Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Crystal growth and electronic transport property of ternary Pd-based tellurides

Qiu Hang-Qiang Xie Xiao-Meng Liu Yi Li Yu-Ke Xu Xiao-Feng Jiao Wen-He

Citation:

Crystal growth and electronic transport property of ternary Pd-based tellurides

Qiu Hang-Qiang, Xie Xiao-Meng, Liu Yi, Li Yu-Ke, Xu Xiao-Feng, Jiao Wen-He
PDF
HTML
Get Citation
  • Ternary transition-metal chalcogenides are a series of compounds that possess both low-dimensional structures and correlated electrons, and display rich electronic ground states, depending on their different compositions. Among the chalcogen (S, Se, Te), Te has lower electronegativity and heavier atomic mass than S and Se. Thus, transition-metal tellurides take on distinct crystal structures, electronic structures and physical properties. In recent years, we have successively discovered novel superconductors Ta4Pd3Te16 and Ta3Pd3Te14, topological Dirac semimetals TaTMTe5 (TM = Pd, Pt, Ni),etc., further expanding the investigations of physical properties of the family of tellurides and laying a foundation for exploring their potential applications . The basis of further investigating and exploring the potential applications is the obtaining of the high-quality crystals with large dimensions. In this work, we first introduce the whole procedures of the single-crystal growth in growing the four ternary Pd-based tellurides (Ta4Pd3Te16, Ta3Pd3Te14, TaPdTe5, and Ta2Pd3Te5) by employing the self-flux method and chemical vapor transport method, and then give the chemical reaction equations in chemical vapor transport. The superconducting transition width of the Ta4Pd3Te16 crystal and Ta3Pd3Te14 crystal are as small as 0.57 K and 0.13 K, respectively, and by fitting the temperature-dependent resistivity of the topological insulator Ta2Pd3Te5, the band gap is derived to be 23.37 meV. Finally, we comparatively analyse the crystal-growth processes of the four ternary Pd-based tellurides by employing the flux method, which can provide the inspiration and reference for growing the crystals of other transition-metal tellurides by employing the similar methods.
      Corresponding author: Jiao Wen-He, whjiao@zjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974061, U1932155) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY19A040002).
    [1]

    Revolinsky E, Spiering G A, Beerntsen D J 1965 J. Phys. Chem. Solids 26 1029Google Scholar

    [2]

    Gamble F R, DiSalvo F J, Klemm R A, Geballe T H 1970 Science 168 568Google Scholar

    [3]

    Morris R C, Coleman R V, Bhandari R 1972 Phys. Rev. B 5 895Google Scholar

    [4]

    Guillamón I, Suderow H, Rodrigo J G, Vieira S, Rodiere P, Cario L, Navarro-Moratalla E, Martí-Gastaldo C, Coronado E 2011 New J. Phys. 13 103020Google Scholar

    [5]

    Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734Google Scholar

    [6]

    Wilson J A, Di Salvo F J, Mahajan S 1974 Phys. Rev. Lett. 32 882Google Scholar

    [7]

    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar

    [8]

    Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N, Zhang X X 2017 Nat. Commun. 8 1Google Scholar

    [9]

    Deng K, Wan G L, Deng P, et al. 2016 Nat. Phys. 12 1105Google Scholar

    [10]

    Freitas D C, Rodière P, Osorio M R, et al. 2016 Phys. Rev. B 93 184512Google Scholar

    [11]

    Malliakas C D, Kanatzidis M G 2013 J. Am. Chem. Soc. 135 1719Google Scholar

    [12]

    Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [13]

    Wu S F, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 359 76Google Scholar

    [14]

    Pell M A, Ibers J A 1997 Chem. Ber. 130 1Google Scholar

    [15]

    Mitchell K, Ibers J A 2002 Chem. Rev. 102 1929Google Scholar

    [16]

    Zhang Q, Li G, Rhodes D, Kiswandhi A, Besara T, Zeng B, Sun J, Siegrist T, Johannes M D, Balicas L 2013 Sci. Rep. 3 1Google Scholar

    [17]

    Lu Y F, Takayama T, Bangura A F, Katsura Y, Hashizume D, Takagi H 2014 J. Phys. Soc. Jpn. 83 023702Google Scholar

