Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of single vacancy defects on two-dimensional δ-InSe stability

Miao Rui-Xia Wang Ye-Fei Xie Miao-Chun Zhang De-Dong

Citation:

Effect of single vacancy defects on two-dimensional δ-InSe stability

Miao Rui-Xia, Wang Ye-Fei, Xie Miao-Chun, Zhang De-Dong
PDF
HTML
Get Citation
  • The two-dimensional (2D) semiconductor material of InSe has received much attention due to its excellent electrical properties and moderate adjustable bandgap. The vacancy defects in the material affect not only the optical and electrical properties, but also the environmental stability. Compared with other phases in InSe materials, δ-InSe has superior material properties, however, the effect of environment on this material stabilityhas not been reported. In this work, we systematically investigate the stability of 2D δ-InSe material under oxygen environment based on density functional theory. The results are shown below. Firstly, in an oxygen environment, the perfect δ-InSe surface exhibits good inertness and stability, for O2 molecules need to overcome an exceptionally high energy barrier of 1.827 eV from physical adsorption to chemical adsorption on its surface. Secondly, the presence of Se vacancies (VSe) promotes the oxidation reaction of δ-InSe, which only requires overcoming a low energy barrier of 0.044 eV. This suggests that the stability of δ-InSe in an oxygen environment is significantly reduced because of the presence of VSe. The O2 molecules oxidized δ-InSe monolayer is beneficial to the dissociation and adsorption of H2O molecules. Finally, the oxidation rate of δ-InSe with In vacancies (VIn) is slower, with the adsorption energy and charge transfer involved in the physical adsorption of O2 molecules on the VIn surface being similar to those on a perfect surface. The oxidation process needs to overcome a higher energy barrier of 1.234 eV. The findings of this study will provide theoretical guidance for better understanding the oxidation behavior of single vacancy defects in monolayer δ-InSe, and reference for experimental preparation of high-reliability 2D δ-InSe devices.
      Corresponding author: Miao Rui-Xia, miao9508301@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51302215, 62105260, 12004303).
    [1]

    Hu Y X, Feng W, Dai M J, Yang H H, Chen X S, Liu G B, Zhang S C, Hu P A 2018 Semicond. Sci. Technol. 33 125002Google Scholar

    [2]

    Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F C, Chen Y T, Gao X P 2015 Nano Lett. 15 3815Google Scholar

    [3]

    Han G, Chen Z G, Drennan J, Zou J 2014 Small 10 2747Google Scholar

    [4]

    Boukhvalov D W, Gürbulak B, Duman S, Wang L, Politano A, Caputi L S, Chiarello G, Cupolillo A 2017 Nanomaterials 7 372Google Scholar

    [5]

    Hao Q, Yi H, Su H, Wei B, Wang Z, Lao Z, Chai Y, Wang Z, Jin C, Dai J 2019 Nano Lett. 19 2634Google Scholar

    [6]

    Sun Y, Li Y, Li T, Biswas K, Patanè A, Zhang L 2020 Adv. Funct. Mater. 30 2001920Google Scholar

    [7]

    Wei X, Dong C, Xu A, Li X 2019 Appl. Surf. Sci. 475 487Google Scholar

    [8]

    Kistanov A A, Cai Y, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 518Google Scholar

    [9]

    Shi L, Zhou Q, Zhao Y, Ouyang Y, Ling C, Li Q, Wang J 2017 J. Phys. Chem. Lett. 8 4368Google Scholar

    [10]

    Xiao K, Carvalho A, Neto A C 2017 Phys. Rev. B 96 054112Google Scholar

    [11]

    苗瑞霞, 谢妙春, 程开, 李田甜, 杨小峰, 王业飞, 张德栋 2023 物理学报 72 123101Google Scholar

    Miao R X, Xie M C, Cheng K, Li T T, Yang X F, Wang Y F, Zhang D D 2023 Acta Phys. Sin. 72 123101Google Scholar

    [12]

    Gao J, Li B, Tan J, Chow P, Lu T M, Koratkar N 2016 ACS Nano 10 2628Google Scholar

    [13]

    Kc S, Longo R C, Wallace R M, Cho K 2015 J. Appl. Phys. 117 135301Google Scholar

    [14]

