056Google Scholar

    [35]

    Peng L, Zhao J Z, Cai M, Hua G Y, Liu Z Y, Xia H N, Yuan Y, Zhang W H, Xu G, Zhao L X, Zhu Z W, Xiang T, Fu Y S 2020 Phys. Rev. Res. 2 023264Google Scholar

    [36]

    Li X, Zhang Z, Zhang H 2020 Nanoscale Adv. 2 495Google Scholar

    [37]

    Botana A S, Norman M R 2019 Phys. Rev. Mater. 3 044001Google Scholar

    [38]

    Kulish V V, Huang W 2017 J. Mater. Chem. C 5 8734Google Scholar

    [39]

    Jiang Z Y, Li Y C, Duan W H, Zhang S B 2019 Phys. Rev. Lett. 122 236402Google Scholar

    [40]

    Bikaljević D, González-Orellana C, Peña-Díaz M, Steiner D, Dreiser J, Gargiani P, Foerster M, Ángel Niño M, Aballe L, Ruiz-Gomez S, Friedrich N, Hieulle J, Li J, Ilyn M, Rogero C, Ignacio Pascual J 2021 ACS Nano 15 14985Google Scholar

    [41]

    Song Q, Occhialini C A, Ergecen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N, Comin R 2022 Nature 602 601Google Scholar

    [42]

    Prayitno T B 2021 J. Phys. Condens. Matter 33 335803Google Scholar

    [43]

    Tomar S, Ghosh B, Mardanya S, Rastogi P, Bhadoria B S, Chauhan Y S, Agarwal A, Bhowmick S 2019 J. Magn. Magn. Mater. 489 165384Google Scholar

    [44]

    Wang Z, Reschke S, Hüvonen D, Do S H, Choi K Y, Gensch M, Nagel U, Rõõm T, Loidl A 2017 Phys. Rev. Lett. 119 227202Google Scholar

    [45]

    Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R, Nagler S E 2017 Science 356 1055Google Scholar

    [46]

    Hirakawa K, Kadowaki H, Ubukoshi K 1983 J. Phys. Soc. Jpn. 52 1814Google Scholar

    [47]

    Regis M, Farge Y 1976 J. Phys. 37 627Google Scholar

    [48]

    Sato T, Kadowaki H, Masuda H, Iio K 1994 J. Phys. Soc. Jpn. 63 4583Google Scholar

    [49]

    Cable J W, Wilkinson M K, Wollan E O, Koehler W C 1962 Phys. Rev. 125 1860Google Scholar

    [50]

    Wilkinson M K, Cable J W, Wollan E O, Koehler W C 1959 Phys. Rev. 113 497Google Scholar

    [51]

    Gelard J, Fert A R, Meriel P, Allain Y 1974 Solid State Commun. 14 187Google Scholar

    [52]

    Jacobs I S, Roberts S, Lawrence P E 1965 J. Appl. Phys. 36 1197Google Scholar

    [53]

    Mekata M, Kuriyama H, Ajiro Y, Mitsuda S, Yoshizawa H 1992 J. Magn. Magn. Mater. 104-107 859Google Scholar

    [54]

    Busey R H, Giauque W F 1952 J. Am. Chem. Soc. 74 4443Google Scholar

    [55]

    Adam A, Billerey D, Terrier C, Mainard R, Regnault L P, Rossat-Mignod J, Mériel P 1980 Solid State Commun. 35 1Google Scholar

    [56]

    He J J, Ma S Y, Lyu P B, Nachtigall P 2016 J. Mater. Chem. C 4 2518Google Scholar

    [57]

    Starr C, Bitter F, Kaufmann A R 1940 Phys. Rev. 58 977Google Scholar

    [58]

    Liu L, Yang K, Wang G Y, Wu H 2020 J. Mater. Chem. C 8 14782Google Scholar

    [59]

    Kong T, Guo S, Ni D R, Cava R J 2019 Phys. Rev. Mater. 3 084419Google Scholar

    [60]

    Kong T, Stolze K, Timmons E I, Tao J, Ni D R, Guo S, Yang Z, Prozorov R, Cava R J 2019 Adv. Mater. 31 1808074Google Scholar

    [61]

    Cable J W, Wilkinson M K, Wollan E O 1961 J. Phys. Chem. Solids 19 29Google Scholar

    [62]

    Tsubokawa I 1960 J. Phys. Soc. Jpn. 15 1664Google Scholar

    [63]

    McGuire M A, Dixit H, Cooper V R, Sales B C 2015 Chem. Mater. 27 612Google Scholar

    [64]

    Sun Q, Kioussis N 2018 Phys. Rev. B 97 094408Google Scholar

    [65]

    Guan Z Y, Ni S 2021 J. Phys. Chem. C 125 16700Google Scholar

    [66]

    Cable J W, Wilkinson M K, Wollan E O, Koehler W C 1962 Phys. Rev. 127 714Google Scholar

    [67]

    Oosterhuis W T, Window B, Spartalian K 1974 Phys. Rev. B 10 4616Google Scholar

    [68]

    Li Z, Zhou B Z, Luan C B 2019 RSC Adv. 9 35614Google Scholar

    [69]

    Wang Z J, Liu L, Zheng H R, Zhao M, Yang K, Wang C Z, Yang F, Wu H, Gao C L 2021 Research Square DOI: 10.21203/rs.3.rs-646319/v1

    [70]

    Huang C X, Zhou J, Wu H P, Deng K M, Jena P, Kan E J 2017 Phys. Rev. B 95 045113Google Scholar

    [71]

    Sun Z Y, Yi Y F, Song T C, Clark G, Huang B, Shan Y W, Wu S, Huang D, Gao C L, Chen Z H, McGuire M, Cao T, Xiao D, Liu W T, Yao W, Xu X D, Wu S W 2019 Nature 572 497Google Scholar

    [72]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [73]

    Jiang P H, Wang C, Chen D C, Zhong Z C, Yuan Z, Lu Z-Y, Ji W 2019 Phys. Rev. B 99 144401Google Scholar

    [74]

    Sivadas N, Okamoto S, Xu X D, Fennie C J, Xiao D 2018 Nano Lett. 18 7658Google Scholar

    [75]

    Ubrig N, Wang Z, Teyssier J, Taniguchi T, Watanabe K, Giannini E, Morpurgo A F, Gibertini M 2020 2D Mater. 7 015007Google Scholar

    [76]

    Jiang S W, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [77]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544Google Scholar

    [78]

    Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [79]

    Li P G, Wang C, Zhang J H, Chen S W, Guo D H, Ji W, Zhong D Y 2020 Sci. Bull. 65 1064Google Scholar

    [80]

    Qiu Z Z, Holwill M, Olsen T, Lyu P, Li J, Fang H Y, Yang H M, Kashchenko M, Novoselov K S, Lu J 2021 Nat. Commun. 12 70Google Scholar

    [81]