    [18]

    Khim S, Lee B, Choi K Y, Jeon B G, Jang D H, Patil D, Patil S, Kim R, Choi E S, Lee S, Yu J, Kim K H 2013 New J. Phys. 15 123031Google Scholar

    [19]

    Niu C Q, Yang J H, Li Y K, Chen B, Zhou N, Chen J, Jiang L L, Chen B, Yang X X, Cao C, Dai J H, Xu X F 2013 Phys. Rev. B 88 104507Google Scholar

    [20]

    Zhang Q R, Rhodes D, Zeng B, Besara T, Siegrist T, Johannes M D, Balicas L 2013 Phys. Rev. B 88 024508Google Scholar

    [21]

    Yu H Y, Zuo M, Zhang L, Tan S, Zhang C J, Zhang Y H 2013 J. Am. Chem. Soc. 135 12987Google Scholar

    [22]

    Jiao W H, Tang Z T, Sun Y L, Liu Y, Tao Q, Feng C M, Zeng Y W, Xu Z A, Cao G H 2014 J. Am. Chem. Soc. 136 1284Google Scholar

    [23]

    Jiao W H, He L P, Liu Y, Xu X F, Li Y K, Zhang C H, Zhou N, Xu Z A, Li S Y, Cao G H 2016 Sci. Rep. 6 1Google Scholar

    [24]

    Jiao W H, Xie X M, Liu Y, Xu X F, Li B, Xu C Q, Liu J Y, Zhou W, Li Y K, Yang H Y, Jiang S, Luo Y K, Zhu Z W, Cao G H 2020 Phys. Rev. B 102 075141Google Scholar

    [25]

    Jiao W H, Xiao S Z, Li B, Xu C Q, Xie X M, Qiu H Q, Xu X F, Liu Y, Song S J, Zhou W, Zhai H F, Ke X, He S L, Cao G H 2021 Phys. Rev. B 103 125150Google Scholar

    [26]

    Xu C Q, Liu Y, Cai P G, Li B, Jiao W H, Li Y L, Zhang J Y, Zhou W, Qian B, Jiang X F, Shi Z X, Sankar R, Zhang J L, Yang F, Zhu Z W, Biswas P, Qian D, Ke X L, Xu X F 2020 The J. Phys. Chem. Lett. 11 7782Google Scholar

    [27]

    Elwell D, Scheel H J, Kaldis E 1976 J. Electrochem. Soc. 123 319CGoogle Scholar

    [28]

    Binnewies M, Glaum R, Schmidt M, Schmidt P 2013 Z. Anorg. All. Chem. 639 219Google Scholar

    [29]

    Mar A, Ibers J A 1991 J. Chem. Soc. Dalton Trans. 639

    [30]

    Liimatta E W, Ibers J A 1989 J. Solid State Chem. 78 7

    [31]

    Tremel W 1993 Angew. Chem. Int. Ed. 32 1752

    [32]

    Zhao X M, Zhang K, Cao Z Y, Zhao Z W, Struzhkin V V, Goncharov A F, Wang H K, Gavriliuk A G, Mao H K, Chen X J 2020 Phys. Rev. B 101 134506Google Scholar

    [33]

    Wang X G, Geng D Y, Yan D Y, et al. 2021 Phys. Rev. B 104 L241408Google Scholar

    [34]

    Higashihara N, Okamoto Y, Yoshikawa Y, Yamakawa Y, Takatsu H, Kageyama H, Takenaka K 2021 J. Phys. Soc. Jpn. 90 063705Google Scholar

    [35]

    Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Lv Y Y, Li J, Yan J Q, Mandrus D G, Cheng J G 2018 Phys. Rev. X 8 021055Google Scholar

    [36]

    Kumar N, Guin S N, Manna K, Shekhar C, Felser C 2021 Chem. Rev. 121 2780Google Scholar

    [37]

    Yoo Y, DeGregorio Z P, Su Y, Koester S J, Johns J E 2017 Adv. Mater. 29 1605461Google Scholar

    [38]

    Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349 625Google Scholar

    [39]

    Kim H, Johns J E, Yoo Y 2020 Small 16 2002849Google Scholar

    [40]