    Guo Y, Zhou S, Bai Y, Zhao J 2017 J. Chem. Phys. 147 104709Google Scholar

    [15]

    Tamalampudi S R, Lu Y Y, U R K, Sankar R, Liao C D, Cheng C H, Chou F C, Chen Y T 2014 Nano Lett. 14 2800Google Scholar

    [16]

    Hohenberg P, Kohn W 1964 Tech. Phys. 136 B864Google Scholar

    [17]

    Kohn W, Sham L J 1965 Tech. Phys. 140 A1133Google Scholar

    [18]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [19]

    Wei X, Dong C, Xu A, Li X, MacDonald D D 2018 Phys. Chem. Chem. Phys. 20 2238Google Scholar

    [20]

    Wu X, Vargas M, Nayak S, Lotrich V, Scoles G 2001 J. Chem. Phys. 115 8748Google Scholar

    [21]

    刘子媛, 潘金波, 张余洋, 杜世萱 2021 物理学报 70 027301Google Scholar

    Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301Google Scholar

    [22]

    Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109Google Scholar

    [23]

    Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Mills G, Jónsson H, Schenter G K 1995 Surf. Sci. 324 305Google Scholar

    [26]

    Kistanov A A, Cai Y, Kripalani D R, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 4308Google Scholar

    [27]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301Google Scholar

    Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301Google Scholar

    [28]

    Ma D, Ju W, Tang Y, Chen Y 2017 Appl. Surf. Sci. 426 244Google Scholar

    [29]

    Ma D, Li T, He C, Lu Z, Lu Z, Yang Z, Wang Y 2017 arXiv: 1705.05140 [cond-mat.mtrl-sci

  • 图 1  完美δ-InSe单层的晶体结构、能带结构和态密度图 (a) 完美δ-InSe单层超胞结构(俯视图和侧视图), 绿色代表Se原子, 紫色代表In原子; (b) 完美δ-InSe单层的能带结构, 蓝色实线箭头代表带隙(Eg), 绿色虚线代表费米能级(Ef); (c), (d) 完美δ-InSe单层的TDOS和PDOS

    Figure 1.  Crystal structure, band structure, and density of states diagram of perfect δ-InSe monolayer: (a) Supercell structure of perfect δ-InSe monolayer (top view and side view), where green represents Se atoms and purple represents In atoms; (b) band structure of perfect δ-InSe monolaye, where the blue solid arrow represents the band gap (Eg) and the green dashed line represents the Fermi level (Ef); (c), (d) TDOS and PDOS of perfect δ-InSe monolayer.

    图 2  O2分子在完美δ-InSe单层表面的不同吸附位点(侧视图和俯视图), 红色代表O原子 (a), (e) TIn; (b), (f) TSe2; (c), (g) TB; (d), (h) TSe1

    Figure 2.  Different adsorption sites of O2 molecules on the perfect δ-InSe monolayer surface (side view and top view), with red representing O atoms: (a), (e) TIn; (b), (f) TSe2; (c), (g) TB; (d), (h) TSe1.

    图 3  O2分子在完美δ-InSe单层上解离成两个O原子的反应途径

    Figure 3.  Reaction pathway for an O2 molecule to dissociate into two O atom on perfect δ-InSe monolayer.

    图 4  δ-InSe-VSe的晶体结构、能带结构和态密度图 (a) δ-InSe-VSe晶体结构(俯视图和侧视图); (b) δ-InSe-VSe的能带结构, 蓝色实线箭头代表带隙(Eg), 绿色虚线代表费米能级(Ef); (c), (d) δ-InSe-VSe单层的TDOS和PDOS

    Figure 4.  Crystal structure, band structure, and density of states diagram of δ-InSe-VSe: (a) Crystal structure diagrams of δ-InSe-VSe (top view and side view); (b) band structure of δ-InSe-VSe, where the blue solid arrow represents the band gap (Eg) and the green dashed line represents the Fermi level (Ef); (c), (d) TDOS and PDOS of δ-InSe-VSe.