    Seyler K L, Zhong D, Klein D R, Gao S Y, Zhang X O, Huang B, Navarro-Moratalla E, Yang L, Cobden D H, McGuire M A, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2018 Nat. Phys. 14 277Google Scholar

    [82]

    Pollini I 1998 Solid State Commun. 106 549Google Scholar

    [83]

    Morosin B, Narath A 1964 J. Chem. Phys. 40 1958Google Scholar

    [84]

    Berezinskiǐ V 1972 Sov. Phys. JETP 34 610

    [85]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C:Solid State Phys. 6 1181Google Scholar

    [86]

    Kosterlitz J M 1974 J. Phys. C:Solid State Phys. 7 1046Google Scholar

    [87]

    Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325Google Scholar

    [88]

    Cao H B, Banerjee A, Yan J Q, Bridges C A, Lumsden M D, Mandrus D G, Tennant D A, Chakoumakos B C, Nagler S E 2016 Phys. Rev. B 93 134423Google Scholar

    [89]

    Fletcher J M, Gardner W E, Hooper E W, Hyde K R, Moore F H, Woodhead J L 1963 Nature 199 1089Google Scholar

    [90]

    Ran K J, Wang J H, Wang W, Dong Z Y, Ren X, Bao S, Li S C, Ma Z, Gan Y, Zhang Y T, Park J T, Deng G C, Danilkin S, Yu S L, Li J X, Wen J S 2017 Phys. Rev. Lett. 118 107203Google Scholar

    [91]

    Do S H, Park S Y, Yoshitake J, Nasu J, Motome Y, Kwon Y S, Adroja D T, Voneshen D J, Kim K, Jang T H, Park J H, Choi K Y, Ji S 2017 Nat. Phys. 13 1079Google Scholar

    [92]

    Zhang J J, Yang J, Lin L Z, Zhu J J 2020 J. Semicond. 41 122502Google Scholar

    [93]

    Cai X Q, Xu Z L, Ji S H, Li N, Chen X 2021 Chin. Phys. B 30 028102Google Scholar

    [94]

    Tracy J W, Greoor N W, Stewart J M, Lingafelter E C 1962 Acta Cryst. 15 160Google Scholar

    [95]

    Besrest P F, Jaulmes S 1973 Acta Cryst. B29 1560Google Scholar

    [96]

    Vettier C, Yelon W B 1975 J. Phys. Chem. Solids 36 401Google Scholar

    [97]

    Haberecht J, Borrmann H, Kniep R 2001 Z. Kristallogr. -New Cryst. Struct. 216 510Google Scholar

    [98]

    Ghosh R K, Jose A, Kumari G 2021 Phys. Rev. B 103 054409Google Scholar

    [99]

    Syariati R, Minami S, Sawahata H, Ishii F 2020 APL Mater. 8 041105Google Scholar

    [100]

    Torun E, Sahin H, Singh S K, Peeters F M 2015 Appl. Phys. Lett. 106 192404Google Scholar

    [101]

    Zhou X H, Brzostowski B, Durajski A P, Liu M Z, Xiang J, Jiang T R, Wang Z Q, Chen S W, Li P G, Zhong Z H, Drzewinski A, Jarosik M W, Szczesniak R, Lai T S, Guo D H, Zhong D Y 2020 J. Phys. Chem. C 124 9416Google Scholar

    [102]

    Cai S H, Yang F, Gao C L 2020 Nanoscale 12 16041Google Scholar

    [103]

    McGuire M A 2017 Crystals 7 121Google Scholar

    [104]

    Lindgard P A, Birgeneau R J, Guggenheim H J, Als-Nielsen J 1975 J. Phys. C:Solid State Phys. 8 1059Google Scholar

    [105]

    Ni J Y, Li X Y, Amoroso D, He X, Feng J S, Kan E J, Picozzi S, Xiang H J 2021 Phys. Rev. Lett. 127 247204Google Scholar

    [106]

    Kurumaji T, Seki S, Ishiwata S, Murakawa H, Kaneko Y, Tokura Y 2013 Phys. Rev. B 87 014429Google Scholar

    [107]

    Zhu Z Y, Zhang B Y, Chen X F, Qian X F, Qi J S 2020 Appl. Phys. Lett. 117 082902Google Scholar

    [108]

    Billerey D, Terrier C, Ciret N, Kleinclauss J 1977 Phys. Lett. A 61A 138Google Scholar

    [109]

    Tian S J, Zhang J F, Li C H, Ying T P, Li S Y, Zhang X, Liu K, Lei H C 2019 J. Am. Chem. Soc. 141 5326Google Scholar

    [110]

    Valenta J, Kratochvílová M, Míšek M, Carva K, Kaštil J, Doležal P, Opletal P, Čermák P, Proschek P, Uhlířová K, Prchal J, Coak M J, Son S, Park J G, Sechovský V 2021 Phys. Rev. B 103 054424Google Scholar

    [111]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [112]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [113]

    Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G Y, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [114]

    Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [115]

    Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J-H, Cobden D H, Dean C R, Xiao D, Xu X D 2019 Nat. Mater. 18 1298Google Scholar

    [116]

    Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A, Terrones M 2016 2D Mater. 3 022002Google Scholar

    [117]

    Hus S M, Li A P 2017 Prog. Surf. Sci. 92 176Google Scholar

    [118]

    Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642Google Scholar

    [119]

    Zhao Y H, Lin L F, Zhou Q H, Li Y H, Yuan S J, Chen Q, Dong S, Wang J L 2018 Nano Lett. 18 2943Google Scholar

    [120]

    Wang R, Su Y, Yang G H, Zhang J F, Zhang S B 2020 Chem. Mater. 32 1545Google Scholar

    [121]

    Blades W H, Frady N J, Litwin P M, McDonnell S J, Reinke P 2020 J. Phys. Chem. C 124 15337Google Scholar

    [122]

    Peng J P, Guan J Q, Zhang H M, Song C L, Wang L, He K, Xue Q K, Ma X C 2015 Phys. Rev. B 91 121113Google Scholar

    [123]

    Mathew S, Gopinadhan K, Chan T K, Yu X J, Zhan D, Cao L, Rusydi A, Breese M B H, Dhar S, Shen Z X, Venkatesan T, Thong J T L 2012 Appl. Phys. Lett. 101 102103Google Scholar

    [124]

    Esquinazi P, Spemann D, Hohne R, Setzer A, Han K H, Butz T 2003 Phys. Rev. Lett. 91 227201Google Scholar

    [125]

    Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503Google Scholar

    [126]

    Sainbileg B, Batsaikhan E, Hayashi M 2020 RSC Adv. 10 42493Google Scholar

    [127]

    Zhang C D, Wang C, Yang F, Huang J K, Li L J, Yao W, Ji W, Shih C K 2019 ACS Nano 13 1595Google Scholar

    [128]

    He J J, Ding G Q, Zhong C Y, Li S, Li D F, Zhang G 2019 J. Mater. Chem. C 7 5084Google Scholar

    [129]

    Guo Y L, Yuan S J, Wang B, Shi L, Wang J L 2018 J. Mater. Chem. C 6 5716Google Scholar