    Brown B E 1966 Acta Crystallogr. 20 264Google Scholar

  • 图 1  晶体生长法略图和生长出的单晶照片 (a)助熔剂法; (b)化学气相输运法; (c) Ta4Pd3Te16; (d) Ta3Pd3Te14; (e) TaPdTe5; (f) Ta2Pd3Te5

    Figure 1.  Schematic diagrams of the employed methods of crystal growth and the photographs of the as-grown crystals: (a) Flux method; (b)CVT method; (c) Ta4Pd3Te16; (d) Ta3Pd3Te14; (e) TaPdTe5; (f) Ta2Pd3Te5.

    图 2  (a)三元钯基碲化物单晶的X射线衍射图谱; (b)沿链方向的单个原子层投影图

    Figure 2.  (a) XRD patterns and (b)projection view of one atomic layers of the corresponding ternary Pd-based tellurides.

    图 3  三元钯基碲化物晶体沿链方向的电阻率-温度关系图 (a) Ta4Pd3Te16; (b) Ta3Pd3Te14; (c) TaPdTe5; (d) Ta2Pd3Te5

    Figure 3.  Temperature dependence of the electronic resistivity along the chain direction for ternary Pd-based tellurides: (a) Ta4Pd3Te16; (b) Ta3Pd3Te14; (c) TaPdTe5; (d) Ta2Pd3Te5.

    图 4  自助熔剂法生长三元钯基碲化物单晶的(a)配料摩尔比和(b)温度设定程序

    Figure 4.  (a) The Molar ratio and (b) temperature setting procedures employed in growing the single crystals of ternary Pd-based tellurides by self-flux method.

    图 5  以摩尔比Ta∶Pd∶Te = 2∶4.5∶7.5配料和图4(b)红线所示温度程序运行后晶体的EDS谱图, 插图为显微镜下的晶体照片

    Figure 5.  EDS spectrum of the single crystal grown with nominal molar ratio Ta∶Pd∶Te = 2∶4.5∶7.5 and heating procedure as shown by the red line plotted in Fig. 4(b). The inset shows the photograph of the as-grown crystals.

    表 1  四种单晶样品的元素组成

    Table 1.  Element composition of the four kinds of single crystals.

    SampleTa content/%Pd content/%Te content/%
    Ta4Pd3Te1616.4011.9771.63
    Ta3Pd3Te1414.2913.6772.04
    TaPdTe512.5212.1775.31
    Ta2Pd3Te519.5731.5148.92
    DownLoad: CSV

    表 2  三元Pd基碲化物的晶体参数

    Table 2.  Crystal parameters of ternary Pd-based tellurides.

    CompoundSpace groupabcβ/(°)IS/Å
    (Calculated)
    IS/Å (XRD)Ref.
    Ta4Pd3Te16I2/m17.687(4)3.735(1)19.510(4)110.42(1)6.503(5)6.529(6)[29]
    Ta3Pd3Te14P21/m14.088(2)3.737(3)20.560(2)103.73(5)6.397(1)6.418(8)[30]
    TaPdTe5Cmcm3.693(4)13.274(0)15.602(0)6.637(0)6.629(8)[24]
    Ta2Pd3Te5Cmcm13.989(3)3.713(1)18.630(4)6.994(7)6.975(9)[31]
    DownLoad: CSV
  • [1]

    Revolinsky E, Spiering G A, Beerntsen D J 1965 J. Phys. Chem. Solids 26 1029Google Scholar

    [2]

    Gamble F R, DiSalvo F J, Klemm R A, Geballe T H 1970 Science 168 568Google Scholar

    [3]

    Morris R C, Coleman R V, Bhandari R 1972 Phys. Rev. B 5 895Google Scholar

    [4]

    Guillamón I, Suderow H, Rodrigo J G, Vieira S, Rodiere P, Cario L, Navarro-Moratalla E, Martí-Gastaldo C, Coronado E 2011 New J. Phys. 13 103020Google Scholar

    [5]

    Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734Google Scholar

    [6]

    Wilson J A, Di Salvo F J, Mahajan S 1974 Phys. Rev. Lett. 32 882Google Scholar

    [7]

    Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P, Cava R J 2014 Nature 514 205Google Scholar

    [8]

    Li P, Wen Y, He X, Zhang Q, Xia C, Yu Z M, Yang S A, Zhu Z, Alshareef H N, Zhang X X 2017 Nat. Commun. 8 1Google Scholar

    [9]

    Deng K, Wan G L, Deng P, et al. 2016 Nat. Phys. 12 1105Google Scholar

    [10]

    Freitas D C, Rodière P, Osorio M R, et al. 2016 Phys. Rev. B 93 184512Google Scholar

    [11]

    Malliakas C D, Kanatzidis M G 2013 J. Am. Chem. Soc. 135 1719Google Scholar

    [12]

    Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [13]

    Wu S F, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Jarillo-Herrero P 2018 Science 359 76Google Scholar

    [14]

    Pell M A, Ibers J A 1997 Chem. Ber. 130 1Google Scholar

    [15]

    Mitchell K, Ibers J A 2002 Chem. Rev. 102 1929Google Scholar

    [16]

    Zhang Q, Li G, Rhodes D, Kiswandhi A, Besara T, Zeng B, Sun J, Siegrist T, Johannes M D, Balicas L 2013 Sci. Rep. 3 1Google Scholar

    [17]

    Lu Y F, Takayama T, Bangura A F, Katsura Y, Hashizume D, Takagi H 2014 J. Phys. Soc. Jpn. 83 023702Google Scholar

    [18]

    Khim S, Lee B, Choi K Y, Jeon B G, Jang D H, Patil D, Patil S, Kim R, Choi E S, Lee S, Yu J, Kim K H 2013 New J. Phys. 15 123031Google Scholar

    [19]

    Niu C Q, Yang J H, Li Y K, Chen B, Zhou N, Chen J, Jiang L L, Chen B, Yang X X, Cao C, Dai J H, Xu X F 2013 Phys. Rev. B 88 104507Google Scholar

    [20]

    Zhang Q R, Rhodes D, Zeng B, Besara T, Siegrist T, Johannes M D, Balicas L 2013 Phys. Rev. B 88 024508Google Scholar

    [21]

    Yu H Y, Zuo M, Zhang L, Tan S, Zhang C J, Zhang Y H 2013 J. Am. Chem. Soc. 135 12987Google Scholar

    [22]

    Jiao W H, Tang Z T, Sun Y L, Liu Y, Tao Q, Feng C M, Zeng Y W, Xu Z A, Cao G H 2014 J. Am. Chem. Soc. 136 1284Google Scholar

    [23]

    Jiao W H, He L P, Liu Y, Xu X F, Li Y K, Zhang C H, Zhou N, Xu Z A, Li S Y, Cao G H 2016 Sci. Rep. 6 1Google Scholar

    [24]

    Jiao W H, Xie X M, Liu Y, Xu X F, Li B, Xu C Q, Liu J Y, Zhou W, Li Y K, Yang H Y, Jiang S, Luo Y K, Zhu Z W, Cao G H 2020 Phys. Rev. B 102 075141Google Scholar

    [25]

    Jiao W H, Xiao S Z, Li B, Xu C Q, Xie X M, Qiu H Q, Xu X F, Liu Y, Song S J, Zhou W, Zhai H F, Ke X, He S L, Cao G H 2021 Phys. Rev. B 103 125150Google Scholar

    [26]

    Xu C Q, Liu Y, Cai P G, Li B, Jiao W H, Li Y L, Zhang J Y, Zhou W, Qian B, Jiang X F, Shi Z X, Sankar R, Zhang J L, Yang F, Zhu Z W, Biswas P, Qian D, Ke X L, Xu X F 2020 The J. Phys. Chem. Lett. 11 7782Google Scholar

    [27]

    Elwell D, Scheel H J, Kaldis E 1976 J. Electrochem. Soc. 123 319CGoogle Scholar

    [28]

    Binnewies M, Glaum R, Schmidt M, Schmidt P 2013 Z. Anorg. All. Chem. 639 219Google Scholar

    [29]

    Mar A, Ibers J A 1991 J. Chem. Soc. Dalton Trans. 639

    [30]

    Liimatta E W, Ibers J A 1989 J. Solid State Chem. 78 7

    [31]

