Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modified pressure of relativistic electrons in a superhigh magnetic field

Dong Ai-Jun Gao Zhi-Fu Yang Xiao-Feng Wang Na Liu Chang Peng Qiu-He

Citation:

Modified pressure of relativistic electrons in a superhigh magnetic field

Dong Ai-Jun, Gao Zhi-Fu, Yang Xiao-Feng, Wang Na, Liu Chang, Peng Qiu-He
PDF
HTML
Get Citation
  • Magnetar is a kind of pulsar powered by magnetic field energy. The study of magnetars is an important hotspot in the field of pulsars. In this paper, according to the work of Zhu Cui, et al. (Zhu C, Gao Z F, Li X D, Wang N, Yuan J P, Peng Q H 2016 Mod. Phys. Lett. A 31 1650070), we reinvestigate the Landau-level stability of electrons in a superhigh magnetic field (SMF), $B\gg B_{\rm cr}$(Bcr is a quantum critical magnetic field with a value of 4.414×1013 G), and its influence on the pressure of electrons in magnetar. First, we briefly review the pressure of electrons in neutron star (NS) with a weak-magnetic field limit ($ B\ll B $cr). Then, we introduce an electron Landau level stability coefficient gν and a Dirac-δ function to deduce a modified pressure formula for the degenerate and relativistic electrons in an SMF in an application range of matter density ρ ≥ 107 g·cm–3 and Bcr $ \ll $B < 1017 G. By modifying the phase space of relativistic electrons, the SMF can enhance the electron number density ne, and reduce the maximum of electron Landau level number νmax, which results in a redistribution of electrons. As B increases, more and more electrons will occupy higher Landau levels, and the electron Landau level stability coefficient gν will decrease with the augment of Landau energy-level number ν. By modifying the phase space of relativistic electrons, the electron number density ne increases with the MF strength increasing, leading the electron pressure Pe to increase. Utilizing the modified expression of electron pressure, we discuss the phenomena of Fermion spin polarization and electron magnetization in the SMF, and the modification of the equation of state by the SMF. We calculate the baryon number density, magnetization pressure, and the difference between pressures in the direction parallel to and perpendicular to the magnetic field in the frame of the relativistic mean field model. Moreover, we find that the pressure anisotropy due to the strong magnetic field is very small and can be ignored in the present model. We compare our results with the results from other similar studies, and examine their similarities and dissimilarities. The similarities include 1) the abnormal magnetic moments of electrons and the interaction between them are ignored; 2) the electron pressure relate to magnetic field intensity B, electron number density ne and electron Fermi energy $E_{{\rm{F}}}^{{\rm{e}}}$, and the latter two are complex functions containing B; 3) with ne and $E_{{\rm{F}}}^{{\rm{e}}}$ fixed, Pe increases with B rising; 4) as B increases, the pressure-density curves fitted by the results from other similar studies have irregular protrusions or fluctuations, which are caused by the transformation of electron energy state from partial filling to complete filling at the ν-level or the transition of electrons from the ν to the (ν+1)-level. This phenomenon is believed to relate to the behavior of electrons near the Fermi surface in a strong magnetic field, which essentially reflects the Landau level instability. Finally, the future research direction is prospected. The present results provide a reference for future studies of the equation of state and emission mechanism of high-B pulsar, magnetar and strongly magnetized white dwarf.
      Corresponding author: Gao Zhi-Fu, zhifugao@xao.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12041304, U1831120), the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2022D01A155), the Natural Science Foundation of Guizhou, China (Grant Nos. [2019]1241, KY(2020)003), and the High Level Talent Program support project of Chinese Academy of Sciences, China (Grant No. [2019]085).
    [1]

    Duncan R C, Thompson C 1992 Astrophys. J. 392 L9Google Scholar

    [2]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [3]

    Gao Z F, Wang N, Shan H, Li, X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [4]

    Kaspi V M, Beloborodov A M 2017 Ann. Rev. Astron. Astrophys. 55 261Google Scholar

    [5]

    Shen J, Wang Y, Zhou T, Ji H 2017 Astrophys. J. 835 43Google Scholar

    [6]

