Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on mechanical evolution process of interface between gold electrode and pyridyl anchor group

Liu Lin Sun Feng Li Yu-Chen Yan Yan Liu Bing-Xin Yang Zhi Qiu Shuai Li Zong-Liang

Citation:

Theoretical study on mechanical evolution process of interface between gold electrode and pyridyl anchor group

Liu Lin, Sun Feng, Li Yu-Chen, Yan Yan, Liu Bing-Xin, Yang Zhi, Qiu Shuai, Li Zong-Liang
PDF
HTML
Get Citation
  • Pyridyl-ended molecular junctions show high and low breaking forces successively in formation process and at the same time exhibit intriguing conductance switching behaviors. To understand the forming process of pyridyl-ended molecular junctions, the interaction between 4,4′-bipyridine molecule and gold electrode is studied by the ab initio-based adiabatic simulation method. The processes that the molecule moves away from electrode tip with different contact configurations are simulated, and the molecule-electrode interface evolutions, energy of the molecule-electrode system and the force between molecules and electrode are calculated in the simulations. The numerical results show that during the molecule moving away from the pyramid-shaped electrode, the pyridyl is easy to vertically adsorb on the second gold layer of the electrode tip. In this contact configurations, the tip Au atom deviates from the original position due to the lateral pushing force of the pyridyl. It needs about 1.3–1.5 nN stretching force for the pyridyl breaking from the second gold layer and switching to the tip Au atom, which is evidently larger than the force of 0.8–1.0 nN for the molecule breaking from the tip Au atom. This result is well consistent with the experimental observations, which thus reveals the relationship between the interface structures and the stretching force in the formation process of bipyridyl molecular junction in the experiment. The interaction between 4,4′-bipyridine molecule and plane-shaped gold electrode is very weak. It needs no more than 0.5 nN for the molecule breaking from the plane-shaped gold electrode. However, when the molecule adsorbs on the single Au atom which is adsorbed on the surface of plane-shaped electrode, the molecule can sustain 1.7 nN stretching force. Our study shows that the ab initio-based adiabatic stretching simulation method can not only reveal the geometric evolution process of molecule-electrode systems, but also identify the specific contact configurations between molecule and electrode.
      Corresponding author: Li Zong-Liang, lizongliang@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974217, 12204281).
    [1]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar

    [2]

    Xu B Q, Tao N J 2003 Science 301 1221Google Scholar

    [3]

    Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [4]

    Xiang D, Wang X L, Jia C C, Lee T, Guo X F 2016 Chem. Rev. 116 4318Google Scholar

    [5]

    Liu R, Han Y M, Sun F, Khatri G, Kwon J, Nickle C, Wang L J, Wang C K, Thompson D, Li Z L, Nijhuis C A, Del Barco E 2022 Adv. Mater. 34 2202135Google Scholar

    [6]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Nitzan A, Guo X F 2016 Science 6292 1443Google Scholar

    [7]

    Cai S N, Deng W T, Huang F F, Chen L J, Tang C, He W X, Long S C, Li R H, Tan Z B, Liu J Y, Shi J, Liu Z T, Xiao Z Y, Zhang D Q, Hong W J 2019 Angew. Chem. Int. Ed. 58 3829Google Scholar

    [8]

    Xin N, Wang J Y, Jia C C, Liu Z T, Zhang X S, Yu C M, Li M L, Wang S P, Gong Y, Sun H T, Zhang G X, Liu Z R, Zhang G Y, Liao J H, Zhang D Q, Guo X F 2017 Nano Lett. 17 856Google Scholar

    [9]

    Roldan D, Kaliginedi V, Cobo S, Kolivoska V, Bucher C, Hong W J, Royal G, Wandlowski T 2013 J. Am. Chem. Soc. 135 5974Google Scholar

    [10]

    Jiang P, Morales G M, You W, Yu L P 2004 Angew. Chem. Int. Ed. 43 4471Google Scholar

    [11]

    Morales G M, Jiang P, Yuan S W, Lee Y G, Sanchez A, You W, Yu L P 2005 J. Am. Chem. Soc. 127 10456Google Scholar

    [12]

    Capozzi B, Xia J L, Adak O, Dell E J, Liu Z F, Taylor J C, Neaton J B, Campos L M, Venkataraman L 2015 Nat. Nanotechnol. 10 522Google Scholar

    [13]