    Tremel W 1993 Angew. Chem. Int. Ed. 32 1752

    [32]

    Zhao X M, Zhang K, Cao Z Y, Zhao Z W, Struzhkin V V, Goncharov A F, Wang H K, Gavriliuk A G, Mao H K, Chen X J 2020 Phys. Rev. B 101 134506Google Scholar

    [33]

    Wang X G, Geng D Y, Yan D Y, et al. 2021 Phys. Rev. B 104 L241408Google Scholar

    [34]

    Higashihara N, Okamoto Y, Yoshikawa Y, Yamakawa Y, Takatsu H, Kageyama H, Takenaka K 2021 J. Phys. Soc. Jpn. 90 063705Google Scholar

    [35]

    Shahi P, Singh D J, Sun J P, Zhao L X, Chen G F, Lv Y Y, Li J, Yan J Q, Mandrus D G, Cheng J G 2018 Phys. Rev. X 8 021055Google Scholar

    [36]

    Kumar N, Guin S N, Manna K, Shekhar C, Felser C 2021 Chem. Rev. 121 2780Google Scholar

    [37]

    Yoo Y, DeGregorio Z P, Su Y, Koester S J, Johns J E 2017 Adv. Mater. 29 1605461Google Scholar

    [38]

    Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349 625Google Scholar

    [39]

    Kim H, Johns J E, Yoo Y 2020 Small 16 2002849Google Scholar

    [40]