    Shen J, Ji H, Su Y 2022 Res. Astron. Astrophys. 22 015019Google Scholar

    [7]

    Mereghetti S, Pons J A, Melatos A 2015 Space Sci. Rev. 191 315Google Scholar

    [8]

    Zhao X F 2019 Int. J. Theor. Phys. 58 1060Google Scholar

    [9]

    Zhao X F 2019 Astrophys. Space Sci. 364 38Google Scholar

    [10]

    Zhao X F 2020 Chin. J. Phys. 3 240Google Scholar

    [11]

    Rabhi A, Pérez-García M A, Providéncia C, Vidaña I 2015 Phys. Rev. C 91 045803Google Scholar

    [12]

    Chatterjee D, Elghozi T, Novak J, Oertel M 2015 Mon. Not. R. Astron. Soc. 447 3785Google Scholar

    [13]

    Shen J, Zhou T, Ji H, Wiegelmann T, Inhester B, Feng L 2014 Astrophys. J. 791 83Google Scholar

    [14]

    Farooq F, Nabi J U, Shehzadi R 2021 Astrophys. Space Sci. 366 86Google Scholar

    [15]

    Liu J J, Liu D M 2018 Eur. Phys. J. C 78 84Google Scholar

    [16]

    Liu J J, Gu W M 2016 Astrophys. J. Suppl. Ser. 224 29Google Scholar

    [17]

    Liu J J, Liu D M 2020 Astron. Nachr. 341 291Google Scholar

    [18]

    Liu J J, Liu D M 2018 Res. Astron. Astrophys. 18 8Google Scholar

    [19]

    Liu J J, Liu D M 2021 Publ. Astron. Soc. Pac. 133 4201Google Scholar

    [20]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett A 28 1350138Google Scholar

    [21]

    Zhu C, Gao Z F, Li X D, Wang N, Yuan J P, Peng Q H 2016 Mod. Phys. Lett A 31 1650070Google Scholar

    [22]

    Kubo R 1965 Statistical Mechanics (Amsterdam: North-Holland Publ. Co.) pp278–280

    [23]

    Peng Q H, Zhang J, Chou C K 2016 EPJ Web. Conf. 10 907003Google Scholar

    [24]

    Li X H, Gao Z F, Li X D, Xu Y, Wang P, WangN, Peng Q H 2016 Int. J. Mod. Phys. D 25 165000Google Scholar

    [25]

    Lai D, Shapiro S L 1991 Astrophys. J. Lett. 383 745Google Scholar

    [26]

    Haensel P, Potekhin A Y, Yakovlev D G 2007 Neutron Stars 1: Equation of state and structure (Berlin: Springer) p326

    [27]

    Das U, Mukhopadhyay B 2012 Phys. Rev. D 86 042001Google Scholar

    [28]

    Chatterjee D, Fantina A F, Chamel N, Novak J, Oertel M 2017 Mon. Not. R. Astron. Soc. 469 95Google Scholar

    [29]

    Nandi R, Bandyopadhyay D 2013 J. Phy. Conf. Ser. 420 012144Google Scholar

    [30]

    Das U, Mukhopadhyay B 2015 J. Cosmol. Astropart. Phys. 05 045Google Scholar

    [31]

    Bera P, Bhattacharya D 2014 Mon. Not. R. Astron. Soc. 445 3951Google Scholar

    [32]

    Dong J M, Lombardo U, Zhang H F, Zuo W 2016 Astrophys. J. 817 6Google Scholar

    [33]

    Dong J M, Shang X L 2020 Phys. Rev. C 101 014305Google Scholar

    [34]

    Dong J M 2021 Mon. Not. R. Astron. Soc. 500 1505Google Scholar

    [35]

    Bordbar G H, Karami, M K 2022 Eur. Phys. J. C 82 74Google Scholar

    [36]

    Herrera L 2020 Phys. Rev. D 101 104024Google Scholar

    [37]

    Shulman G A 1991 Sov. Phys. Astron. 35 50

    [38]