    [130]

    Zhang J H, Guo Y, Li P G, Wang J, Zhou S, Zhao J J, Guo D H, Zhong D Y 2021 J. Phys. Chem. Lett. 12 2199Google Scholar

    [131]

    Wilczek F 2009 Nat. Phys. 5 614Google Scholar

    [132]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [133]

    Sau J D, Lutchyn R M, Tewari S, Sarma S D 2001 Phys. Rev. Lett. 100 040502Google Scholar

    [134]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [135]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [136]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [137]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [138]

    Li J, Neupert T, Wang Z J, MacDonald A H, Yazdani A, Bernevig B A 2016 Nat. Commun. 7 12297Google Scholar

    [139]

    Glodzik S, Ojanen T 2020 New J. Phys. 22 013022Google Scholar

    [140]

    Bjornson K, Black-Schaffer A M 2018 Phys. Rev. B 97 140504Google Scholar

    [141]

    Rontynen J, Ojanen T 2015 Phys. Rev. Lett. 114 236803Google Scholar

    [142]

    Rachel S, Mascot E, Cocklin S, Vojta M, Morr D K 2017 Phys. Rev. B 96 205131Google Scholar

    [143]

    Menard G C, Guissart S, Brun C, Leriche R T, Trif M, Debontridder F, Demaille D, Roditchev D, Simon P, Cren T 2017 Nat. Commun. 8 2040Google Scholar

    [144]

    Palacio-Morales A, Mascot E, Cocklin S, Kim H, Rachel S, Morr D K, Wiesendanger R 2019 Sci. Adv. 5 eaav6600Google Scholar

    [145]

    Margalit G, Yan B, Oreg Y 2020 Phys. Rev. B 102 024515Google Scholar

    [146]

    Kezilebieke S, Huda M N, Vaňo V, Aapro M, Ganguli S C, Silveira O J, Głodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424Google Scholar

    [147]

    Kezilebieke S, Vano V, Huda M N, Aapro M, Ganguli S C, Liljeroth P, Lado J L 2022 Nano Lett. 22 328Google Scholar

    [148]

    Kezilebieke S, Silveira O J, Huda M N, Vano V, Aapro M, Ganguli S C, Lahtinen J, Mansell R, van Dijken S, Foster A S, Liljeroth P 2021 Adv. Mater. 33 2006850Google Scholar

  • 图 1  分子束外延设备示意图

    Figure 1.  Schematic of molecular beam epitaxy.

    图 2  (a) 单层MX2俯视图, 过渡金属M2+离子与6个X离子配位形成三角晶格 (绿色三角形) 排列的边共享八面体 (灰色); (b) 单层MX3俯视图, 过渡金属M3+离子与6个X离子配位形成六角蜂窝晶格 (绿色六边形) 排列的边共享八面体 (灰色)

    Figure 2.  (a) Monolayer MX2 top view, transition metal M2+ ions are coordinated to six X ions forming edge-sharing octahedra (grey) arranged in triangular lattice (green triangle); (b) monolayer MX3 top view, transition metal M3+ ions are coordinated to six X ions forming edge-sharing octahedra (grey) arranged in hexagonal honeycomb (green hexagon) lattice.

    图 3  (a) 单层CrI3生长在Au(111) 表面; (b) 单层CrI3生长在HOPG表面; (c), (d) 单层CrI3原子分辨STM图; (e), (f) 单层CrI3在偏压为1 V时的STM图和模拟图; (g), (h) 单层CrI3在偏压为–1 V时的STM图和模拟图[79]

    Figure 3.  (a) Monolayer CrI3 grown on Au(111) surface; (b) monolayer CrI3 grown on HOPG surface; (c), (d) atomic-resolved STM image of monolayer CrI3; (e), (f) experimental and simulated STM images at Vs = 1 V; (g), (h) experimental and simulated STM images at Vs = –1 V[79].

    图 4  (a) 单层和双层CrBr3生长在HOPG表面上; (b) 单层CrBr3的原子分辨STM图; (c) 单层CrBr3的dI/dV谱; (d) 单层CrBr3的自旋极化隧穿谱; (e) 在偏压1.4 V处, 单层CrBr3在不同磁场下的dI/dV信号[20]

    Figure 4.  (a) Growth of monolayer and bilayer CrBr3 on HOPG surfaces; (b) atomic-resolved STM image of monolayer CrBr3; (c) dI/dV spectra of monolayer CrBr3; (d) spin-polarized tunneling spectra of monolayer CrBr3; (e) dI/dV signals of monolayer CrBr3 under different magnetic fields at Vs = 1.4 V[20].

    图 5  (a) 单层CrCl3生长在双层石墨烯的SiC表面上; (b) 不同温度下的单层CrCl3随外磁场变化的XMCD信号; (c) 掠入射和垂直入射的XMCD信号; (d), (e) 不同温度下, 在零磁场下的XMCD值[22]

    Figure 5.  Monolayer CrCl3 grown on bilayer graphene/SiC surface; (b) XMCD signals of monolayer CrCl3 with external magnetic field at different temperatures; (c) XMCD signals for grazing and normal incidence; (d), (e) XMCD values at zero magnetic field as a function of temperature[22].

    图 6  (a) α-RuCl3β-RuCl3在HOPG表面大范围STM图; (b) α-RuCl3的高分辨STM图; (c) 单层α-RuCl3的扫描隧道谱; (d) DFT计算得到的各分态密度; (e), (f) 不同偏压下的恒流模式STM图[69]

    Figure 6.  (a) Large scale STM image of monolayer α-RuCl3 and β-RuCl3 grown on HOPG surface; (b) high-resolution STM image of monolayer α-RuCl3; (c), (d) dI/dV spectra and DFT results of monolayer α-RuCl3; (e), (f) bias-dependent STM images in the constant-current mode [69].

    图 7  (a) 具有Jahn-Teller效应的单层CrI2的俯视图和侧视图[35]; (b) 单层CrI2在SiC的双层石墨表面[35]; (c) 单层CrI2在Au(111) 表面[79]

    Figure 7.  (a) Monolayer CrI2 crystal structure with Jahn-Teller effect in top and side views[35]; (b) monolayer CrI2 on bilayer graphene/SiC surface[35]; (c) monolayer CrI2 on Au(111) surface[79].

    图 8  (a) 单层FeCl2生长在Au(111) 表面上[101]; (b) 单层FeCl2生长在HOPG表面上[101]; (c) 单层FeCl2在HOPG表面的各种moiré云纹结构[101]; (d) 单层和双层FeCl2在HOPG表面的I-V曲线[102]; (e) moiré转角与FeCl2岛高的关系图[102]

    Figure 8.  (a) Monolayer FeCl2 growth on Au(111) surface[101]; (b) monolayer FeCl2 growth on HOPG surface[101]; (c) various moiré structure of monolayer FeCl2 on HOPG surface[101]; (d) I-V curves of monolayer and bilayer FeCl2 on HOPG surface[102]; (e) correlation between moiré rotation angle and FeCl2 island height[102].