    Sun F, Liu R, Liu L, Yan Y, Wang S S, Yang Z, Suo Y Q, Wang C K, Li Z L 2022 Physica E 140 115186Google Scholar

    [14]

    Han Y M, Nickle C, Zhang Z Y, Astier H P A G, Duffin T J, Qi D C, Wang Z, Del Barco E, Thompson D, Nijhuis C A 2020 Nat. Mater. 19 843Google Scholar

    [15]

    Kumar S, Merelli M, Danowski W, Rudolf P, Feringa B L, Chiechi R C 2019 Adv. Mater. 31 1807831Google Scholar

    [16]

    Lee J, Chang H J, Kim S, Bang G S, Lee H 2009 Angew. Chem. Int. Ed. 48 8501Google Scholar

    [17]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [18]

    Zhou M, Lu Y H, Cai Y Q, Zhang C, Feng Y P 2011 Nanotechnology 22 385502Google Scholar

    [19]

    Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048Google Scholar

    [20]

    Zhao W K, Zou D Q, Sun Z P, Yu Y J, Yang C L 2018 Phys. Lett. A 382 2666Google Scholar

    [21]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [22]

    Schliemann J, Egues J C, Loss D 2003 Phys. Rev. Lett. 90 146801Google Scholar

    [23]

    An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939Google Scholar

    [24]

    Mei J G, Diao Y, Appleton A L, Fang L, Bao Z N 2013 J. Am. Chem. Soc. 135 6724Google Scholar

    [25]

    Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [26]

    Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C K, Ni L, Chen X, Wang M, Li Z L, Lee T, Xiang D 2018 Small 14 1703815Google Scholar

    [27]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518Google Scholar

    [28]

    Pan Z C, Li J, Chen L J, Tang Y X, Shi J, Liu J Y, Liao J L, Hong W J 2019 Sci. Chin. Chem. 62 1245Google Scholar

    [29]

    Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B, Venkataraman L 2009 Nat. Nanotechnol. 4 230Google Scholar

    [30]

    Aradhya S V, Frei M, Hybertsen M S, Venkataraman L 2012 Nat. Mater. 11 872Google Scholar

    [31]

    Yang Z, Sun F, Chen D H, Wang Z Q, Wang C K, Li Z L, Qiu S 2022 Chin. Phys. B 31 077202Google Scholar

    [32]

    Xin N, Guan J X, Zhou C G, Chen X J N, Gu C H, Li Y, Ratner M A, Nitzan A, Stoddart J F, Guo X F 2019 Nat. Rev. Phys. 1 211Google Scholar

    [33]

    Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar

    [34]

    Pan Z C, Chen L C, Tang C, Hu Y, Yuan S S, Gao T Y, Shi J, Shi J, Yang Y, Hong W J 2022 Small 18 2107220Google Scholar

    [35]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003Google Scholar

    [36]

    Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F 2008 J. Am. Chem. Soc. 130 318Google Scholar

    [37]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270Google Scholar

    [38]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [39]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

    [40]

    Arroyo C R, Leary E, Castellanos-Gomez A, Rubio-Bollinger G, Gonzalez M T, Agrait N 2011 J. Am. Chem. Soc. 133 14313Google Scholar

    [41]

    Park Y S, Whalley A C, Kamenetska M, Steigerwald M L, Hybertsen M S, Nuckolls C, Venkataraman L 2007 J. Am. Chem. Soc. 129 15768Google Scholar

    [42]

    Aradhya S V, Venkataraman L 2013 Nat. Nanotechnol. 8 399Google Scholar

    [43]

    Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nature 442 904Google Scholar

    [44]

    Venkataraman L, Klare J E, Tam I W, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nano Lett. 6 458Google Scholar

    [45]

    Hybertsen M S, Venkataraman L, Klare J E, Whalley A C, Steigerwald M L, Nuckolls C 2008 J. Phys. Condens. Matter 20 374115Google Scholar

    [46]

    Mezei G, Balogh Z, Magyarkuti A, Halbritter A 2020 J. Phys. Chem. Lett. 11 8053Google Scholar

    [47]

    Magyarkuti A, Balogh Z, Mezei G, Halbritter A 2021 J. Phys. Chem. Lett. 12 1759Google Scholar

    [48]

    Darancet P, Widawsky J R, Choi H J, Venkataraman L, Neaton J B 2012 Nano Lett. 12 6250Google Scholar

    [49]