    Brown B E 1966 Acta Crystallogr. 20 264Google Scholar

  • [1] Niu Jia-Lin, Dong Si-Yuan, Wei Yong-Xing, Jin Chang-Qing, Nan Rui-Hua, Yang Bin. Phase transition characteristics, electrical and optical properties of AgNbO3 crystals grown by flux method. Acta Physica Sinica, 2024, 73(3): 038101. doi: 10.7498/aps.73.20230984
    [2] Dong Xiao-Li, Jin Kui, Yuan Jie, Zhou Fang, Zhang Guang-Ming, Zhao Zhong-Xian. New progress of FeSe-based superconducting single crystals and films: Spin nematicity, electronic phase separation, and high critical parameters. Acta Physica Sinica, 2018, 67(20): 207410. doi: 10.7498/aps.67.20181638
    [3] Mu Gang, Ma Yong-Hui. Single crystal growth and physical property study of 1111-type Fe-based superconducting system CaFeAsF. Acta Physica Sinica, 2018, 67(17): 177401. doi: 10.7498/aps.67.20181371
    [4] Yu Jia, Liu Tong, Zhao Kang, Pan Bo-Jin, Mu Qing-Ge, Ruan Bin-Bin, Ren Zhi-An. Single crystal growth and characterization of the 112-type iron-pnictide EuFeAs2. Acta Physica Sinica, 2018, 67(20): 207403. doi: 10.7498/aps.67.20181393
    [5] Yi Chang-Jiang, Wang Le, Feng Zi-Li, Yang Meng, Yan Da-Yu, Wang Cui-Xiang, Shi You-Guo. Research progress of single crystal growth for topological semimetals. Acta Physica Sinica, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [6] Yin Jian, Chen Shao-Hua, Wen Cheng-Wei, Xia Li-Dong, Li Hai-Rong, Huang Xin, Yu Ming-Ming, Liang Jian-Hua, Peng Shu-Ming. Crystallization behaviors of deuterium in glass microsphere. Acta Physica Sinica, 2015, 64(1): 015202. doi: 10.7498/aps.64.015202
    [7] Zhu Shun-Ming, Gu Ran, Huang Shi-Min, Yao Zheng-Grong, Zhang Yang, Chen Bin, Mao Hao-Yuan, Gu Shu-Lin, Ye Jian-Dong, Zheng You-Dou. Influence and mechanism of H2 in the epitaxial growth of ZnO using metal-organic chemical vapor deposition method. Acta Physica Sinica, 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [8] Wu Liang-Liang, Zhao De-Gang, Li Liang, Le Ling-Cong, Chen Ping, Liu Zong-Shun, Jiang De-Sheng. Influence of growth conditions on the lateral grain size of AlN film grown by metal-organic chemical vapor deposition. Acta Physica Sinica, 2013, 62(8): 086102. doi: 10.7498/aps.62.086102
    [9] Yang Fan, Ma Jin, Kong Ling-Yi, Luan Cai-Na, Zhu Zhen. Structural, optical and electrical properties of Ga2(1-x)In2xO3 films prepared by metalorganic chemical vapor deposition. Acta Physica Sinica, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [10] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [11] Zeng Chun-Lai, Tang Dong-Sheng, Liu Xing-Hui, Hai Kuo, Yang Yi, Yuan Hua-Jun, Xie Si-Shen. Controllable preparation of SnO2 one-dimensional nanostructures by chemical vapor deposition. Acta Physica Sinica, 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [12] ZHAO LI-ZHU, SHEN MENG-YAN, T. GOTO. GROWING N-SALICYLIDENEANILINE (SA) SINGLE CRYSTAL BY PHYSICAL VAPOUR DEPOSITATION AND ITS POLARIZATION PROPERTY. Acta Physica Sinica, 2001, 50(8): 1540-1544. doi: 10.7498/aps.50.1540
    [13] XU ZHENG, ZHAO XIAO-RU, WU WEN-BIN, SUN XUE-FENG, ZHOU GUI-EN, LI XIAO-GUANG, ZHANG YU-HENG. GROWTH CHARACTERISTICS OF Bi2Sr2CaCu2Oy SINGLE CRYSTALS USING SELF-FLUX. Acta Physica Sinica, 1996, 45(9): 1562-1569. doi: 10.7498/aps.45.1562
    [14] Yu Chao-Wen, He Pi-Mo, Xu Ya-Bo, Qi Zhong-Fu, Li Wen-Zhu. . Acta Physica Sinica, 1995, 44(3): 488-491. doi: 10.7498/aps.44.488
    [15] WANG YOU-WEN, XU YU-QIN, DING ZI-SHANG, YAO HONG-NIAN. WHIRLPOOL STRUCTURE IN THE PROCESSES OF MICROCRYSTAL GROWTH BY CVD METHODS. Acta Physica Sinica, 1992, 41(10): 1627-1631. doi: 10.7498/aps.41.1627
    [16] GE CHUAN-ZHEN, XU XIU-YING, FENG DUAN. DISLOCATIONS AND INCLUSIONS IN CZOCHRALSKI METHOD-GROWN YAG SINGLE CRYSTALS. Acta Physica Sinica, 1982, 31(3): 415-418. doi: 10.7498/aps.31.415
    [17] GE CHUAN-ZHEN, XU XIU-YING, FENG DUAN. THE NEEDLE-LIKE STRESS ZONES AND DISLOCATIONS DUE TO CONSTITUTIONAL SUPERCOOLING IN CZOCHRALSKI METHOD-GROWN YAG SINGLE CRYSTALS. Acta Physica Sinica, 1981, 30(2): 218-223. doi: 10.7498/aps.30.218
    [18] MING NAI-BEN, HONG JING-FEN, SUN ZHENG-MIN, YANG YONG-SHUN. ROTATIONAL STRIATIONS IN CZOCHRALSKI-GROWN LiNbO3 SINGLE CRYSTALS. Acta Physica Sinica, 1981, 30(12): 1672-1675. doi: 10.7498/aps.30.1672
    [19] LIU JI-ZHE, JIN TONG-ZHENG, LIU GONG-QIANG. FLUX GROWTH OF GGG CRYSTALS AND DETERMINATION OF THE NUCLEATION TEMPERATURE. Acta Physica Sinica, 1980, 29(1): 117-121. doi: 10.7498/aps.29.117
    [20] DENG ZHAO-DE, SHAO SHI-PING, LIANG HONG-LIN. DIELECTRIC AND PYROELETRIC PROPERTIES OF SINGLE CRYSTAL TGS GROWN BY THE METHOD OF CHANGING SOLVENT. Acta Physica Sinica, 1980, 29(3): 389-391. doi: 10.7498/aps.29.389
Metrics
  • Abstract views:  5018
  • PDF Downloads:  143
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2022
  • Accepted Date:  20 July 2022
  • Available Online:  04 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回