    图 9  (a) NiBr2和NiBrx薄膜生长在Au(111) 表面; (b), (c) 单层NiBr2和NiBrx的原子分辨STM图; (d) 单层NiBrx和NiBr2薄膜上的掠入射和垂直入射的MXCD信号[40]

    Figure 9.  NiBr2 and NiBrx films grown on Au(111) surface; (b), (c) atomic-resolved STM images of single-layer NiBr2 and NiBrx; (d) XMCD signals on single-layer NiBrx and NiBr2 for grazing and normal incidence[40].

    图 10  (a) 单层MnI2生长在双层石墨烯/SiC表面; (b) 单层MnI2的原子分辨STM图; (c) 单层MnI2的dI/dV[93]

    Figure 10.  (a) Monolayer MnI2 growth on bilayer graphene/SiC surface; (b) atomic-resolved STM image of monolayer MnI2; (c) dI/dV spectra of monolayer MnI2[93].

    图 11  (a) H型堆垛方式的双层CrBr3形貌图; (b) R型堆垛方式的双层CrBr3形貌图; (c), (d) H型堆垛 (c) 和R型堆垛 (d) 的双层CrBr3在偏压为1.5 V时微分电导信号随外磁场变化关系, 针尖选用Cr针尖 [20]

    Figure 11.  (a) H-type stacked bilayer CrBr3; (b) R-type stacked bilayer CrBr3; (c), (d) differential conductance signals as a function of external magnetic field for H-type stacked (c) and R-type stacked (d) bilayer CrBr3 with a Cr tip at Vs = 1.5 V[20].

    图 12  (a) 原始 (左) 和单个碘空位 (右) 的单层CrI3磁交换作用[119]; (b) CrI3里不同的本征缺陷对局域磁性耦合影响的理论计算结果[120]; (c) 单层CrI3中不同点缺陷附近Cr—Cr键长与磁耦合的关系[120]; (d) 单层FeCl2中的本征缺陷[101]; (e) 单层CrI3中的本征缺陷STM图和模拟图[130]

    Figure 12.  (a) Magnetic exchange interaction of pristine (left) and single iodine vacancy (right) of monolayer CrI3[119]; (b) theoretical calculations of the effect of local magnetic coupling by different intrinsic defects in CrI3[120]; (c) relationship between Cr—Cr bond length and magnetic coupling near different point defects in monolayer CrI3[120]; (d) intrinsic defects in monolayer FeCl2[101]; (e) experimental and simulated STM images of intrinsic defects in monolayer CrI3[130].

    图 13  (a) Majorana零能模出现在CrBr3/NbSe2异质结中CrBr3岛的边缘[146]; (b) moiré增强的拓扑超导[147]; (c) 磁涡旋结构在CrBr3/NbSe2异质结中[148]

    Figure 13.  (a) Majorana zero mode appears at the edge of the CrBr3 island on the CrBr3/NbSe2 system[146]; (b) moiré-enabled topological superconductivity[147]; (c) the magnetic vortex in CrBr3/NbSe2 heterostructure[148].

    表 1  二维磁性过渡金属卤化物

    Table 1.  Two-dimensional magnetic transition metal halides.

    材料面内晶格常数/Å磁耦合转变温度磁易轴单层电学性质参考文献
    VCl23.58120°-AFM/bulkTN = 36 K/bulk//Insulator[3638, 46]
    120°-AFM/1L
    VBr23.76120°-AFM/bulkTN = 30 K/bulk//Insulator[3638, 46]
    120°-AFM/1L
    VI24.04AFM /bulkTN = 16 K/bulk//Insulator[3638, 46]
    120°-AFM/1L
    CrCl23.55AFM/1L[36, 38]
    CrBr23.74AFM/1L[36, 38]
    CrI${}_2^* $a1 = 3.88, a2 = 4.23,
    a3 = 4.18
    FM/1LMott insulator[35]
    MnCl23.64AFM/bulkTN = 2 K/bulk//Insulator[36, 38, 47]
    120°-AFM/1L
    MnBr23.80AFM/bulkTN = 2 K/bulk//Insulator[36, 38, 48]
    120°-AFM/1L
    MnI${}_2^* $4.06HM/bulkTN = 3.4 K/bulk//Insulator[36, 38, 49]
    120°-AFM/1L
    FeCl${}_2^* $3.43AFM/bulkTN = 24 K/bulkHM[37, 38, 50]
    FM/1LTC = 109 K/1L
    FeBr23.63AFM/bulkTN = 14 K/bulkHM[37, 38, 50]
    FM/1LTC = 81 K/1L
    FeI23.91AFM/bulkTN = 9 K/bulkHM[37, 38, 51]
    FM/1LTC = 42 K/1L
    CoCl23.42AFM/bulkTN = 25 K/bulk//Insulator[37, 38, 52]
    FM/1LTC = 85 K/1L
    CoBr23.62AFM/bulkTN = 18 K/bulk//Insulator[37, 38, 50]
    FM/1LTC = 23 K/1L
    CoI23.80HM/bulkTN = 11 K/bulkInsulator[42, 53]
    HM
    NiCl23.50AFM/bulkTN = 52 K/bulk//Insulator[38, 39, 54]
    FM/1LTC = 118 K/1L
    NiBr${}_2^* $3.80HM/bulkTN = 23 K/bulk//Ferroelectric insulator[40, 55]
    Noncollinear/1LTC = 28 K/1L
    NiI23.88HM/bulkTN = 60 K/bulkFerroelectric semiconductor[41]
    HM/1LTN = 21 K/1L
    VCl36.28AFM/bulkTN = 20 K/bulkDHM[56, 57]
    FM/1LTC = 80 K/1L
    VBr36.37AFM/bulkTN = 27 K/bulk//Semiconductor[58, 59]
    FM/1LTC = 20 K/1L
    VI36.83FM/ interlayerTc = 50 K/bulkMott insulator[30, 60]
    FM/ intralayerTC = 60 K/1L
    CrCl${}_3^* $6.01AFM/ interlayerTN = 17 K/bulk//Semiconductor[22, 61]
    FM/ intralayerTC = 13 K/1L
    CrBr${}_3^* $6.30FM/ interlayerTc = 37 K/bulkSemiconductor[20, 62]
    FM/ intralayerTC = 34 K/1L
    CrI${}_3^* $6.95FM/ intralayerTc = 61 K/bulkSemiconductor[16, 63]
    AFM/ few LTC = 45 K/1L
    MnCl36.21FM/1L//DHM[64]
    MnBr36.58FM/1L//DHM[64]
    MnI37.08FM/1L//DHM[64]
    FeCl36.22HM/bulkTN = 15 K/bulkSemiconductor[65, 66]
    FM/1L
    FeBr36.61AFM/bulkTN = 16 K/bulkSemiconductor[65, 67]
    FM
    FeI37.12FM/1LSemiconductor[65]
    NiCl35.94FM/1LTC = 497 K/1LDHM[68]
    NiBr36.31FM/1LTC = 595 K/1L//DHM[68]
    NiI36.82FM/1LTC = 682 K/1LDHM[68]
    α-RuCl${}_3^* $6.19AFM QSL/bulkTN = 7 K/bulkMott insulator[44, 45, 69]
    AFM QSL/1L
    RuBr36.25FM/1LTI[70]
    RuI37.10FM/1 LTC = 360 K/1LTI[70]
    注: FM, AFM, HM, QSL分别表示铁磁态、反铁磁态、螺旋磁态、量子自旋液体态. 在表格中, 灰色填充表示理论计算预测的二维磁性过渡金属卤化物; 黄色填充表示已合成的二维磁性过渡金属卤化物, 但是还缺乏磁性表征; 绿色填充表示已证实的二维磁性过渡金属卤化物.
    *表示已实现MBE制备的过渡金属卤化物. //和⊥分别表示平面内、平面外磁易轴. HM, DHM和TI分别表示磁性半金属、狄拉克半金属和拓扑绝缘体.
    DownLoad: CSV
  • [1]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Tao W, Kong N, Ji X Y, Zhang Y P, Sharma A, Ouyang J, Qi B W, Wang J Q, Xie N, Kang C, Zhang H, Farokhzad O C, Kim J S 2019 Chem. Soc. Rev. 48 2891Google Scholar