    Mandal S, Chakrabarty S 2002 arXiv: astro-ph/0209015

    [39]

    Huang Z P, Yan Z, Shen Z Q, Tong H, Lin L, Yuan J P, Liu J, Zhao R S, Ge M Y, Wang R, 2021 Mon. Not. R. Astron. Soc. 505 1311Google Scholar

    [40]

    高志福 2007 硕士学位论文 (乌鲁木齐: 新疆大学)

    Gao Z F 2007 M. S. Thesis (Urumqi: Xinjiang University) (in Chinese)

    [41]

    王兆军, 吕国梁, 朱春花, 张军 2011 物理学报 60 049702Google Scholar

    Wang Z J, Lü G L, Zhu C H, Zhang J 2011 Acta Phys. Sin. 60 049702Google Scholar

    [42]

    Geng L, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [43]

    Singh D, Saxena G 2012 Int. J. Mod. Phys. E 21 1250076Google Scholar

    [44]

    赵诗艺, 刘承志, 黄修林, 王夷博, 许妍 2021 物理学报 70 222601Google Scholar

    Zhao S Y, Liu C Z, Huang X L, Wang Y B, Xu Y 2021 Acta Phys. Sin. 70 222601Google Scholar

    [45]

    Gao Z F, Shan H, Wang W, Wang N 2017 Astron. Nachr. 338 1066Google Scholar

    [46]

    Wei F X, Mao G J, Ko C M, Kisslinger L S, Stöcker H, Greiner W 2006 J. Phys. G: Nucl. Part. 32 47Google Scholar

    [47]

    Ángeles Pérez-García M, Providência C, Rabhi A 2011 Phys. Rev. C 84 045803Google Scholar

    [48]

    Dong J M, Zuo W, Gu J 2013 Phys. Rev. C 87 103010Google Scholar

    [49]

    Bandyopadhyay D, Chakrabarty S, Pal S 1997 Phys. Rev. L 79 2176Google Scholar

    [50]

    朗道 著 (周奇 译) 1963 连续媒介电动力学 (北京: 人民教育出版社) 第179—182页

    Landau L D, Lifshitz E M, Pitaevskii L P (translated by Zhou Q) 1963 Electrodynamics of Continuous Media (Beijing: People’s Education Press) pp179–182 (in Chinese)

    [51]

    Tolman R C 1939 Phys. Rev. 55 364Google Scholar

    [52]

    Demorest P B, Pennucci T, Ransom S M, Roberts M S E, Hessels J W T 2016 Nature 4 67Google Scholar

    [53]

    Peng Q H, Tong H 2007 Mon. Not. R. Astron. Soc. 378 159Google Scholar

    [54]

    Fang R H, Dong R D, Hou D F, Sun B D 2021 Chin. Phys. Lett. 38 091201Google Scholar

    [55]

    Yuen R, Melrose D B, Samsuddin M A, Tu Z Y, Han X H 2016 Mon. Not. R. Astron. Soc. 459 603Google Scholar

    [56]

    Yuen R 2019 Mon. Not. R. Astron. Soc. 486 2011Google Scholar

    [57]

    Han X H, Yuen R 2021 Res. Astron. Astrophys. 21 228Google Scholar

    [58]

    Cheng Q, Zhang S N, Yu Y W, Zheng X P 2018 Phys. Rev. D 97 103012Google Scholar

    [59]

    Antoniadis J, Freire P C C, Wex N, Tauris T M, Lynch R S, van Kerkwijk M H, Kramer M, Bassa C, Dhillon V S, Driebe T, Hessels J W T, Kaspi V M, Kondratiev V I, Langer N, Marsh T R, McLaughlin M A, Pennucci T T, Ransom S M, Stairs I H, van Leeuwen J, Verbiest J P W, Whelan D G 2013 Science 340 448Google Scholar

  • 图 1  中子星内部弱磁场极限下相对论电子压强Pe随电子数密度ne的变化

    Figure 1.  Relativistic electron pressure Pe with electron number density ne in the limit of weak magnetic field inside a neutron star.

