-
Owing to the huge degree of freedom of structure, the optimal design of thermoelectric conversion performance of defective graphene nanoribbons is one of the difficulties in the field of materials research. In this paper, the thermoelectric properties of graphene nanoribbons with 5-7 ring defects are optimized by using non-equilibrium Green's function combined with Bayesian algorithm.The results show that the Bayesian algorithm is effective and advantageous in the search of graphene nanoribbons with 5-7 ring defects with high thermoelectric conversion efficiency. It is found that the single configuration with the best thermoelectric conversion performance can be quickly and accurately searched from 32896 candidate structures by using Bayesian algorithm. Even in the least efficient round of optimization, only 1495 candidate structures (about 4.54% of all candidate structures) need to be calculated to find the best configuration. It is also found that the thermoelectric value ZT (about 1.13) of the optimal configuration of 5-7 ring defective graphene nanoribbons (21.162 and 1.23 nm in length and width, respectively) at room temperature is nearly one order of magnitude higher than that of the perfect graphene nanoribbons (about 0.14). This is mainly due to the fact that the 5-7 ring defects effectively inhibit the electron thermal conductivity of the system, which makes the maximum balance between the weakening effect of the power factor and the inhibiting effect of the thermal conductivity (positive effect). The results of this study provide a new feasible scheme for designing and fabricating the graphene nanoribbon thermoelectric devices with excellent thermoelectric conversion efficiencies.
-
Keywords:
- thermoelectric conversion /
- 5-7 ring defective graphene nanoribbons /
- Bayes algorithm /
- nonequilibrium Green's function
[1] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar
[2] Tritt T M 2011 Annu. Rev. Mater. Res. 41 433Google Scholar
[3] Zhang X, Zhao L D 2015 J. Materiomics 1 92Google Scholar
[4] Parrott J E 1982 J. Appl. Phys. 53 9105Google Scholar
[5] Zheng X F, Liu C X, Yan Y Y, Wang Q 2014 Renewable Sustainable Energy Rev. 32 486Google Scholar
[6] Wang X, Xu J, Liu G, Fu Y, Liu Z, Tan X, Shao H, Jiang H, Tan T, Jiang J 2016 Appl. Phys. Lett. 108 083902Google Scholar
[7] Yang J, Xi L, Qiu W, Wu L, Shi X, Chen L, Yang J, Zhang W, Uher C, Singh D J 2016 NPJ. Comput. Mater. 2 1Google Scholar
[8] Kim W, Zide J, Gossard A, Klenov D, Stemmer S, Shakouri A, Majumdar A 2006 Phys. Rev. Lett. 96 045901Google Scholar
[9] Wan X, Ma D, Pan D, Yang L, Yang N 2021 Mater. Today Phys. 20 100445Google Scholar
[10] Miyata K, Atallah T L, Zhu X-Y 2017 Sci. Adv. 3 e1701469Google Scholar
[11] Sales B, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R 1997 Phys. Rev. B 56 15081Google Scholar
[12] Jaworski C M, Nielsen M D, Wang H, Girard S N, Cai W, Porter W D, Kanatzidis M G, Heremans J P 2013 Phys. Rev. B 87 045203Google Scholar
[13] Pei Y, Heinz N A, LaLonde A, Snyder G J 2011 Energy Environ. Sci. 4 3640Google Scholar
[14] Xie G, Ding D, Zhang G 2018 Adv. Phys. X 3 1480417Google Scholar
[15] Ouyang T, Hu M 2014 Nanotechnology 25 245401Google Scholar
[16] Wang T, Zhang C, Snoussi H, Zhang G 2020 Adv. Funct. Mater. 30 1906041Google Scholar
[17] Wang J, Jiang J W, Park H S 2020 Carbon 157 262Google Scholar