    Ismael A K, Wang K, Vezzoli A, Al-Khaykanee M K, Gallagher H E, Grace I M, Lambert C J, Xu B Q, Nichols R J, Higgins S J 2017 Angew. Chem. Int. Ed. 56 15378Google Scholar

    [50]

    Xu B Q, Xiao X Y, Tao N J 2003 J. Am. Chem. Soc. 125 16164Google Scholar

    [51]

    Kamenetska M, Quek S Y, Whalley A C, Steigerwald M L, Choi H J, Louie S G, Nuckolls C, Hybertsen M S, Neaton J B, Venkataraman L 2010 J. Am. Chem. Soc. 132 6817Google Scholar

    [52]

    索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良 2020 物理学报 69 208502Google Scholar

    Suo Y Q, Liu R, Sun F, Niu L L, Wang S S, Liu L, Li Z L 2020 Acta Phys. Sin. 69 208502Google Scholar

    [53]

    Wang S S, Yang Z, Sun F, Liu R, Liu L, Fu X X, Wang C K, Li Z L 2021 J. Phys. Chem. C 125 27290Google Scholar

    [54]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503Google Scholar

    [55]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Rev. A. 03 (Wallingford, CT)

  • 图 1  4, 4′-二吡啶分子连接到不同构型金电极上的初始结构 (a) 分子连接在理想锥形电极旁边(体系I); (b) 分子与只有最尖端两层金原子构成锥形的电极相连接, 电极的第三层有较多金原子形成平台构型(体系II); (c) 分子与吸附有孤立金原子的平面电极相连接(体系III); (d) 分子与平面电极相连接(体系Ⅳ)

    Figure 1.  The initial configurations for 4, 4′-bipyridine connecting with different gold electrode: (a) The molecule is connected beside ideal pyramid-shaped gold electrode (system Ⅰ); (b) the molecule connects with the gold electrode in which only the top two layers of Au atoms form pyramid shape (system Ⅱ). In this system the third layer of the electrode contains more Au atoms which form a platform; (c) the molecule adsorbs on planar-shaped gold electrode with a single Au atom on the electrode surface (system Ⅲ); (d) the molecule adsorbs on planar-shaped gold electrode without single surface Au atom (system Ⅳ).

    图 2  4, 4′-二吡啶分子在拉力作用下远离不同构型电极表面的结构演化过程 (a)—(d) 体系I; (e)—(h) 体系II; (i)—(l) 体系III; (m)—(p) 体系IV

    Figure 2.  The structure evolution processes for 4, 4′-bipyridine moves away from gold electrodes with different tip geometries: (a)–(d) System I; (e)–(h) system II; (i)–(l) system III; (m)–(p) system IV.

    图 3  4, 4′-二吡啶分子在拉力作用下远离不同构型电极过程中体系能量和作用力变化曲线 (a) 体系I; (b)体系II; (c) 体系III; (d) 体系IV

    Figure 3.  The energy and force traces for (a) system I, (b) system II, (c) system III and (d) system IV with 4, 4′-bipyridine moving away from different gold electrodes.

    图 4  体系I、体系II 和体系III中部分同时离域到分子和电极上的占据轨道的空间分布, 其中括号中的数字分别为总的离域占据轨道数目和对N-Au键有贡献的轨道数目

    Figure 4.  The spatical distributions of part delocalized occupied molecular orbitals for system I, system II and system III. These orbitals are both delocalized on the molecule and electrode. The figures in the brakets are the total numbers of the delocalized occupied molecular orbitals and the orbitals which have contributions to N-Au bond.

  • [1]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar

    [2]

    Xu B Q, Tao N J 2003 Science 301 1221Google Scholar

    [3]

    Xiang D, Jeong H, Kim D, Lee T, Cheng Y, Wang Q, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [4]

    Xiang D, Wang X L, Jia C C, Lee T, Guo X F 2016 Chem. Rev. 116 4318Google Scholar

    [5]

    Liu R, Han Y M, Sun F, Khatri G, Kwon J, Nickle C, Wang L J, Wang C K, Thompson D, Li Z L, Nijhuis C A, Del Barco E 2022 Adv. Mater. 34 2202135Google Scholar

    [6]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Nitzan A, Guo X F 2016 Science 6292 1443Google Scholar

    [7]

    Cai S N, Deng W T, Huang F F, Chen L J, Tang C, He W X, Long S C, Li R H, Tan Z B, Liu J Y, Shi J, Liu Z T, Xiao Z Y, Zhang D Q, Hong W J 2019 Angew. Chem. Int. Ed. 58 3829Google Scholar