    图 2  不同磁场下中子星内部电子压强Pe随物质密度ρ的变化

    Figure 2.  Relation between electron pressure Pe and matter density ρ in neutron stars with different magnetic fields.

    图 3  本文与其他强磁场中电子数密度和电子压强研究的对比 (a)强磁化白矮星中电子压强Peρ变化关系; (b)中子星壳层电子数密度neρ变化关系; (c)磁化白矮星中(最大电子费米能量EFmax = 20mec2)电子压强Peρ变化关系; (d) 两种不同的理论模型下白矮星中电子压强Peρ变化关系

    Figure 3.  Study of electron number density and electron pressure in strong magnetic fields by other authors and their comparison with this work: (a) Relationship between electron pressure Pe and ρ in a strongly magnetized white dwarf (WD); (b) relationship between the electron number density ne and ρ in the crust of a neutron star; (c) electron pressure Pe as a function of ρ in a magnetized WD with maximum electron Fermi energy EFmax = 20mec2; (d) electron pressure Pe as a function of ρ in a magnetized WD under two different theoretical models.

    图 4  中子星内部费米子完全极化场景下饱和磁场强度Bs随粒子数密度n的变化关系 (a) 质子/电子完全极化下Bs vs. ne/np; (b) 中子完全极化下Bs vs. nB (nB为重子数密度)

    Figure 4.  Relationship between the saturated magnetic field strength Bs and the particle number density n in a fully polarized neutron star fermion matter: (a) Bs vs. ne/np in a fully polarized scenario for proton/electron matter system; (b) Bs vs. nB in a fully polarized scenario for the neutron matter system (nB is the baryon number density).

    图 5  不同磁场下中子星内部相对论电子的磁化率χ与电子数密度ne的变化关系

    Figure 5.  Relation between the magnetic susceptibility χ and number density of relativistic electrons ne in neutron stars with different magnetic field strengths.

    图 6  中子星内部磁场B随物质密度ρ的变化关系

    Figure 6.  Relation of the magnetic field B and matter density ρ in a neutron star.

    表 1  在相对论平均场TMA参数模型下nN, $ E_{\text{F} }^{\text{e} } $, Pe, PM的部分计算值

    Table 1.  Partial calculations of nN, $ E_{\text{F} }^{\text{e} } $, Pe, P and M in a relativistic mean field model with the TMA parameter set.

    B$\ll $B *B > B *
    nN/fm–3$ E_{\text{F}}^{\text{e}} $/MeVPe/(MeV·fm–3)P/(MeV·fm–3)M/M$ E_{\text{F}}^{\text{e}} $/MeVPe/(MeV·fm–3)P/(MeV·fm–3)M/M
    0.00132.9244.9×10–103.78×10–60.02893.3518.41×10–103.79×10–60.0311
    0.021123.492.03×10–66.79×10–50.059327.622.88×10–67.36×10–50.0613
    0.077268.581.47×10–40.00210.051781.062.87×10–40.002580.0543
    0.1332107.899.04×10–40.01430.2904128.650.001820.01790.2932
    0.1554120.900.00140.02290.4201145.130.002950.07250.4241
    0.2003143.580.00280.04750.6884175.480.006320.08610.6965
    0.2338158.310.00420.07240.8808183.720.007620.09650.8912
    0.3206190.040.00870.16241.2945251.490.02670.21051.3062
    0.3556200.780.01080.20921.4236273.350.03720.27611.4327
    0.4186218.290.01510.30651.6071312.720.06370.42111.6223
    0.4746231.980.01930.40681.7263347.670.09740.58161.7412
    0.5446247.310.02490.54791.8312391.120.15610.82781.8522
    0.6076259.750.03040.68801.8947 429.700.22641.02721.9132
    0.6846273.650.03740.87371.9444456.800.29051.30921.9675
    0.7266280.730.04140.98091.9621480.230.35511.47821.9853
    0.8396298.230.05281.28451.9830526.730.51351.95212.0061
    0.9156318.400.06551.59251.9916586.650.74782.53162.0342
    DownLoad: CSV