    [4]

    Pang J B, Mendes R G, Bachmatiuk A, Zhao L, Ta H Q, Gemming T, Liu H, Liu Z F, Rummeli M H 2019 Chem. Soc. Rev. 48 72Google Scholar

    [5]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [6]

    Song L, Ci L J, Lu H, Sorokin P B, Jin C H, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209Google Scholar

    [7]

    Jariwala D, Marks T J, Hersam M C 2017 Nat. Mater. 16 170Google Scholar

    [8]

    Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 16042Google Scholar

    [9]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [10]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1307Google Scholar

    [11]

    González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, José Palacios J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437Google Scholar

    [12]

    Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408Google Scholar

    [13]

    Ugeda M M, Brihuega I, Guinea F, Gómez-Rodríguez J M 2010 Phys. Rev. Lett. 104 096804Google Scholar

    [14]

    Mishra R, Zhou W, Pennycook S J, Pantelides S T, Idrobo J C 2013 Phys. Rev. B 88 144409Google Scholar

    [15]

    Wang Z Y, Tang C, Sachs R, Barlas Y, Shi J 2015 Phys. Rev. Lett. 114 016603Google Scholar

    [16]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [17]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [18]

    Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G, Cheong H 2016 Nano Lett. 16 7433Google Scholar

    [19]

    Liu Z L, Wu X, Shao Y, Qi J, Cao Y, Huang L, Liu C, Wang J O, Zheng Q, Zhu Z L, Ibrahim K, Wang Y L, Gao H J 2018 Sci. Bull. 63 419Google Scholar

    [20]

    Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983Google Scholar

    [21]

    Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, Yu T 2019 Nano Lett. 19 3138Google Scholar

    [22]

    Bedoya-Pinto A, Ji J R, Pandeya A K, Gargiani P, Valvidares M, Sessi P, Taylor J M, Radu F, Chang K, Parkin S S P 2021 Science 374 616Google Scholar

    [23]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [24]

    Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [25]

    Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H, Zhang Y B 2020 Science 367 895Google Scholar

    [26]

    Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522Google Scholar

    [27]

    Griffiths R B 1964 Phys. Rev. 136 A437Google Scholar

    [28]

    Samarth N 2017 Nature 546 216Google Scholar

    [29]

    Cai X H, Song T C, Wilson N P, Clark G, He M H, Zhang X O, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Cobden D H, Xu X D 2019 Nano Lett. 19 3993Google Scholar

    [30]

    Lin Z, Huang B, Hwangbo K, Jiang Q N, Zhang Q, Liu Z Y, Fei Z Y, Lv H Y, Millis A, McGuire M, Xiao D, Chu J H, Xu X D 2021 Nano Lett. 21 9180Google Scholar

    [31]

    Lyu B B, Gao Y F, Zhang Y J, Wang L, Wu X H, Chen Y N, Zhang J S, Li G M, Huang Q L, Zhang N P, Chen Y Z, Mei J W, Yan H G, Zhao Y, Huang L, Huang M Y 2020 Nano Lett. 20 6024Google Scholar

    [32]

    Li J, Zhao B, Chen P, Wu R X, Li B, Xia Q L, Guo G H, Luo J, Zang K T, Zhang Z W, Ma H F, Sun G Z, Duan X D, Duan X F 2018 Adv. Mater. 30 1801043Google Scholar

    [33]

    Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H F, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y, Huang Y, Xu X D, Duan X D, Ji W, Duan X F 2021 Nat. Mater. 20 818Google Scholar

    [34]

    Zhang Y, Chu J W, Yin L, Shifa T A, Cheng Z Z, Cheng R Q, Wang F, Wen Y, Zhan X Y, Wang Z X, He J 2019 Adv. Mater. 31 1900056Google Scholar

    [35]

    Peng L, Zhao J Z, Cai M, Hua G Y, Liu Z Y, Xia H N, Yuan Y, Zhang W H, Xu G, Zhao L X, Zhu Z W, Xiang T, Fu Y S 2020 Phys. Rev. Res. 2 023264Google Scholar

    [36]

    Li X, Zhang Z, Zhang H 2020 Nanoscale Adv. 2 495Google Scholar

    [37]

    Botana A S, Norman M R 2019 Phys. Rev. Mater. 3 044001Google Scholar

    [38]

    Kulish V V, Huang W 2017 J. Mater. Chem. C 5 8734Google Scholar

    [39]

    Jiang Z Y, Li Y C, Duan W H, Zhang S B 2019 Phys. Rev. Lett. 122 236402Google Scholar

    [40]

    Bikaljević D, González-Orellana C, Peña-Díaz M, Steiner D, Dreiser J, Gargiani P, Foerster M, Ángel Niño M, Aballe L, Ruiz-Gomez S, Friedrich N, Hieulle J, Li J, Ilyn M, Rogero C, Ignacio Pascual J 2021 ACS Nano 15 14985Google Scholar

    [41]

    Song Q, Occhialini C A, Ergecen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N, Comin R 2022 Nature 602 601Google Scholar

    [42]

    Prayitno T B 2021 J. Phys. Condens. Matter 33 335803Google Scholar

    [43]

    Tomar S, Ghosh B, Mardanya S, Rastogi P, Bhadoria B S, Chauhan Y S, Agarwal A, Bhowmick S 2019 J. Magn. Magn. Mater. 489 165384Google Scholar

    [44]

    Wang Z, Reschke S, Hüvonen D, Do S H, Choi K Y, Gensch M, Nagel U, Rõõm T, Loidl A 2017 Phys. Rev. Lett. 119 227202Google Scholar

    [45]

    Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R, Nagler S E 2017 Science 356 1055Google Scholar