    [8]

    Xin N, Wang J Y, Jia C C, Liu Z T, Zhang X S, Yu C M, Li M L, Wang S P, Gong Y, Sun H T, Zhang G X, Liu Z R, Zhang G Y, Liao J H, Zhang D Q, Guo X F 2017 Nano Lett. 17 856Google Scholar

    [9]

    Roldan D, Kaliginedi V, Cobo S, Kolivoska V, Bucher C, Hong W J, Royal G, Wandlowski T 2013 J. Am. Chem. Soc. 135 5974Google Scholar

    [10]

    Jiang P, Morales G M, You W, Yu L P 2004 Angew. Chem. Int. Ed. 43 4471Google Scholar

    [11]

    Morales G M, Jiang P, Yuan S W, Lee Y G, Sanchez A, You W, Yu L P 2005 J. Am. Chem. Soc. 127 10456Google Scholar

    [12]

    Capozzi B, Xia J L, Adak O, Dell E J, Liu Z F, Taylor J C, Neaton J B, Campos L M, Venkataraman L 2015 Nat. Nanotechnol. 10 522Google Scholar

    [13]

    Sun F, Liu R, Liu L, Yan Y, Wang S S, Yang Z, Suo Y Q, Wang C K, Li Z L 2022 Physica E 140 115186Google Scholar

    [14]

    Han Y M, Nickle C, Zhang Z Y, Astier H P A G, Duffin T J, Qi D C, Wang Z, Del Barco E, Thompson D, Nijhuis C A 2020 Nat. Mater. 19 843Google Scholar

    [15]

    Kumar S, Merelli M, Danowski W, Rudolf P, Feringa B L, Chiechi R C 2019 Adv. Mater. 31 1807831Google Scholar

    [16]

    Lee J, Chang H J, Kim S, Bang G S, Lee H 2009 Angew. Chem. Int. Ed. 48 8501Google Scholar

    [17]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [18]

    Zhou M, Lu Y H, Cai Y Q, Zhang C, Feng Y P 2011 Nanotechnology 22 385502Google Scholar

    [19]

    Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048Google Scholar

    [20]

    Zhao W K, Zou D Q, Sun Z P, Yu Y J, Yang C L 2018 Phys. Lett. A 382 2666Google Scholar

    [21]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [22]

    Schliemann J, Egues J C, Loss D 2003 Phys. Rev. Lett. 90 146801Google Scholar

    [23]

    An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939Google Scholar

    [24]

    Mei J G, Diao Y, Appleton A L, Fang L, Bao Z N 2013 J. Am. Chem. Soc. 135 6724Google Scholar

    [25]

    Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [26]

    Zhao Z K, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C K, Ni L, Chen X, Wang M, Li Z L, Lee T, Xiang D 2018 Small 14 1703815Google Scholar

    [27]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518Google Scholar

    [28]

    Pan Z C, Li J, Chen L J, Tang Y X, Shi J, Liu J Y, Liao J L, Hong W J 2019 Sci. Chin. Chem. 62 1245Google Scholar

    [29]

    Quek S Y, Kamenetska M, Steigerwald M L, Choi H J, Louie S G, Hybertsen M S, Neaton J B, Venkataraman L 2009 Nat. Nanotechnol. 4 230Google Scholar

    [30]

    Aradhya S V, Frei M, Hybertsen M S, Venkataraman L 2012 Nat. Mater. 11 872Google Scholar

    [31]

    Yang Z, Sun F, Chen D H, Wang Z Q, Wang C K, Li Z L, Qiu S 2022 Chin. Phys. B 31 077202Google Scholar

    [32]

    Xin N, Guan J X, Zhou C G, Chen X J N, Gu C H, Li Y, Ratner M A, Nitzan A, Stoddart J F, Guo X F 2019 Nat. Rev. Phys. 1 211Google Scholar

    [33]

    Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar

    [34]

    Pan Z C, Chen L C, Tang C, Hu Y, Yuan S S, Gao T Y, Shi J, Shi J, Yang Y, Hong W J 2022 Small 18 2107220Google Scholar

    [35]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003Google Scholar

    [36]

    Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F 2008 J. Am. Chem. Soc. 130 318Google Scholar

    [37]

    Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y, Wang C K 2019 Physica E 106 270Google Scholar