[18] Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C, Yang N 2019 Nano Lett. 19 3387Google Scholar
[19] Yang L, Wan X, Ma D, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar
[20] Ju S, Shiga T, Feng L, Hou Z, Tsuda K, Shiomi J 2017 Phys. Rev. X 7 021024Google Scholar
[21] Hu R, Iwamoto S, Feng L, Ju S, Hu S, Ohnishi M, Nagai N, Hirakawa K, Shiomi J 2020 Phys. Rev. X 10 021050Google Scholar
[22] Yamawaki M, Ohnishi M, Ju S, Shiomi J 2018 Sci. Adv. 4 eaar4192Google Scholar
[23] Dieb M T, Hou Z, Tsuda K 2018 J. Chem. Phys. 148 241716Google Scholar
[24] Lu S, Zhou Q, Ouyang Y, Guo Y, Li Q, Wang J 2018 Nat. Commun. 9 3405Google Scholar
[25] Yuan R, Liu Z, Balachandran P V, Xue D, Zhou Y, Ding X, Sun J, Xue D, Lookman T 2018 Adv. Mater. 30 1702884Google Scholar
[26] Ju S, Shimizu S, Shiomi J 2020 J. Appl. Phys. 128 161102Google Scholar
[27] Cui C, Ouyang T, Tang C, He C, Li J, Zhang C, Zhong J 2021 Carbon 176 52Google Scholar
[28] Hu J, Ruan X, Chen Y P 2009 Nano Lett. 9 2730Google Scholar
[29] Balandin A A 2011 Nat. Mater. 10 569Google Scholar
[30] 潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar
Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar
[31] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213Google Scholar
[32] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar
[33] Sevinçli H, Cuniberti G 2010 Phys. Rev. B 81 113401Google Scholar
[34] Yang K, Chen Y, Xie Y, Ouyang T, Zhong J 2010 EPL-Europhys. Lett. 91 46006Google Scholar
[35] Sevincli H, Sevik C, Çağın T, Cuniberti G 2013 Sci. Rep. 3 1228Google Scholar
[36] Chen Y, Jayasekera T, Calzolari A, Kim K W, Nardelli M B 2010 J. Phys. Condens. Mater 22 372202Google Scholar
[37] Mazzamuto F, Nguyen V H, Apertet Y, Caër C, Chassat C, Saint-Martin J, Dollfus P 2011 Phys. Rev. B 83 235426Google Scholar
[38] Ouyang Y, Guo J 2009 Appl. Phys. Lett. 94 263107Google Scholar
[39] Karamitaheri H, Neophytou N, Pourfath M, Faez R, Kosina H 2012 J. Appl. Phys. 111 054501Google Scholar
[40] Huang J Y, Ding F, Yakobson B I, Lu P, Qi L, Li J 2009 Proc. Natl. Acad. Sci. 106 10103Google Scholar
[41] Engelund M, Fürst J A, Jauho A P, Brandbyge M 2010 Phys. Rev. Lett. 104 036807Google Scholar
[42] Cresti A, Carrete J, Okuno H, Wang T, Madsen G K, Mingo N, Pochet P 2020 Carbon 161 259Google Scholar
[43] Wang J S, Wang J, Lü J T 2008 Eur. Phys. J. B 62 381Google Scholar
[44] Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503Google Scholar
[45] Li T C, Lu S P 2008 Phys. Rev. B 77 085408Google Scholar
[46] Yang K, Chen Y, D'Agosta R, Xie Y, Zhong J, Rubio A 2012 Phys. Rev. B 86 045425Google Scholar
[47] Ueno T, Rhone T D, Hou Z, Mizoguchi T, Tsuda K 2016 Mater. Discovery 4 18Google Scholar
[48] Terayama K, Tsuda K, Tamura R 2019 Jpn. J. Appl. Phys. 58 098001Google Scholar
[49] Franckié M, Faist J 2020 Phys. Rev. Appl. 13 034025Google Scholar
-
图 1 四进制标志作为结构描述符 (a) “0”代表完美单元; (b) “1”代表5-7环缺陷位置在中间(黄色标注)的缺陷单元; (c) “2”代表5-7环缺陷位置在左边(紫色标注)的缺陷单元; (d) “3”代表5-7环缺陷位置在右边(蓝色标注)的缺陷单元
Figure 1. Quad symbol as structural descriptor: (a) ‘0’represents perfect unit; (b) ‘1’ represents the defect unit with 5-7 ring defects in the middle (marked in yellow); (c) ‘2’ represents the defect unit with the defect position on the left of the 5-7 ring (marked in purple); (d)‘3’ represents the defect unit of rings 5-7 where the defect position is on the right (marked in blue).