    [46]

    Hirakawa K, Kadowaki H, Ubukoshi K 1983 J. Phys. Soc. Jpn. 52 1814Google Scholar

    [47]

    Regis M, Farge Y 1976 J. Phys. 37 627Google Scholar

    [48]

    Sato T, Kadowaki H, Masuda H, Iio K 1994 J. Phys. Soc. Jpn. 63 4583Google Scholar

    [49]

    Cable J W, Wilkinson M K, Wollan E O, Koehler W C 1962 Phys. Rev. 125 1860Google Scholar

    [50]

    Wilkinson M K, Cable J W, Wollan E O, Koehler W C 1959 Phys. Rev. 113 497Google Scholar

    [51]

    Gelard J, Fert A R, Meriel P, Allain Y 1974 Solid State Commun. 14 187Google Scholar

    [52]

    Jacobs I S, Roberts S, Lawrence P E 1965 J. Appl. Phys. 36 1197Google Scholar

    [53]

    Mekata M, Kuriyama H, Ajiro Y, Mitsuda S, Yoshizawa H 1992 J. Magn. Magn. Mater. 104-107 859Google Scholar

    [54]

    Busey R H, Giauque W F 1952 J. Am. Chem. Soc. 74 4443Google Scholar

    [55]

    Adam A, Billerey D, Terrier C, Mainard R, Regnault L P, Rossat-Mignod J, Mériel P 1980 Solid State Commun. 35 1Google Scholar

    [56]

    He J J, Ma S Y, Lyu P B, Nachtigall P 2016 J. Mater. Chem. C 4 2518Google Scholar

    [57]

    Starr C, Bitter F, Kaufmann A R 1940 Phys. Rev. 58 977Google Scholar

    [58]

    Liu L, Yang K, Wang G Y, Wu H 2020 J. Mater. Chem. C 8 14782Google Scholar

    [59]

    Kong T, Guo S, Ni D R, Cava R J 2019 Phys. Rev. Mater. 3 084419Google Scholar

    [60]

    Kong T, Stolze K, Timmons E I, Tao J, Ni D R, Guo S, Yang Z, Prozorov R, Cava R J 2019 Adv. Mater. 31 1808074Google Scholar

    [61]

    Cable J W, Wilkinson M K, Wollan E O 1961 J. Phys. Chem. Solids 19 29Google Scholar

    [62]

    Tsubokawa I 1960 J. Phys. Soc. Jpn. 15 1664Google Scholar

    [63]

    McGuire M A, Dixit H, Cooper V R, Sales B C 2015 Chem. Mater. 27 612Google Scholar

    [64]

    Sun Q, Kioussis N 2018 Phys. Rev. B 97 094408Google Scholar

    [65]

    Guan Z Y, Ni S 2021 J. Phys. Chem. C 125 16700Google Scholar

    [66]

    Cable J W, Wilkinson M K, Wollan E O, Koehler W C 1962 Phys. Rev. 127 714Google Scholar

    [67]

    Oosterhuis W T, Window B, Spartalian K 1974 Phys. Rev. B 10 4616Google Scholar

    [68]

    Li Z, Zhou B Z, Luan C B 2019 RSC Adv. 9 35614Google Scholar

    [69]

    Wang Z J, Liu L, Zheng H R, Zhao M, Yang K, Wang C Z, Yang F, Wu H, Gao C L 2021 Research Square DOI: 10.21203/rs.3.rs-646319/v1

    [70]

    Huang C X, Zhou J, Wu H P, Deng K M, Jena P, Kan E J 2017 Phys. Rev. B 95 045113Google Scholar

    [71]

    Sun Z Y, Yi Y F, Song T C, Clark G, Huang B, Shan Y W, Wu S, Huang D, Gao C L, Chen Z H, McGuire M, Cao T, Xiao D, Liu W T, Yao W, Xu X D, Wu S W 2019 Nature 572 497Google Scholar

    [72]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [73]

    Jiang P H, Wang C, Chen D C, Zhong Z C, Yuan Z, Lu Z-Y, Ji W 2019 Phys. Rev. B 99 144401Google Scholar

    [74]

    Sivadas N, Okamoto S, Xu X D, Fennie C J, Xiao D 2018 Nano Lett. 18 7658Google Scholar

    [75]

    Ubrig N, Wang Z, Teyssier J, Taniguchi T, Watanabe K, Giannini E, Morpurgo A F, Gibertini M 2020 2D Mater. 7 015007Google Scholar

    [76]

    Jiang S W, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [77]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X D 2018 Nat. Nanotechnol. 13 544Google Scholar

    [78]

    Jiang S W, Li L Z, Wang Z F, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [79]

    Li P G, Wang C, Zhang J H, Chen S W, Guo D H, Ji W, Zhong D Y 2020 Sci. Bull. 65 1064Google Scholar

    [80]

    Qiu Z Z, Holwill M, Olsen T, Lyu P, Li J, Fang H Y, Yang H M, Kashchenko M, Novoselov K S, Lu J 2021 Nat. Commun. 12 70Google Scholar

    [81]

    Seyler K L, Zhong D, Klein D R, Gao S Y, Zhang X O, Huang B, Navarro-Moratalla E, Yang L, Cobden D H, McGuire M A, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2018 Nat. Phys. 14 277Google Scholar

    [82]

    Pollini I 1998 Solid State Commun. 106 549Google Scholar

    [83]

    Morosin B, Narath A 1964 J. Chem. Phys. 40 1958Google Scholar

    [84]

    Berezinskiǐ V 1972 Sov. Phys. JETP 34 610

    [85]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C:Solid State Phys. 6 1181Google Scholar

    [86]

    Kosterlitz J M 1974 J. Phys. C:Solid State Phys. 7 1046Google Scholar

    [87]

    Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325Google Scholar

    [88]

    Cao H B, Banerjee A, Yan J Q, Bridges C A, Lumsden M D, Mandrus D G, Tennant D A, Chakoumakos B C, Nagler S E 2016 Phys. Rev. B 93 134423Google Scholar

    [89]

    Fletcher J M, Gardner W E, Hooper E W, Hyde K R, Moore F H, Woodhead J L 1963 Nature 199 1089Google Scholar

    [90]

    Ran K J, Wang J H, Wang W, Dong Z Y, Ren X, Bao S, Li S C, Ma Z, Gan Y, Zhang Y T, Park J T, Deng G C, Danilkin S, Yu S L, Li J X, Wen J S 2017 Phys. Rev. Lett. 118 107203Google Scholar

    [91]

    Do S H, Park S Y, Yoshitake J, Nasu J, Motome Y, Kwon Y S, Adroja D T, Voneshen D J, Kim K, Jang T H, Park J H, Choi K Y, Ji S 2017 Nat. Phys. 13 1079Google Scholar

    [92]

    Zhang J J, Yang J, Lin L Z, Zhu J J 2020 J. Semicond. 41 122502Google Scholar

    [93]