    图 5  δ-InSe-VIn的晶体结构、能带结构和态密度图 (a) δ-InSe-VIn晶体结构(俯视图和侧视图); (b) δ-InSe-VIn的能带结构; (c), (d) δ-InSe-VIn单层的TDOS和PDOS

    Figure 5.  Crystal structure, band structure, and density of states diagram of δ-InSe-VIn: (a) Crystal structure diagrams of δ-InSe-VIn (top view and side view); (b) band structure of δ-InSe-VIn; (c), (d) TDOS and PDOS of δ-InSe-VIn.

    图 6  O2分子在δ-InSe-VSeδ-InSe-VIn的吸附位点(侧视图和俯视图) (a) TVSe-1; (b) TVSe-2; (c) TVIn-1; (d) TVIn-2

    Figure 6.  Adsorption sites of O2 molecules on the δ-InSe-VSe and δ-InSe-VIn (top view and side view): (a) TVSe-1; (b) TVSe-2; (c) TVIn-1; (d) TVIn-2.

    图 7  O2分子吸附在δ-InSe单层的差分电荷密度, 黄色部分表示电荷积累区域, 蓝色部分表示电荷损耗区域(等值面设为1.5×10–4 e/Bohr3) (a) O2分子在完美δ-InSe的差分电荷密度; (b) O2分子在δ-InSe-VSe的差分电荷密度; (c) O2分子在δ-InSe-VIn的差分电荷密度

    Figure 7.  Differential charge density of O2 adsorbed on δ-InSe monolayer, where yellow regions indicate charge accumulation and blue regions indicate charge depletion (the equivalent surface is set to 1.5×10–4 e/Bohr3) : (a) Differential charge density of O2 adsorbed on perfect δ-InSe; (b) differential charge density of O2 adsorbed on δ-InSe-VSe; (c) differential charge density of O2 adsorbed on δ-InSe-VIn.

    图 8  O2分子在δ-InSe-VSe解离成两个O原子的反应途径

    Figure 8.  Reaction pathway for an O2 molecule to dissociate into two O atom on δ-InSe-VSe.

    图 9  O2分子在δ-InSe-VIn解离成两个O原子的反应途径

    Figure 9.  Reaction pathway for an O2 molecule to dissociate into two O atom on δ-InSe-VIn.

    图 10  H2O分子在被O2氧化的δ-InSe单层上发生解离的反应途径

    Figure 10.  Dissociation pathway of H2O molecules on the δ-InSe monolayer oxidized by oxygen.

    表 1  O2分子在完美δ-InSe单层表面吸附的吸附能($ {E}_{{\mathrm{a}}{\mathrm{d}}} $)和吸附距离($ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}} $)

    Table 1.  Adsorption energy ($ {E}_{{\mathrm{a}}{\mathrm{d}}} $) and adsorption distance ($ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}} $) of O2 molecules on perfect δ-InSe monolayer surface.

    δ-InSeTIn siteTSe2 siteTB siteTSe1 site
    $ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $$ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $$ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $$ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $$ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $$ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $$ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $$ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $
    O2δ-InSe3.19–0.0783.30–0.0763.59–0.0643.65–0.049
    O2δ-InSe3.46–0.0703.82–0.0604.17–0.0474.19–0.036
    DownLoad: CSV

    表 2  O2分子在δ-InSe-VSeδ-InSe-VIn表面的吸附能($ {E}_{{\mathrm{a}}{\mathrm{d}}} $)和吸附距离($ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}} $)

    Table 2.  Adsorption energy ($ {E}_{{\mathrm{a}}{\mathrm{d}}} $) and adsorption distance ($ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}} $) of O2 molecules on δ-InSe-VSe and δ-InSe-VIn surfaces, respectively.

    TVSe-1 site TVSe-2 site TVIn-1 site TVIn-2 site
    $ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $ $ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $ $ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $ $ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $ $ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $ $ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $ $ {h}_{{\mathrm{a}}{\mathrm{v}}{\mathrm{e}}}/{\mathrm{\AA }} $ $ {E}_{{\mathrm{a}}{\mathrm{d}}}/{\mathrm{e}}{\mathrm{V}} $
    1.83 –0.152 2.65 –0.097 2.63 –0.093 2.97 –0.077
    DownLoad: CSV
  • [1]