    表 2  相对论平均场模型下nN, ρ, B, ne, |MB|, ΔPP// 的部分计算值, 这里选择TMA参数组和密度依赖的中子星强磁场模型

    Table 2.  Partial calculations of nN, ρ, B, ne, |MB|, ΔPP// in a relativistic mean field model. TMA parameter set and a density-dependent magnetic field model for a neutron star are selected.

    nN/fm–3ρ/(g·cm–3)B/Gne/cm–3|M|/G|MB|/(dyn·cm–2)ΔP/(dyn·cm–2)P///(dyn·cm–2)
    0.00132.535×10121.000×10141.051×10324.277×10114.277×10258.385×10261.196×1030
    0.02113.992×10131.003×10145.689×10342.841×10132.845×10273.641×10273.324×1031
    0.07221.014×10141.011×10141.418×10362.428×10142.485×10282.567×10288.147×1031
    0.13322.521×10141.073×10145.520×10366.049×10146.964×10287.055×10285.651×1031
    0.15542.940×10141.116×10147.781×10367.638×10149.508×10289.607×10282.509×1034
    0.20033.789×10141.247×10141.301×10371.089×10151.796×10291.708×10292.719×1034
    0.23384.423×10141.393×10141.744×10371.868×10152.604×10292.619×10293.049×1034
    0.32066.065×10142.011×10143.017×10375.406×10158.143×10298.175×10296.645×1034
    0.35566.727×10142.377×10143.563×10375.406×10151.285×10301.291×10308.716×1034
    0.41857.917×10143.237×10144.572×10377.676×10152.485×10302.493×10301.329×1035
    0.47468.978×10144.244×10144.580×10371.237×10165.203×10305.217×10301.836×1035
    0.54471.031×10155.860×10146.647×10372.249×10161.318×10311.321×10312.613×1035
    0.60761.145×10157.685×10147.704×10373.353×10162.577×10312.583×10313.243×1035
    0.68461.295×10151.042×10159.012×10375.225×10165.445×10315.453×10314.133×1035
    0.72651.375×10151.215×10159.725×10376.533×10167.932×10317.944×10314.675×1035
    0.83861.586×10151.763×10151.160×10381.109×10171.955×10321.958×10326.165×1035
    0.91561.774×10152.347×10151.342×10381.678×10173.938×10323.943×10327.996×1035
    DownLoad: CSV
  • [1]

    Duncan R C, Thompson C 1992 Astrophys. J. 392 L9Google Scholar

    [2]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [3]

    Gao Z F, Wang N, Shan H, Li, X D, Wang W 2017 Astrophys. J. 849 19Google Scholar

    [4]

    Kaspi V M, Beloborodov A M 2017 Ann. Rev. Astron. Astrophys. 55 261Google Scholar

    [5]

    Shen J, Wang Y, Zhou T, Ji H 2017 Astrophys. J. 835 43Google Scholar

    [6]

    Shen J, Ji H, Su Y 2022 Res. Astron. Astrophys. 22 015019Google Scholar

    [7]

    Mereghetti S, Pons J A, Melatos A 2015 Space Sci. Rev. 191 315Google Scholar

    [8]

    Zhao X F 2019 Int. J. Theor. Phys. 58 1060Google Scholar

    [9]

    Zhao X F 2019 Astrophys. Space Sci. 364 38Google Scholar

    [10]

    Zhao X F 2020 Chin. J. Phys. 3 240Google Scholar

    [11]

    Rabhi A, Pérez-García M A, Providéncia C, Vidaña I 2015 Phys. Rev. C 91 045803Google Scholar

    [12]

    Chatterjee D, Elghozi T, Novak J, Oertel M 2015 Mon. Not. R. Astron. Soc. 447 3785Google Scholar

    [13]

    Shen J, Zhou T, Ji H, Wiegelmann T, Inhester B, Feng L 2014 Astrophys. J. 791 83Google Scholar

    [14]

    Farooq F, Nabi J U, Shehzadi R 2021 Astrophys. Space Sci. 366 86Google Scholar

    [15]

    Liu J J, Liu D M 2018 Eur. Phys. J. C 78 84Google Scholar

    [16]