图 6 完美石墨烯纳米带和最佳5-7环缺陷石墨烯纳米带的电子性质 (a) 电子透射系数; (b) 电子电导; (c) 电子热导; (d) 塞贝克系数
Figure 6. Electronic properties of perfect graphene nanoribbons and best 5-7 ring defective graphene nanoribbons: (a) Electron transmission coefficient; (b) electronic conductivity; (c) electron thermal conductivity; (d) Seebeck coefficient.
图 7 比较原始石墨烯纳米带和最佳5-7环缺陷石墨烯纳米带的声子输运特性 (a) 声子热导; (b) 声子透射系数; (c), (d) 三个典型声子频率下的声子局域态密度图
Figure 7. Phonon transport characteristics of the original graphene nanoribbon and the best 5-7 ring defect graphene nanoribbon are compared: (a) Phonon thermal conductivity; (b) phonon transmission coefficient; (c), (d) local state density diagram at three typical phonon frequencies.
-
[1] Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, Zhao X 2017 Adv. Mater. 29 1605884Google Scholar
[2] Tritt T M 2011 Annu. Rev. Mater. Res. 41 433Google Scholar
[3] Zhang X, Zhao L D 2015 J. Materiomics 1 92Google Scholar
[4] Parrott J E 1982 J. Appl. Phys. 53 9105Google Scholar
[5] Zheng X F, Liu C X, Yan Y Y, Wang Q 2014 Renewable Sustainable Energy Rev. 32 486Google Scholar
[6] Wang X, Xu J, Liu G, Fu Y, Liu Z, Tan X, Shao H, Jiang H, Tan T, Jiang J 2016 Appl. Phys. Lett. 108 083902Google Scholar
[7] Yang J, Xi L, Qiu W, Wu L, Shi X, Chen L, Yang J, Zhang W, Uher C, Singh D J 2016 NPJ. Comput. Mater. 2 1Google Scholar
[8] Kim W, Zide J, Gossard A, Klenov D, Stemmer S, Shakouri A, Majumdar A 2006 Phys. Rev. Lett. 96 045901Google Scholar
[9] Wan X, Ma D, Pan D, Yang L, Yang N 2021 Mater. Today Phys. 20 100445Google Scholar
[10] Miyata K, Atallah T L, Zhu X-Y 2017 Sci. Adv. 3 e1701469Google Scholar
[11] Sales B, Mandrus D, Chakoumakos B C, Keppens V, Thompson J R 1997 Phys. Rev. B 56 15081Google Scholar
[12] Jaworski C M, Nielsen M D, Wang H, Girard S N, Cai W, Porter W D, Kanatzidis M G, Heremans J P 2013 Phys. Rev. B 87 045203Google Scholar
[13] Pei Y, Heinz N A, LaLonde A, Snyder G J 2011 Energy Environ. Sci. 4 3640Google Scholar
[14] Xie G, Ding D, Zhang G 2018 Adv. Phys. X 3 1480417Google Scholar
[15] Ouyang T, Hu M 2014 Nanotechnology 25 245401Google Scholar
[16] Wang T, Zhang C, Snoussi H, Zhang G 2020 Adv. Funct. Mater. 30 1906041Google Scholar
[17] Wang J, Jiang J W, Park H S 2020 Carbon 157 262Google Scholar
[18] Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C, Yang N 2019 Nano Lett. 19 3387Google Scholar
[19] Yang L, Wan X, Ma D, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar
[20] Ju S, Shiga T, Feng L, Hou Z, Tsuda K, Shiomi J 2017 Phys. Rev. X 7 021024Google Scholar
[21] Hu R, Iwamoto S, Feng L, Ju S, Hu S, Ohnishi M, Nagai N, Hirakawa K, Shiomi J 2020 Phys. Rev. X 10 021050Google Scholar
[22] Yamawaki M, Ohnishi M, Ju S, Shiomi J 2018 Sci. Adv. 4 eaar4192Google Scholar
[23] Dieb M T, Hou Z, Tsuda K 2018 J. Chem. Phys. 148 241716Google Scholar
[24] Lu S, Zhou Q, Ouyang Y, Guo Y, Li Q, Wang J 2018 Nat. Commun. 9 3405Google Scholar
[25] Yuan R, Liu Z, Balachandran P V, Xue D, Zhou Y, Ding X, Sun J, Xue D, Lookman T 2018 Adv. Mater. 30 1702884Google Scholar
[26] Ju S, Shimizu S, Shiomi J 2020 J. Appl. Phys. 128 161102Google Scholar
[27] Cui C, Ouyang T, Tang C, He C, Li J, Zhang C, Zhong J 2021 Carbon 176 52Google Scholar
[28] Hu J, Ruan X, Chen Y P 2009 Nano Lett. 9 2730Google Scholar
[29] Balandin A A 2011 Nat. Mater. 10 569Google Scholar
[30] 潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar
Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar
[31] Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213Google Scholar
[32] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar
[33] Sevinçli H, Cuniberti G 2010 Phys. Rev. B 81 113401Google Scholar
[34] Yang K, Chen Y, Xie Y, Ouyang T, Zhong J 2010 EPL-Europhys. Lett. 91 46006Google Scholar
[35] Sevincli H, Sevik C, Çağın T, Cuniberti G 2013 Sci. Rep. 3 1228Google Scholar
[36] Chen Y, Jayasekera T, Calzolari A, Kim K W, Nardelli M B 2010 J. Phys. Condens. Mater 22 372202Google Scholar
[37] Mazzamuto F, Nguyen V H, Apertet Y, Caër C, Chassat C, Saint-Martin J, Dollfus P 2011 Phys. Rev. B 83 235426Google Scholar
[38] Ouyang Y, Guo J 2009 Appl. Phys. Lett. 94 263107Google Scholar
[39] Karamitaheri H, Neophytou N, Pourfath M, Faez R, Kosina H 2012 J. Appl. Phys. 111 054501Google Scholar
[40] Huang J Y, Ding F, Yakobson B I, Lu P, Qi L, Li J 2009 Proc. Natl. Acad. Sci. 106 10103Google Scholar
[41] Engelund M, Fürst J A, Jauho A P, Brandbyge M 2010 Phys. Rev. Lett. 104 036807Google Scholar
[42] Cresti A, Carrete J, Okuno H, Wang T, Madsen G K, Mingo N, Pochet P 2020 Carbon 161 259Google Scholar
[43] Wang J S, Wang J, Lü J T 2008 Eur. Phys. J. B 62 381Google Scholar
[44] Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503Google Scholar
[45] Li T C, Lu S P 2008 Phys. Rev. B 77 085408Google Scholar
[46] Yang K, Chen Y, D'Agosta R, Xie Y, Zhong J, Rubio A 2012 Phys. Rev. B 86 045425Google Scholar
[47] Ueno T, Rhone T D, Hou Z, Mizoguchi T, Tsuda K 2016 Mater. Discovery 4 18Google Scholar
[48] Terayama K, Tsuda K, Tamura R 2019 Jpn. J. Appl. Phys. 58 098001Google Scholar
[49] Franckié M, Faist J 2020 Phys. Rev. Appl. 13 034025Google Scholar
Catalog
Metrics
- Abstract views: 4078
- PDF Downloads: 86
- Cited By: 0