    Hu Y X, Feng W, Dai M J, Yang H H, Chen X S, Liu G B, Zhang S C, Hu P A 2018 Semicond. Sci. Technol. 33 125002Google Scholar

    [2]

    Sucharitakul S, Goble N J, Kumar U R, Sankar R, Bogorad Z A, Chou F C, Chen Y T, Gao X P 2015 Nano Lett. 15 3815Google Scholar

    [3]

    Han G, Chen Z G, Drennan J, Zou J 2014 Small 10 2747Google Scholar

    [4]

    Boukhvalov D W, Gürbulak B, Duman S, Wang L, Politano A, Caputi L S, Chiarello G, Cupolillo A 2017 Nanomaterials 7 372Google Scholar

    [5]

    Hao Q, Yi H, Su H, Wei B, Wang Z, Lao Z, Chai Y, Wang Z, Jin C, Dai J 2019 Nano Lett. 19 2634Google Scholar

    [6]

    Sun Y, Li Y, Li T, Biswas K, Patanè A, Zhang L 2020 Adv. Funct. Mater. 30 2001920Google Scholar

    [7]

    Wei X, Dong C, Xu A, Li X 2019 Appl. Surf. Sci. 475 487Google Scholar

    [8]

    Kistanov A A, Cai Y, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 518Google Scholar

    [9]

    Shi L, Zhou Q, Zhao Y, Ouyang Y, Ling C, Li Q, Wang J 2017 J. Phys. Chem. Lett. 8 4368Google Scholar

    [10]

    Xiao K, Carvalho A, Neto A C 2017 Phys. Rev. B 96 054112Google Scholar

    [11]

    苗瑞霞, 谢妙春, 程开, 李田甜, 杨小峰, 王业飞, 张德栋 2023 物理学报 72 123101Google Scholar

    Miao R X, Xie M C, Cheng K, Li T T, Yang X F, Wang Y F, Zhang D D 2023 Acta Phys. Sin. 72 123101Google Scholar

    [12]

    Gao J, Li B, Tan J, Chow P, Lu T M, Koratkar N 2016 ACS Nano 10 2628Google Scholar

    [13]

    Kc S, Longo R C, Wallace R M, Cho K 2015 J. Appl. Phys. 117 135301Google Scholar

    [14]

    Guo Y, Zhou S, Bai Y, Zhao J 2017 J. Chem. Phys. 147 104709Google Scholar

    [15]

    Tamalampudi S R, Lu Y Y, U R K, Sankar R, Liao C D, Cheng C H, Chou F C, Chen Y T 2014 Nano Lett. 14 2800Google Scholar

    [16]

    Hohenberg P, Kohn W 1964 Tech. Phys. 136 B864Google Scholar

    [17]

    Kohn W, Sham L J 1965 Tech. Phys. 140 A1133Google Scholar

    [18]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [19]

    Wei X, Dong C, Xu A, Li X, MacDonald D D 2018 Phys. Chem. Chem. Phys. 20 2238Google Scholar

    [20]

    Wu X, Vargas M, Nayak S, Lotrich V, Scoles G 2001 J. Chem. Phys. 115 8748Google Scholar

    [21]

    刘子媛, 潘金波, 张余洋, 杜世萱 2021 物理学报 70 027301Google Scholar

    Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301Google Scholar

    [22]

    Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109Google Scholar

    [23]

    Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Mills G, Jónsson H, Schenter G K 1995 Surf. Sci. 324 305Google Scholar

    [26]

    Kistanov A A, Cai Y, Kripalani D R, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 4308Google Scholar

    [27]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301Google Scholar

    Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301Google Scholar

    [28]

    Ma D, Ju W, Tang Y, Chen Y 2017 Appl. Surf. Sci. 426 244Google Scholar

    [29]

    Ma D, Li T, He C, Lu Z, Lu Z, Yang Z, Wang Y 2017 arXiv: 1705.05140 [cond-mat.mtrl-sci