    Liu J J, Gu W M 2016 Astrophys. J. Suppl. Ser. 224 29Google Scholar

    [17]

    Liu J J, Liu D M 2020 Astron. Nachr. 341 291Google Scholar

    [18]

    Liu J J, Liu D M 2018 Res. Astron. Astrophys. 18 8Google Scholar

    [19]

    Liu J J, Liu D M 2021 Publ. Astron. Soc. Pac. 133 4201Google Scholar

    [20]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett A 28 1350138Google Scholar

    [21]

    Zhu C, Gao Z F, Li X D, Wang N, Yuan J P, Peng Q H 2016 Mod. Phys. Lett A 31 1650070Google Scholar

    [22]

    Kubo R 1965 Statistical Mechanics (Amsterdam: North-Holland Publ. Co.) pp278–280

    [23]

    Peng Q H, Zhang J, Chou C K 2016 EPJ Web. Conf. 10 907003Google Scholar

    [24]

    Li X H, Gao Z F, Li X D, Xu Y, Wang P, WangN, Peng Q H 2016 Int. J. Mod. Phys. D 25 165000Google Scholar

    [25]

    Lai D, Shapiro S L 1991 Astrophys. J. Lett. 383 745Google Scholar

    [26]

    Haensel P, Potekhin A Y, Yakovlev D G 2007 Neutron Stars 1: Equation of state and structure (Berlin: Springer) p326

    [27]

    Das U, Mukhopadhyay B 2012 Phys. Rev. D 86 042001Google Scholar

    [28]

    Chatterjee D, Fantina A F, Chamel N, Novak J, Oertel M 2017 Mon. Not. R. Astron. Soc. 469 95Google Scholar

    [29]

    Nandi R, Bandyopadhyay D 2013 J. Phy. Conf. Ser. 420 012144Google Scholar

    [30]

    Das U, Mukhopadhyay B 2015 J. Cosmol. Astropart. Phys. 05 045Google Scholar

    [31]

    Bera P, Bhattacharya D 2014 Mon. Not. R. Astron. Soc. 445 3951Google Scholar

    [32]

    Dong J M, Lombardo U, Zhang H F, Zuo W 2016 Astrophys. J. 817 6Google Scholar

    [33]

    Dong J M, Shang X L 2020 Phys. Rev. C 101 014305Google Scholar

    [34]

    Dong J M 2021 Mon. Not. R. Astron. Soc. 500 1505Google Scholar

    [35]

    Bordbar G H, Karami, M K 2022 Eur. Phys. J. C 82 74Google Scholar

    [36]

    Herrera L 2020 Phys. Rev. D 101 104024Google Scholar

    [37]

    Shulman G A 1991 Sov. Phys. Astron. 35 50

    [38]

    Mandal S, Chakrabarty S 2002 arXiv: astro-ph/0209015

    [39]

    Huang Z P, Yan Z, Shen Z Q, Tong H, Lin L, Yuan J P, Liu J, Zhao R S, Ge M Y, Wang R, 2021 Mon. Not. R. Astron. Soc. 505 1311Google Scholar

    [40]

    高志福 2007 硕士学位论文 (乌鲁木齐: 新疆大学)

    Gao Z F 2007 M. S. Thesis (Urumqi: Xinjiang University) (in Chinese)

    [41]

    王兆军, 吕国梁, 朱春花, 张军 2011 物理学报 60 049702Google Scholar

    Wang Z J, Lü G L, Zhu C H, Zhang J 2011 Acta Phys. Sin. 60 049702Google Scholar

    [42]

    Geng L, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [43]

    Singh D, Saxena G 2012 Int. J. Mod. Phys. E 21 1250076Google Scholar

    [44]

    赵诗艺, 刘承志, 黄修林, 王夷博, 许妍 2021 物理学报 70 222601Google Scholar

    Zhao S Y, Liu C Z, Huang X L, Wang Y B, Xu Y 2021 Acta Phys. Sin. 70 222601Google Scholar

    [45]

    Gao Z F, Shan H, Wang W, Wang N 2017 Astron. Nachr. 338 1066Google Scholar

    [46]