    Cai X Q, Xu Z L, Ji S H, Li N, Chen X 2021 Chin. Phys. B 30 028102Google Scholar

    [94]

    Tracy J W, Greoor N W, Stewart J M, Lingafelter E C 1962 Acta Cryst. 15 160Google Scholar

    [95]

    Besrest P F, Jaulmes S 1973 Acta Cryst. B29 1560Google Scholar

    [96]

    Vettier C, Yelon W B 1975 J. Phys. Chem. Solids 36 401Google Scholar

    [97]

    Haberecht J, Borrmann H, Kniep R 2001 Z. Kristallogr. -New Cryst. Struct. 216 510Google Scholar

    [98]

    Ghosh R K, Jose A, Kumari G 2021 Phys. Rev. B 103 054409Google Scholar

    [99]

    Syariati R, Minami S, Sawahata H, Ishii F 2020 APL Mater. 8 041105Google Scholar

    [100]

    Torun E, Sahin H, Singh S K, Peeters F M 2015 Appl. Phys. Lett. 106 192404Google Scholar

    [101]

    Zhou X H, Brzostowski B, Durajski A P, Liu M Z, Xiang J, Jiang T R, Wang Z Q, Chen S W, Li P G, Zhong Z H, Drzewinski A, Jarosik M W, Szczesniak R, Lai T S, Guo D H, Zhong D Y 2020 J. Phys. Chem. C 124 9416Google Scholar

    [102]

    Cai S H, Yang F, Gao C L 2020 Nanoscale 12 16041Google Scholar

    [103]

    McGuire M A 2017 Crystals 7 121Google Scholar

    [104]

    Lindgard P A, Birgeneau R J, Guggenheim H J, Als-Nielsen J 1975 J. Phys. C:Solid State Phys. 8 1059Google Scholar

    [105]

    Ni J Y, Li X Y, Amoroso D, He X, Feng J S, Kan E J, Picozzi S, Xiang H J 2021 Phys. Rev. Lett. 127 247204Google Scholar

    [106]

    Kurumaji T, Seki S, Ishiwata S, Murakawa H, Kaneko Y, Tokura Y 2013 Phys. Rev. B 87 014429Google Scholar

    [107]

    Zhu Z Y, Zhang B Y, Chen X F, Qian X F, Qi J S 2020 Appl. Phys. Lett. 117 082902Google Scholar

    [108]

    Billerey D, Terrier C, Ciret N, Kleinclauss J 1977 Phys. Lett. A 61A 138Google Scholar

    [109]

    Tian S J, Zhang J F, Li C H, Ying T P, Li S Y, Zhang X, Liu K, Lei H C 2019 J. Am. Chem. Soc. 141 5326Google Scholar

    [110]

    Valenta J, Kratochvílová M, Míšek M, Carva K, Kaštil J, Doležal P, Opletal P, Čermák P, Proschek P, Uhlířová K, Prchal J, Coak M J, Son S, Park J G, Sechovský V 2021 Phys. Rev. B 103 054424Google Scholar

    [111]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [112]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [113]

    Lu X B, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G Y, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [114]

    Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Mak K F, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [115]

    Song T C, Fei Z Y, Yankowitz M, Lin Z, Jiang Q N, Hwangbo K, Zhang Q, Sun B S, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J-H, Cobden D H, Dean C R, Xiao D, Xu X D 2019 Nat. Mater. 18 1298Google Scholar

    [116]

    Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A, Terrones M 2016 2D Mater. 3 022002Google Scholar

    [117]

    Hus S M, Li A P 2017 Prog. Surf. Sci. 92 176Google Scholar

    [118]

    Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642Google Scholar

    [119]

    Zhao Y H, Lin L F, Zhou Q H, Li Y H, Yuan S J, Chen Q, Dong S, Wang J L 2018 Nano Lett. 18 2943Google Scholar

    [120]

    Wang R, Su Y, Yang G H, Zhang J F, Zhang S B 2020 Chem. Mater. 32 1545Google Scholar

    [121]

    Blades W H, Frady N J, Litwin P M, McDonnell S J, Reinke P 2020 J. Phys. Chem. C 124 15337Google Scholar

    [122]

    Peng J P, Guan J Q, Zhang H M, Song C L, Wang L, He K, Xue Q K, Ma X C 2015 Phys. Rev. B 91 121113Google Scholar

    [123]

    Mathew S, Gopinadhan K, Chan T K, Yu X J, Zhan D, Cao L, Rusydi A, Breese M B H, Dhar S, Shen Z X, Venkatesan T, Thong J T L 2012 Appl. Phys. Lett. 101 102103Google Scholar

    [124]

    Esquinazi P, Spemann D, Hohne R, Setzer A, Han K H, Butz T 2003 Phys. Rev. Lett. 91 227201Google Scholar

    [125]

    Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503Google Scholar

    [126]

    Sainbileg B, Batsaikhan E, Hayashi M 2020 RSC Adv. 10 42493Google Scholar

    [127]

    Zhang C D, Wang C, Yang F, Huang J K, Li L J, Yao W, Ji W, Shih C K 2019 ACS Nano 13 1595Google Scholar

    [128]

    He J J, Ding G Q, Zhong C Y, Li S, Li D F, Zhang G 2019 J. Mater. Chem. C 7 5084Google Scholar

    [129]

    Guo Y L, Yuan S J, Wang B, Shi L, Wang J L 2018 J. Mater. Chem. C 6 5716Google Scholar

    [130]

    Zhang J H, Guo Y, Li P G, Wang J, Zhou S, Zhao J J, Guo D H, Zhong D Y 2021 J. Phys. Chem. Lett. 12 2199Google Scholar

    [131]

    Wilczek F 2009 Nat. Phys. 5 614Google Scholar

    [132]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [133]

    Sau J D, Lutchyn R M, Tewari S, Sarma S D 2001 Phys. Rev. Lett. 100 040502Google Scholar

    [134]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [135]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [136]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [137]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [138]

    Li J, Neupert T, Wang Z J, MacDonald A H, Yazdani A, Bernevig B A 2016 Nat. Commun. 7 12297Google Scholar

    [139]

    Glodzik S, Ojanen T 2020 New J. Phys. 22 013022Google Scholar

    [140]

    Bjornson K, Black-Schaffer A M 2018 Phys. Rev. B 97 140504Google Scholar

    [141]

    Rontynen J, Ojanen T 2015 Phys. Rev. Lett. 114 236803Google Scholar

    [142]

    Rachel S, Mascot E, Cocklin S, Vojta M, Morr D K 2017 Phys. Rev. B 96 205131Google Scholar

    [143]

    Menard G C, Guissart S, Brun C, Leriche R T, Trif M, Debontridder F, Demaille D, Roditchev D, Simon P, Cren T 2017 Nat. Commun. 8 2040Google Scholar

    [144]

    Palacio-Morales A, Mascot E, Cocklin S, Kim H, Rachel S, Morr D K, Wiesendanger R 2019 Sci. Adv. 5 eaav6600Google Scholar

    [145]