    [38]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [39]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

    [40]

    Arroyo C R, Leary E, Castellanos-Gomez A, Rubio-Bollinger G, Gonzalez M T, Agrait N 2011 J. Am. Chem. Soc. 133 14313Google Scholar

    [41]

    Park Y S, Whalley A C, Kamenetska M, Steigerwald M L, Hybertsen M S, Nuckolls C, Venkataraman L 2007 J. Am. Chem. Soc. 129 15768Google Scholar

    [42]

    Aradhya S V, Venkataraman L 2013 Nat. Nanotechnol. 8 399Google Scholar

    [43]

    Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nature 442 904Google Scholar

    [44]

    Venkataraman L, Klare J E, Tam I W, Nuckolls C, Hybertsen M S, Steigerwald M L 2006 Nano Lett. 6 458Google Scholar

    [45]

    Hybertsen M S, Venkataraman L, Klare J E, Whalley A C, Steigerwald M L, Nuckolls C 2008 J. Phys. Condens. Matter 20 374115Google Scholar

    [46]

    Mezei G, Balogh Z, Magyarkuti A, Halbritter A 2020 J. Phys. Chem. Lett. 11 8053Google Scholar

    [47]

    Magyarkuti A, Balogh Z, Mezei G, Halbritter A 2021 J. Phys. Chem. Lett. 12 1759Google Scholar

    [48]

    Darancet P, Widawsky J R, Choi H J, Venkataraman L, Neaton J B 2012 Nano Lett. 12 6250Google Scholar

    [49]

    Ismael A K, Wang K, Vezzoli A, Al-Khaykanee M K, Gallagher H E, Grace I M, Lambert C J, Xu B Q, Nichols R J, Higgins S J 2017 Angew. Chem. Int. Ed. 56 15378Google Scholar

    [50]

    Xu B Q, Xiao X Y, Tao N J 2003 J. Am. Chem. Soc. 125 16164Google Scholar

    [51]

    Kamenetska M, Quek S Y, Whalley A C, Steigerwald M L, Choi H J, Louie S G, Nuckolls C, Hybertsen M S, Neaton J B, Venkataraman L 2010 J. Am. Chem. Soc. 132 6817Google Scholar

    [52]

    索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良 2020 物理学报 69 208502Google Scholar

    Suo Y Q, Liu R, Sun F, Niu L L, Wang S S, Liu L, Li Z L 2020 Acta Phys. Sin. 69 208502Google Scholar

    [53]

    Wang S S, Yang Z, Sun F, Liu R, Liu L, Fu X X, Wang C K, Li Z L 2021 J. Phys. Chem. C 125 27290Google Scholar

    [54]

    Yi X H, Liu R, Bi J J, Jiao Y, Wang C K, Li Z L 2016 Chin. Phys. B 25 128503Google Scholar

    [55]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Rev. A. 03 (Wallingford, CT)