    Wei F X, Mao G J, Ko C M, Kisslinger L S, Stöcker H, Greiner W 2006 J. Phys. G: Nucl. Part. 32 47Google Scholar

    [47]

    Ángeles Pérez-García M, Providência C, Rabhi A 2011 Phys. Rev. C 84 045803Google Scholar

    [48]

    Dong J M, Zuo W, Gu J 2013 Phys. Rev. C 87 103010Google Scholar

    [49]

    Bandyopadhyay D, Chakrabarty S, Pal S 1997 Phys. Rev. L 79 2176Google Scholar

    [50]

    朗道 著 (周奇 译) 1963 连续媒介电动力学 (北京: 人民教育出版社) 第179—182页

    Landau L D, Lifshitz E M, Pitaevskii L P (translated by Zhou Q) 1963 Electrodynamics of Continuous Media (Beijing: People’s Education Press) pp179–182 (in Chinese)

    [51]

    Tolman R C 1939 Phys. Rev. 55 364Google Scholar

    [52]

    Demorest P B, Pennucci T, Ransom S M, Roberts M S E, Hessels J W T 2016 Nature 4 67Google Scholar

    [53]

    Peng Q H, Tong H 2007 Mon. Not. R. Astron. Soc. 378 159Google Scholar

    [54]

    Fang R H, Dong R D, Hou D F, Sun B D 2021 Chin. Phys. Lett. 38 091201Google Scholar

    [55]

    Yuen R, Melrose D B, Samsuddin M A, Tu Z Y, Han X H 2016 Mon. Not. R. Astron. Soc. 459 603Google Scholar

    [56]

    Yuen R 2019 Mon. Not. R. Astron. Soc. 486 2011Google Scholar

    [57]

    Han X H, Yuen R 2021 Res. Astron. Astrophys. 21 228Google Scholar

    [58]

    Cheng Q, Zhang S N, Yu Y W, Zheng X P 2018 Phys. Rev. D 97 103012Google Scholar

    [59]

    Antoniadis J, Freire P C C, Wex N, Tauris T M, Lynch R S, van Kerkwijk M H, Kramer M, Bassa C, Dhillon V S, Driebe T, Hessels J W T, Kaspi V M, Kondratiev V I, Langer N, Marsh T R, McLaughlin M A, Pennucci T T, Ransom S M, Stairs I H, van Leeuwen J, Verbiest J P W, Whelan D G 2013 Science 340 448Google Scholar