    Margalit G, Yan B, Oreg Y 2020 Phys. Rev. B 102 024515Google Scholar

    [146]

    Kezilebieke S, Huda M N, Vaňo V, Aapro M, Ganguli S C, Silveira O J, Głodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424Google Scholar

    [147]

    Kezilebieke S, Vano V, Huda M N, Aapro M, Ganguli S C, Liljeroth P, Lado J L 2022 Nano Lett. 22 328Google Scholar

    [148]

    Kezilebieke S, Silveira O J, Huda M N, Vano V, Aapro M, Ganguli S C, Lahtinen J, Mansell R, van Dijken S, Foster A S, Liljeroth P 2021 Adv. Mater. 33 2006850Google Scholar

  • [1] You Ming-Hui, Li Xue, Li Shi-Jun, Liu Guo-Jun. Growth of lattice matched InAs/AlSb superlattices by molecular beam epitaxy. Acta Physica Sinica, 2023, 72(1): 014203. doi: 10.7498/aps.72.20221383
    [2] Li Geng, Guo Hui, Gao Hong-Jun. Novel two-dimensional materials and their heterostructures constructed in ultra-high vacuum. Acta Physica Sinica, 2022, 71(10): 106801. doi: 10.7498/aps.71.20212407
    [3] Zheng Xiao-Hu, Zhang Jian-Feng, Du Rui-Rui. Comparative study on epitaxial growth of stanene and bismuthene on InSb(111) substrate. Acta Physica Sinica, 2022, 71(18): 186401. doi: 10.7498/aps.71.20221024
    [4] Wang Xing-Yue, Zhang Hui, Ruan Zi-Lin, Hao Zhen-Liang, Yang Xiao-Tian, Cai Jin-Ming, Lu Jian-Chen. Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions. Acta Physica Sinica, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [5] Zhang Ma-Lin, Ge Jian-Feng, Duan Ming-Chao, Yao Gang, Liu Zhi-Long, Guan Dan-Dan, Li Yao-Yi, Qian Dong, Liu Can-Hua, Jia Jin-Feng. Molecular beam epitaxy growth of multilayer FeSe thin film on SrTiO3 (001). Acta Physica Sinica, 2016, 65(12): 127401. doi: 10.7498/aps.65.127401
    [6] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [7] Yang Wen-Xian, Ji Lian, Dai Pan, Tan Ming, Wu Yuan-Yuan, Lu Jian-Ya, Li Bao-Ji, Gu Jun, Lu Shu-Long, Ma Zhong-Quan. Study on photoluminescence properties of 1.05 eV InGaAsP layers grown by molecular beam epitaxy. Acta Physica Sinica, 2015, 64(17): 177802. doi: 10.7498/aps.64.177802
    [8] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [9] Wang Meng, Ou Yun-Bo, Li Fang-Sen, Zhang Wen-Hao, Tang Chen-Jia, Wang Li-Li, Xue Qi-Kun, Ma Xu-Cun. Molecular beam epitaxy of single unit-cell FeSe superconducting films on SrTiO3(001). Acta Physica Sinica, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [10] Su Shao-Jian, Zhang Dong-Liang, Zhang Guang-Ze, Xue Chun-Lai, Cheng Bu-Wen, Wang Qi-Ming. High-quality Ge1-xSnx alloys grown on Ge(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [11] Nie Shuai-Hua, Zhu Li-Jun, Pan Dong, Lu Jun, Zhao Jian-Hua. Structural characterization and magnetic properties of perpendicularly magnetized MnAl films grown by molecular-beam epitaxy. Acta Physica Sinica, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [12] Ding Zhao, Wei Jun, Yang Zai-Rong, Luo Zi-Jiang, He Ye-Quan, Zhou Xun, He Hao, Deng Chao-Yong. Study on temperature calibration and surface phase transition of GaAs crystal substrate in MBE growth by RHEED real-time monitoring. Acta Physica Sinica, 2011, 60(1): 016109. doi: 10.7498/aps.60.016109
    [13] Su Shao-Jian, Wang Wei, Zhang Guang-Ze, Hu Wei-Xuan, Bai An-Qi, Xue Chun-Lai, Zuo Yu-Hua, Cheng Bu-Wen, Wang Qi-Ming. Epitaxial growth of Ge0.975Sn0.025alloy films on Si(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [14] Zhao Ming-Hai, Sun Jing-Jing, Wang Dan, Zou Zhi-Qiang, Liang Qi. STM studies of the epitaxial growth of C60 molecules on Si(111)-7×7 surface. Acta Physica Sinica, 2010, 59(1): 636-642. doi: 10.7498/aps.59.636
    [15] Zhang Yan-Hui, Chen Ping-Ping, Li Tian-Xin, Yin Hao. InNSb single crystal films prepared on GaAs (001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [16] Tang Jun, Liu Zhong-Liang, Ren Peng, Yao Tao, Yan Wen-Sheng, Xu Peng-Shou, Wei Shi-Qiang. Structural characterization of Mn doped SiC magnetic thin films. Acta Physica Sinica, 2010, 59(7): 4774-4780. doi: 10.7498/aps.59.4774
    [17] Ren Peng, Liu Zhong-Liang, Ye Jian, Jiang Yong, Liu Jin-Feng, Sun Yu, Xu Peng-Shou, Sun Zhi-Hu, Pan Zhi-Yun, Yan Wen-Sheng, Wei Shi-Qiang. Structural study of MnxSi1-x magnetic semiconductor thin films. Acta Physica Sinica, 2008, 57(7): 4322-4327. doi: 10.7498/aps.57.4322
    [18] Xu Xiao-Hua, Niu Zhi-Chuan, Ni Hai-Qiao, Xu Ying-Qiang, Zhang Wei, He Zheng-Hong, Han Qin, Wu Rong-Han, Jiang De-Sheng. Photoluminescence study of (GaAs1-xSbx/InyGa1-yAs)/GaAs bilayer quantum well grown by molecular beam epitaxy. Acta Physica Sinica, 2005, 54(6): 2950-2954. doi: 10.7498/aps.54.2950
    [19] YAN HAO, ZHAO XUE-YING, ZHAO RU-GUANG, YANG WEI-SHENG. ADSORPTION OF GLYCINE ON Cu(111) INVESTIGATED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2001, 50(10): 1964-1969. doi: 10.7498/aps.50.1964
    [20] JING CHAO, JIN XIAO-FENG, DONG GUO-SHENG, GONG XIAO-YAN, YU LI-MING, ZHENG WEI-MIN. EXCHANGE BIASING IN MOLECULAR-BEAM-EPITAXY-GROWN Fe/Fe50Mn50 BILAYERS. Acta Physica Sinica, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
Metrics
  • Abstract views:  5781
  • PDF Downloads:  380
  • Cited By: 0
Publishing process
  • Received Date:  17 April 2022
  • Accepted Date:  18 May 2022
  • Available Online:  14 June 2022
  • Published Online:  20 June 2022

/

返回文章
返回