  • [1] Lei Zhao-Kang, Wu Yao-Rong, Huang Chen-Yang, Mo Run-Yang, Shen Zhuang-Zhi, Wang Cheng-Hui, Guo Jian-Zhong, Lin Shu-Yu. Stability analysis of ring-like cavitation bubble cluster structure in standing wave field. Acta Physica Sinica, 2024, 73(8): 084301. doi: 10.7498/aps.73.20231956
    [2] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound. Acta Physica Sinica, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [4] Wang Chao, Liu Cheng-Yuan, Hu Yuan-Ping, Liu Zhi-Hong, Ma Jian-Feng. Stability of information spreading over social network. Acta Physica Sinica, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [5] Wang Zhuan-Yu, Kang Wei-Li, Jia Jian-Feng, Wu Hai-Shun. Structure and stability of Ti2Bn (n=1-10) clusters: an ab initio investigation. Acta Physica Sinica, 2014, 63(23): 233102. doi: 10.7498/aps.63.233102
    [6] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [7] Li Xiu-Ping, Wang Shan-Jin, Chen Qiong, Luo Shi-Yu. Parametric excitation and stability of crystalline undulator radiation. Acta Physica Sinica, 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [8] Zhang Zhen-Jiang, Hu Xiao-Hui, Sun Li-Tao. Single-vacancy-induced transformation of electronic properties in armchair graphene nanoribbons. Acta Physica Sinica, 2013, 62(17): 177101. doi: 10.7498/aps.62.177101
    [9] Wang Can-Jun, Li Jiang-Cheng, Mei Dong-Cheng. Effect of noises on the stability of a metapopulation. Acta Physica Sinica, 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [10] Zhang Juan, Zhou Zhi-Gang, Shi Yu-Ren, Yang Hong-Juan, Duan Wen-Shan. The stability of solitay wave solution to a modified Kadomtsev-Petviashvili equation. Acta Physica Sinica, 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [11] Song Jian, Li Feng, Deng Kai-Ming, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Wu Hai-Ping. Density functional study on the stability and electronic structure of single layer Si6H4Ph2. Acta Physica Sinica, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [12] Jin Rong, Chen Xiao-Hong. Structures and stabilities of VOxH2O (x= 15) clusters. Acta Physica Sinica, 2012, 61(9): 093103. doi: 10.7498/aps.61.093103
    [13] Li Shou-Yang, Sun Ji-Zhong, Zhang Zhi-Hai, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of energy exchange during hydrogen collision with graphite sheet containing a vacancy. Acta Physica Sinica, 2011, 60(5): 057901. doi: 10.7498/aps.60.057901
    [14] Shi Yu-Ren, Zhang Juan, Yang Hong-Juan, Duan Wen-Shan. Single soliton of double kinks of the mKdV equation and its stability. Acta Physica Sinica, 2010, 59(11): 7564-7569. doi: 10.7498/aps.59.7564
    [15] Ouyang Yu, Peng Jing-Cui, Wang Hui, Yi Shuang-Ping. Study on the stability of carbon nanotubes. Acta Physica Sinica, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [16] Ouyang Fang-Ping, Wang Huan-You, Li Ming-Jun, Xiao Jin, Xu Hui. Study on electronic structure and transport properties of graphene nanoribbons with single vacancy defects. Acta Physica Sinica, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [17] Li Juan, Wu Chun-Ya, Zhao Shu-Yun, Liu Jian-Ping, Meng Zhi-Guo, Xiong Shao-Zhen, Zhang Fang. Investigation on stability of microcrystalline silicon thin film transistors. Acta Physica Sinica, 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [18] Wang Yan, Han Xiao-Yan, Ren Hui-Zhi, Hou Guo-Fu, Guo Qun-Chao, Zhu Feng, Zhang De-Kun, Sun Jian, Xue Jun-Ming, Zhao Ying, Geng Xin-Hua. Stability of mixed phase silicon thin film material under light soaking. Acta Physica Sinica, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [19] Zhang Kai, Feng Jun. Symmetry and stability of a relativistic birkhoff system. Acta Physica Sinica, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
    [20] Ouyang Shi-Gen, Jiang De-Sheng, She Wei-Long. Stability of photovotaic spatial soliton with two-wavelength components. Acta Physica Sinica, 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
Metrics
  • Abstract views:  2430
  • PDF Downloads:  37
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2023
  • Accepted Date:  26 September 2023
  • Available Online:  16 November 2023
  • Published Online:  20 February 2024

/

返回文章
返回