  • [1] Li Duo-Duo, Zhang Song. Molecular structures in the non-adiabatic relaxaiton processes of excited states of pentafluoropyridine. Acta Physica Sinica, 2024, 73(4): 043101. doi: 10.7498/aps.73.20231570
    [2] Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang. Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240174
    [3] Yan Yan, Sun Feng, Yang Zhi, Kong Cheng-Yu, Ge Yun-Long, Chen Deng-Hui, Qiu Shuai, Li Zong-Liang. Mechanical modulation effects of gold electrodes on geometries and electronic transport properties of azobenzene molecular junctions. Acta Physica Sinica, 2024, 73(8): 088502. doi: 10.7498/aps.73.20231999
    [4] Xing Hai-Ying, Zhang Zi-Han, Wu Wen-Jing, Guo Zhi-Ying, Ru Jin-Dou. Regulation and mechanism of graphene electrode bending on negative differential resistance of 2-phenylpyridine molecular devices. Acta Physica Sinica, 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [5] Peng Shu-Ping, Huang Xu-Dong, Liu Qian, Ren Peng, Wu Dan, Fan Zhi-Qiang. First-principles study of single-molecule-structure determination of dithienoborepin isomers. Acta Physica Sinica, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [6] Suo Yu-Qing, Liu Ran, Sun Feng, Niu Le-Le, Wang Shuang-Shuang, Liu Lin, Li Zong-Liang. Molecular junction stretching and interface recognition: Decode the mystery of high/low conductance switching in stretching process of 4, 4′-bipyridine molecular junction. Acta Physica Sinica, 2020, 69(20): 208502. doi: 10.7498/aps.69.20201297
    [7] Du Jian-Bin, Feng Zhi-Fang, Han Li-Jun, Tang Yan-Lin, Wu De-Qi. Molecular structure and electronic spectrum of C12H4Cl4O2 under external electric field. Acta Physica Sinica, 2018, 67(22): 223101. doi: 10.7498/aps.67.20181454
    [8] Yan Rui, Wu Ze-Wen, Xie Wen-Ze, Li Dan, Wang Yin. First-principles study on transport property of molecular} device with non-collinear electrodes. Acta Physica Sinica, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [9] Chen Wei, Chen Run-Feng, Li Yong-Tao, Yu Zhi-Zhou, Xu Ning, Bian Bao-An, Li Xing-Ao, Wang Lian-Hui. Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes. Acta Physica Sinica, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [10] Chen Ying, Hu Hui-Fang, Wang Xiao-Wei, Zhang Zhao-Jin, Cheng Cai-Ping. Rectifying behaviors induced by B/N-doping in similar right triangle graphene devices. Acta Physica Sinica, 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [11] Deng Lun-Hua, Li Chuan-Liang, Zhu Yuan-Yue, He Wen-Yan, Chen Yang-Qin. The absorption spectrum study of the (4, 0) band in the b4Σ--a4Πi system of NO. Acta Physica Sinica, 2012, 61(19): 194208. doi: 10.7498/aps.61.194208
    [12] An Yi-Peng, Yang Chuan-Lu, Wang Mei-Shan, Ma Xiao-Guang, Wang De-Hua. First-principles study of electronic transport properties of C20F20 molecule. Acta Physica Sinica, 2010, 59(3): 2010-2015. doi: 10.7498/aps.59.2010
    [13] Li Qiao-Hua, Zhang Zhen-Hua, Liu Xin-Hai, Qiu Ming, Ding Kai-He. Calculation of the electronic transmission spectra of a molecular device using a simplified model. Acta Physica Sinica, 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [14] Tang Chun-Mei, Chen Xuan, Deng Kai-Ming, Hu Feng-Lan, Huang De-Cai, Xia Hai-Yan. The evolution of the structure and electronic properties of the fullerene derivatives C60(CF3)n(n=2, 4, 6, 10): A density functional calculation. Acta Physica Sinica, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [15] Zhang Hong-Yu, Wang Li-Guang, Zhang Xiu-Mei, Yu Ding-Wen, Li Yong. Electronic structure and conductance of fullerene C20. Acta Physica Sinica, 2008, 57(10): 6271-6276. doi: 10.7498/aps.57.6271
    [16] Wang Li-Guang, Chen Lei, Yu Ding-Wen, Li Yong, Terence K. S. W.. Dependence of electronic-transport sensitivity on the coupling between single molecule and atomic-chain electrode. Acta Physica Sinica, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [17] Liu Ji-Cai, Zhao Ke, Song Yu-Zhi, Wang Chuan-Kui. Dynamical behavior of ultra-short laser pulse in a cascade three-level molecular system. Acta Physica Sinica, 2006, 55(4): 1803-1808. doi: 10.7498/aps.55.1803
    [18] Zou Bin, Li Zong-Liang, Wang Chuan-Kui, Xue Qi-Kun. Effect of the distance between electrodes on the electronic transport properties of single molecular devices. Acta Physica Sinica, 2005, 54(3): 1341-1346. doi: 10.7498/aps.54.1341
    [19] Zhang Shu-Feng, Su Guo-Lin, Ren Xue-Guang, Ning Chuan-Gang, Zhou Hui, Li Bin, Li Gui-Qin, Deng Jing-Kang. Investigation of electron momentum spectroscopy for inner valence orbitals 4a gg+4buu of diacetyl. Acta Physica Sinica, 2005, 54(4): 1552-1556. doi: 10.7498/aps.54.1552
    [20] LEI YU, CHENG ZHAO-NIAN, TANG DING-YUAN. MOLECULAR DYNAMICS STUDY ON THE STRUCTURE-OF β-BaB2O4 GROWTH SOLUTIONS. Acta Physica Sinica, 1997, 46(3): 511-523. doi: 10.7498/aps.46.511
Metrics
  • Abstract views:  2291
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2022
  • Accepted Date:  30 November 2022
  • Available Online:  17 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回