  • [1] Xie Xiao-Jie, Sun Jun-Song, Qin Ji-Hong, Guo Huai-Ming. Pseudo-Landau levels of hexagonal lattice quantum antiferromagnets under bending strain. Acta Physica Sinica, 2024, 73(2): 020202. doi: 10.7498/aps.73.20231231
    [2] Chu Peng-Cheng, Liu He, Du Xian-Bin. Quark matter and quark star in color-flavor-locked phase. Acta Physica Sinica, 2024, 73(5): 052101. doi: 10.7498/aps.73.20231649
    [3] Yang Yu-Ting, Qian Xin-Yue, Shi Li-Wei. Manipulation of electromagnetic waves induced by pseudomagnetic fields in two dimensional photonic crystals. Acta Physica Sinica, 2023, 72(13): 134203. doi: 10.7498/aps.72.20222242
    [4] Wang Yi-Nong, Chu Peng-Cheng, Jiang Yao-Yao, Pang Xiao-Di, Wang Sheng-Bo, Li Pei-Xin. Proto-magnetars within quasiparticle model. Acta Physica Sinica, 2022, 71(22): 222101. doi: 10.7498/aps.71.20220795
    [5] Chen Jian-Ling, Wang Hui, Jia Huan-Yu, Ma Zi-Wei, Li Yong-Hong, Tan Jun. Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar. Acta Physica Sinica, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [6] Lu Ya-Xin, Ma Ning. The coupled electromagnetic field effects on quantum magnetic oscillations of graphene. Acta Physica Sinica, 2016, 65(2): 027502. doi: 10.7498/aps.65.027502
    [7] Song Dong-Ling, Ming Liang, Shan Hao, Liao Tian-He. Landau-level stability of electrons in superstrong magnetic fields and its influences on electron Fermi energy. Acta Physica Sinica, 2016, 65(2): 027102. doi: 10.7498/aps.65.027102
    [8] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [9] Ji Qing-Shan, Hao Hong-Yan, Zhang Cun-Xi, Wang Rui. Electric field controlled energy gap and Landau levels in silicene. Acta Physica Sinica, 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [10] Gu Zhuo-Wei, Luo Hao, Zhang Heng-Di, Zhao Shi-Cao, Tang Xiao-Song, Tong Yan-Jin, Song Zhen-Fei, Zhao Jian-Heng, Sun Cheng-Wei. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion. Acta Physica Sinica, 2013, 62(17): 170701. doi: 10.7498/aps.62.170701
    [11] Yao Zhi-Dong, Li Wei, Gao Xian-Long. Electronic properties on the point vacancy of armchair edged graphene quantum dots. Acta Physica Sinica, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [12] Yang Xiao-Kuo, Cai Li, Kang Qiang, Li Zheng-Cao, Chen Xiang-Ye, Zhao Xiao-Hui. Theoretical study and experimentation of magnetic quantum-dot cellular automata corner structure. Acta Physica Sinica, 2012, 61(9): 097503. doi: 10.7498/aps.61.097503
    [13] Wang Zhao-Jun, Zhu Chun-Hua, Huo Wen-Sheng. Magnetization of degenerate and relativistic electron gas. Acta Physica Sinica, 2012, 61(17): 179701. doi: 10.7498/aps.61.179701
    [14] Yan Jun, Zeng Si-Liang, Zou Shi-Yang, Ni Fei-Fei, He Jian-Feng. Calculations of low-lying states of hydrogen atom in strong magnetic field by generalized pseudospectral method. Acta Physica Sinica, 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [15] Lv Guo-Liang, Wang Zhao-Jun, Zhang Jun, Zhu Chun-Hua. Critical magnetization of degenerate electronic system in neutron star. Acta Physica Sinica, 2011, 60(4): 049702. doi: 10.7498/aps.60.049702
    [16] Liu Jing-Jing. Effect of superstrong magnetic field on neutrino energy loss of the nuclide 56Fe, 56Co, 56Ni, 56Mn and 56Cr by electron capture in the crust of neutron stars. Acta Physica Sinica, 2010, 59(7): 5169-5174. doi: 10.7498/aps.59.5169
    [17] Wang Guan-Fang, Liu Bin, Fu Li-Bin, Zhao Hong. Adiabatic Landau-Zener tunnelling in nonlinear three-level system. Acta Physica Sinica, 2007, 56(7): 3733-3738. doi: 10.7498/aps.56.3733
    [18] Zhang Yue-Pin, Wang Xian-Ying, Lin Geng-Qi, Li Zhen, Li Zuo-Yi, Shen De-Fang, Gan Fu-Xi. Investigation of magnetization change in GdFeCo/DyFeCo exchange-coupled films. Acta Physica Sinica, 2004, 53(2): 614-619. doi: 10.7498/aps.53.614
    [19] ZHOU YUN-SONG, CHEN JIN-CHANG, LIN DUO-LIANG. MAGNETIC BEHAVIOUR OF ISING MULTILAYERS. Acta Physica Sinica, 2000, 49(12): 2477-2481. doi: 10.7498/aps.49.2477
    [20] WU JIAN-HUA, LI BO-ZANG, PU FU-CHO, MEI LIANG-MO. THEORETICAL CALCULATIONS OF THE RELATION BETWEEN THE GIANT MAGNETORESISTANCE IN Fe/Cr SUPERLATTICES. Acta Physica Sinica, 1994, 43(1): 110-117. doi: 10.7498/aps.43.110
Metrics
  • Abstract views:  3871
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2022
  • Accepted Date:  12 October 2022
  • Available Online:  28 November 2022
  • Published Online:  05 February 2023

/

返回文章
返回