Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical prediction of C- and O-doped Hittorf’s violet phosphorene as bipolar magnetic semiconductor material

Lu Yi-Lin Dong Sheng-Jie Cui Fang-Chao Zhang Kai-Cheng Liu Chun-Mei Li Jie-Sen Mao Zhuo

Citation:

Theoretical prediction of C- and O-doped Hittorf’s violet phosphorene as bipolar magnetic semiconductor material

Lu Yi-Lin, Dong Sheng-Jie, Cui Fang-Chao, Zhang Kai-Cheng, Liu Chun-Mei, Li Jie-Sen, Mao Zhuo
PDF
HTML
Get Citation
  • Hittorf’s violet phosphorene is a novel two-dimensional material with stable structure and excellent optoelectronic properties. Studying the doping effect helps to understand its physical essence and is of great significance in further developing nanoelectronic devices. In this paper, the first-principles method based on density functional theory is used to study the electromagnetic properties of the non-metallic element B-, C-, N-, and O-doped single-layer violet phosphene. The results show that there is no magnetism after having doped boron and nitrogen, and the system still behaves as a nonmagnetic semiconductor, while carbon doping and oxygen doping cause spin splitting, and the violet phosphorene transforms from a nonmagnetic semiconductor to a bipolar magnetic semiconductor, and its spin density is mainly distributed in the P atom and gap region, rather than on the impurity. The direction of spin polarization of its carrier can be reversed by adjusting the electric field of O-doped violet phosphorene. When a certain size of forward or reverse electrostatic field is applied, the band dispersion becomes stronger, and the O-doped violet phosphorene transforms into a half-metallic magnet with 100% downward or upward spin polarization at the Fermi level. The field effect spin filter based on O-doped violet phosphorene can reverse the direction of spin-polarized current by changing the direction of the gate voltage. This study shows that O-doped violet phosphorene is expected to be an ideal candidate material for two-dimensional spin field-effect transistors, bipolar magnetic spintronic devices, dual channel field effect spin filters, and field-effect spin valves.
      Corresponding author: Lu Yi-Lin, yilinlu@tju.edu.cn ; Dong Sheng-Jie, shengjiedong@tju.edu.cn
    • Funds: Project supported by the Scientific Research Fund of the Education Department of Liaoning Province, China (Grant No. LJKQZ20222272) and the Open Project of the Institute of Ocean Research, Bohai University, China. (Grant No. BDHYYJY2023015).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, Lu J 2012 Nano Lett. 12 113Google Scholar

    [3]

    Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K 2012 Phys. Rev. Lett. 109 056804Google Scholar

    [4]

    Chiappe D, Grazianetti C, Tallarida G, Fanciulli M, Molle A 2012 Adv. Mater. 24 5088Google Scholar

    [5]

    Zhu C, Shao R, Chen S, Cai R, Wu Y, Yao L, Xia W, Nie M, Sun L, Gao P, Xin H L, Xu F 2019 Small Methods 3 1900061Google Scholar

    [6]

    Wu G, Wu X, Xu Y, Cheng H, Meng J, Yu Q, Shi X, Zhang K, Chen W, Chen S 2019 Adv. Mater. 31 1806492Google Scholar

    [7]

    Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S, Matsuda I 2017 Phys. Rev. Lett. 118 096401Google Scholar

    [8]

    Kiraly B, Liu X, Wang L, Zhang Z, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816Google Scholar

    [9]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [10]

    Zhou Q, Chen Q, Tong Y, Wang J 2016 Angew. Chem. Int. Ed. 55 11437Google Scholar

    [11]

    Chen Z, Zhu Y, Wang Q, Liu W, Cui Y, Tao X, Zhang D 2019 Electrochimica Acta 295 230Google Scholar

    [12]

    Tsai H S, Lai C C, Hsiao C H, Medina H, Su T Y, Ouyang H, Chen T H, Liang J H, Chueh Y L 2015 ACS Appl. Mater. Interf. 7 13723Google Scholar

    [13]

    Schusteritsch G, