Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spin-dependent scattering induced by surface states in spin-degenerate nodal-line semimetal

Liu Li-Shuo Chen Wei

Citation:

Spin-dependent scattering induced by surface states in spin-degenerate nodal-line semimetal

Liu Li-Shuo, Chen Wei
PDF
HTML
Get Citation
  • The topological nodal-line semimetal is characterized by the conduction band and valence band of electrons crossing along a one-dimensional line or closed loop in reciprocal space, with each nodal line carrying Π Berry phase. According to bulk-boundary correspondence, there exist drumheadlike surface states with weak dispersion at the boundary of system, surrounded by the projection of nodal loops onto the surface Brillouin zone. In most of nodal-line semimetals, the spin orbit coupling effect is weak, leading to the absence of a spin configuration for surface states under the single-particle picture. However, the featured weak dispersion of drumheadlike surface states enhances the electron-electron interaction effect, which triggers out ferromagnetic instability and causes spin splitting in the surface state. In this work, spin-dependent scattering caused by ferromagnetic surface states in spin-degenerate nodal-line semimetals is considered. It is found that both spin-splitting drumheadlike surface states can lead to resonant spin-flipped reflection. This physical process is reflected in a double-peak structure in the spin conductance spectrum. Specifically, we deal with the scattering problem induced by surface states in normal metal and nodal-line semimetal heterojunctions by using the scattering matrix and the Green’s functions theory, respectively, and obtain consistent conclusions. The result points out that spin-degenerate nodal-line semimetal surface states can still lead to spin-dependent transport, which provides a new perspective for the detection and potential application of spintronics in nodal-line semimetals.
      Corresponding author: Chen Wei, pchenweis@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074172, 12222406).
    [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    初纯光, 王安琦, 廖志敏 2023 物理学报 72 087401Google Scholar

    Chu C G, Wang A Q, Liao Z M 2023 Acta Phys. Sin. 72 087401Google Scholar

    [4]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [5]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [6]

    Halperin B I 1982 Phys. Rev. B 25 2185Google Scholar

    [7]

    耿逸飞, 王铸宁, 马耀光, 高飞 2019 物理学报 68 224101Google Scholar

    Geng Y F, Wang Z N, Ma Y G, Gao F 2019 Acta Phys. Sin. 68 224101Google Scholar

    [8]

    Xue S W, Wang M Y, Zhang S Y, Jia X, Zhou J H, Shi Y G, Zhu X T, Yao Y G, Guo J D 2021 Phys. Rev. Lett. 127 186802Google Scholar

    [9]

    Weng H M, Dai X, Fang Z 2016 J. Phys. Condens. Matter 28 303001Google Scholar

    [10]

    Murakami S 2007 New J. Phys. 9 356Google Scholar

    [11]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [12]

    Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029Google Scholar

    [13]

    Burkov A A, Hook M D, Balents L 2011 Phys. Rev. B 84 235126Google Scholar

    [14]

    Weng H M, Liang Y Y, Xu Q N, Fang Z, Dai X, Kawazoe Y 2015 Phys. Rev. B 92 045108Google Scholar

    [15]

    Bian G, Chang T R, Sankar R, Xv S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G Q, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B K, Lee C C, Jeng H T, Zhang C L, Yuan Z J, Jia S, Bansil A, Chou F C, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556Google Scholar

    [16]

    Schoop L M, Ali M N, Straber C, Andreas T, Varykhalov A, Marchenko D, Duppel V, Parkin S S, Lotsch B V, Ast C R 2016 Nat. Commun. 7 11696Google Scholar

    [17]

    Takane D, Wang Z W, Souma S, Nakayama K, Trang C X, Sato T, Takahashi T, Ando Y 2016 Phys. Rev. B 94 121108(RGoogle Scholar

    [18]

    Hu J, Tang Z J, Liu J Y, Liu X, Zhu Y L, Graf D, Myhro K, Tran S, Lau C N, Wei J, Mao Z Q 2016 Phys. Rev. Lett. 117 016602Google Scholar

    [19]

    Kumar N, Manna K, Qi Y P, Wu S C, Wang L, Yan B H, Felser C, Shekhar C 2017 Phys. Rev. B 95 121109(RGoogle Scholar

    [20]

    Chen W, Luo K, Li L, Zilberberg O 2018 Phys. Rev. Lett. 121 166802Google Scholar

    [21]

    Liu J P, Balents L 2017 Phys. Rev. B 95 075426Google Scholar

    [22]

    Song C Y, Liu L L, Cui S T, Gao J J, Song P B, Jin L, Zhao W J, Sun Z, Zhang X M, Zhao L, Luo X, Sun Y P, Shi Y G, Zhang H J, Liu G D, Zhou X J 2023 Phys. Rev. B 107 045142Google Scholar

    [23]

    Chan Y H, Chiu C K, Chou M Y, Schnyder A P 2016 Phys. Rev. B 93 205132Google Scholar

    [24]

    Ryu S, Hatsugai Y 2002 Phys. Rev. Lett. 89 077002Google Scholar

    [25]

    Hirayama M, Okugawa R, Miyake T, Murakami S 2017 Nat. Commun. 8 14022Google Scholar

    [26]

    Mahan G D 2000 Many-Particle Physics (New York: Kluwer Academic/Plenum Publishers) p414

    [27]

    Chen W, Lado J L 2019 Phys. Rev. Lett. 122 016803Google Scholar

    [28]

    BenDaniel D J, Duke C B 1966 Phys. Rev. 152 683Google Scholar

    [29]

    Zulicke U, Schroll C 2002 Phys. Rev. Lett. 88 029701Google Scholar

    [30]

    Ryndyk D A 2016 Theory of Quantum Transport at Nanoscale: An Introduction (Springer International, Cham) p90

    [31]

    Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press) P239

  • 图 1  节线半金属鼓面态自旋劈裂示意图. 绿色实线表示节线环, 饼型圆盘表示劈裂后的鼓面态色散关系

    Figure 1.  Schematic diagram for the spin splitting of the drumheadlike surface states. The green solid line represents the nodal loop, and the pie-shaped disk represents the dispersion relationship of the spin-splitting drumheadlike surface states

    图 2  电子自旋翻转反射与能量的依赖关系. θ 为入射电子与z方向夹角, $\varDelta_0=\varDelta({\boldsymbol{k}}_{/ /}=0)$是电子垂直入射时的有效能隙. 相关参数取$ B=C=1\; {\rm{eV}}{\cdot} {\rm{nm}}^2 $, $ \lambda=0.01\; {\rm{eV}}{\cdot} {\rm{nm}} $, $|{\boldsymbol{k}}_{\rm{F}}|=1.1 k_0=1.54\; {\rm{nm}}^{-1}$, $ D=3\; {\rm{eV}} $

    Figure 2.  Probability of electron spin-flipped reflection $ R_{\rm{f }}$ vs. E for different angles of incidence θ (relative to z axis). $\varDelta_0$ is the effective energy gap when θ is zero. Relevant parameters take: $ B=C=1\; {\rm{eV}}{\cdot}{\rm{ nm}}^2 $, $ \lambda=0.01\; {\rm{eV}}{\cdot}{\rm{nm}} $, $ |{\boldsymbol{k}}_{\rm{F}}|= $$ 1.1 k_0=1.54\;{\rm{ nm}}^{-1} $, $ D=3\;{\rm{ eV}} $

    图 3  隧穿哈密顿量方法求得的自旋翻转反射系数. 相关参数取$ E_-=-E_+=8\; {\rm{meV}} $, $ \varGamma=0.5 $, $ 3.0 $, $ 5.5\, {\rm{meV}} $

    Figure 3.  Probability of spin-flipped reflection solved by Green's function as a function of energy with the following parameters: $ E_- = -E_+ = 8\; {\rm{meV}} $, $\varGamma = 0.5$, $ 3.0 $, $ 5.5\; {\rm{meV}} $

    图 4  自旋电导、电荷电导与能量的依赖关系. 实线表示鼓面态无色散, 虚线表示鼓面态存在色散. 相关参数取$ B=C= $$ 1\; {\rm{eV}}{\cdot} {\rm{nm}}^2 $, $ \lambda=0.01\; {\rm{eV}}{\cdot}{\rm{ nm}} $, $ |{\boldsymbol{k}}_{\rm{F}}|=1.1 k_0=1.54\; {\rm{nm}}^{-1} $, $ D= $$ 3\; {\rm{eV}} $, $ a=2\; {\rm{meV}}{\cdot} {\rm{nm}}^2 $

    Figure 4.  Spin (charge) conductance as a function of energy with (without) drumheadlike surface states dispersion. Relevant parameters take: $ B=C=1\;{\rm{ eV}}{\cdot }{\rm{nm}}^2 $, $ \lambda=0.01\; {\rm{eV}}{\cdot }{\rm{nm}} $, $ |{\boldsymbol{k}}_{\rm{F}}|=1.1 k_0=1.54\; {\rm{nm}}^{-1} $, $ D=3\; {\rm{eV}} $, $ a=2\; {\rm{meV}}{\cdot} {\rm{nm}}^2 $

  • [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    初纯光, 王安琦, 廖志敏 2023 物理学报 72 087401Google Scholar

    Chu C G, Wang A Q, Liao Z M 2023 Acta Phys. Sin. 72 087401Google Scholar

    [4]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [5]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [6]

    Halperin B I 1982 Phys. Rev. B 25 2185Google Scholar

    [7]

    耿逸飞, 王铸宁, 马耀光, 高飞 2019 物理学报 68 224101Google Scholar

    Geng Y F, Wang Z N, Ma Y G, Gao F 2019 Acta Phys. Sin. 68 224101Google Scholar

    [8]

    Xue S W, Wang M Y, Zhang S Y, Jia X, Zhou J H, Shi Y G, Zhu X T, Yao Y G, Guo J D 2021 Phys. Rev. Lett. 127 186802Google Scholar

    [9]

    Weng H M, Dai X, Fang Z 2016 J. Phys. Condens. Matter 28 303001Google Scholar

    [10]

    Murakami S 2007 New J. Phys. 9 356Google Scholar

    [11]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [12]

    Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029Google Scholar

    [13]

    Burkov A A, Hook M D, Balents L 2011 Phys. Rev. B 84 235126Google Scholar

    [14]

    Weng H M, Liang Y Y, Xu Q N, Fang Z, Dai X, Kawazoe Y 2015 Phys. Rev. B 92 045108Google Scholar

    [15]

    Bian G, Chang T R, Sankar R, Xv S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G Q, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B K, Lee C C, Jeng H T, Zhang C L, Yuan Z J, Jia S, Bansil A, Chou F C, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556Google Scholar

    [16]

    Schoop L M, Ali M N, Straber C, Andreas T, Varykhalov A, Marchenko D, Duppel V, Parkin S S, Lotsch B V, Ast C R 2016 Nat. Commun. 7 11696Google Scholar

    [17]

    Takane D, Wang Z W, Souma S, Nakayama K, Trang C X, Sato T, Takahashi T, Ando Y 2016 Phys. Rev. B 94 121108(RGoogle Scholar

    [18]

    Hu J, Tang Z J, Liu J Y, Liu X, Zhu Y L, Graf D, Myhro K, Tran S, Lau C N, Wei J, Mao Z Q 2016 Phys. Rev. Lett. 117 016602Google Scholar

    [19]

    Kumar N, Manna K, Qi Y P, Wu S C, Wang L, Yan B H, Felser C, Shekhar C 2017 Phys. Rev. B 95 121109(RGoogle Scholar

    [20]

    Chen W, Luo K, Li L, Zilberberg O 2018 Phys. Rev. Lett. 121 166802Google Scholar

    [21]

    Liu J P, Balents L 2017 Phys. Rev. B 95 075426Google Scholar

    [22]

    Song C Y, Liu L L, Cui S T, Gao J J, Song P B, Jin L, Zhao W J, Sun Z, Zhang X M, Zhao L, Luo X, Sun Y P, Shi Y G, Zhang H J, Liu G D, Zhou X J 2023 Phys. Rev. B 107 045142Google Scholar

    [23]

    Chan Y H, Chiu C K, Chou M Y, Schnyder A P 2016 Phys. Rev. B 93 205132Google Scholar

    [24]

    Ryu S, Hatsugai Y 2002 Phys. Rev. Lett. 89 077002Google Scholar

    [25]

    Hirayama M, Okugawa R, Miyake T, Murakami S 2017 Nat. Commun. 8 14022Google Scholar

    [26]

    Mahan G D 2000 Many-Particle Physics (New York: Kluwer Academic/Plenum Publishers) p414

    [27]

    Chen W, Lado J L 2019 Phys. Rev. Lett. 122 016803Google Scholar

    [28]

    BenDaniel D J, Duke C B 1966 Phys. Rev. 152 683Google Scholar

    [29]

    Zulicke U, Schroll C 2002 Phys. Rev. Lett. 88 029701Google Scholar

    [30]

    Ryndyk D A 2016 Theory of Quantum Transport at Nanoscale: An Introduction (Springer International, Cham) p90

    [31]

    Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press) P239

  • [1] Wei Lu-Jun, Li Yang-Hui, Pu Yong. Magnetization switching driven by spin-orbit torque of Weyl semimetal WTe2. Acta Physica Sinica, 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [2] Zhu Pang-Dong, Wang Chang-Hao, Wang Ru-Zhi. Variations of topological surface states of nodal line semimetal AlB2 after adsorption in aqueous environment. Acta Physica Sinica, 2024, 73(12): 127101. doi: 10.7498/aps.73.20240404
    [3] Zhan Shao-Kang, Wang Jin-Dong, Dong Shuang, Huang Si-Ying, Hou Qing-Cheng, Mo Nai-Da, Mi Shang, Xiang Li-Bing, Zhao Tian-Ming, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Finite-key analysis of decoy model semi-quantum key distribution based on four-state protocol. Acta Physica Sinica, 2023, 72(22): 220303. doi: 10.7498/aps.72.20230849
    [4] Lao Bin, Zheng Xuan, Li Sheng, Wang Zhi-Ming. Research progress of novel quantum states and charge-spin interconversion in transition metal oxides. Acta Physica Sinica, 2023, 72(9): 097702. doi: 10.7498/aps.72.20222219
    [5] Xu Bing, Qiu Zi-Yang, Yang Run, Dai Yao-Min, Qiu Xiang-Gang. Optical properties of topological semimetals. Acta Physica Sinica, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [6] Wang Shan-Shan, Wu Wei-Kang, Yang Sheng-Yuan. Progress on topological nodal line and nodal surface. Acta Physica Sinica, 2019, 68(22): 227101. doi: 10.7498/aps.68.20191538
    [7] Yi Chang-Jiang, Wang Le, Feng Zi-Li, Yang Meng, Yan Da-Yu, Wang Cui-Xiang, Shi You-Guo. Research progress of single crystal growth for topological semimetals. Acta Physica Sinica, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [8] Zhao Wen-Jing, Wen Ling-Hua. Quantum reflection and interference of spin-dependent Bose-Einstein condensates in semi-infinite potential wells. Acta Physica Sinica, 2017, 66(23): 230301. doi: 10.7498/aps.66.230301
    [9] Zhang Zhen-Qing, Lu Hai, Wang Shao-Hua, Wei Ze-Yong, Jiang Hai-Tao, Li Yun-Hui. Optical Tamm state and related lasing effect enhanced by planar plasmonic metamaterials. Acta Physica Sinica, 2015, 64(11): 114202. doi: 10.7498/aps.64.114202
    [10] Bo Li-Juan, Chen Yan-Rong, Wang Pei-Jie, Fang Yan. The study of nonresonant Raman excited virtual state of carbazole molecule. Acta Physica Sinica, 2011, 60(12): 123301. doi: 10.7498/aps.60.123301
    [11] Mei Ye, Chen Liang, Cao Yong-Zhen, Liu Bao-Qin, He Jun-Hui, Zhu Zeng-Wei, Xu Zhu-An. Spin-glass behavior and valence states of transition-metal ions of SrMn0.5Fe0.5O3. Acta Physica Sinica, 2010, 59(4): 2795-2800. doi: 10.7498/aps.59.2795
    [12] Yu Qian-Ying, Zhang Jin-Cang, Jia Rong-Rong, Jing Chao, Cao Shi-Xun. Abnormal transport behavior in the mult-spin Co-doped La2/3Ca1/3MnO3 manganites. Acta Physica Sinica, 2008, 57(1): 453-459. doi: 10.7498/aps.57.453
    [13] Qiu Mei-Qing, Fang Ming-Hu. Metal-insulator transition and spin-glass behavior in Eu2-xPbx Ru2O7 system. Acta Physica Sinica, 2006, 55(9): 4912-4917. doi: 10.7498/aps.55.4912
    [14] Li Xiao-Wei, Liu Shu-Jing. Tunneling conductance anomalies in normal metal/triplet superconductor junction. Acta Physica Sinica, 2006, 55(2): 834-838. doi: 10.7498/aps.55.834
    [15] Chen Wei-Ping, Feng Shang-Shen, Jiao Zheng-Kuan. Spin polarized dependent Hall effect in metallic granular film Fe15.16Ag84.84. Acta Physica Sinica, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [16] Chen Zhi-Qian, Zheng Ren-Rong. . Acta Physica Sinica, 2002, 51(7): 1604-1607. doi: 10.7498/aps.51.1604
    [17] Yao Chun-Mei, Guo Guang-Can. . Acta Physica Sinica, 2001, 50(1): 59-62. doi: 10.7498/aps.50.59
    [18] DONG ZHENG-CHAO, SHENG LI, XING DING-YU, DONG JIN-MING. QUANTUM TRANSPORT THEORY IN METALLIC FILMS. Acta Physica Sinica, 1997, 46(3): 568-578. doi: 10.7498/aps.46.568
    [19] SHUAI ZHI-GANG, SUN XIN, FU ROU-LI. CORRELATED-BASIS-FUNCTION THEORY FOR EXCITED STATES. Acta Physica Sinica, 1989, 38(10): 1648-1657. doi: 10.7498/aps.38.1648
    [20] WU ZHI-YU, WANG KE-LIN. THE FIELD EQUATION OF HALF-INTEGER SPIN IN CURVED SPACE-TIME. Acta Physica Sinica, 1985, 34(5): 588-593. doi: 10.7498/aps.34.588
Metrics
  • Abstract views:  3194
  • PDF Downloads:  149
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2023
  • Accepted Date:  27 July 2023
  • Available Online:  02 August 2023
  • Published Online:  05 September 2023

/

返回文章
返回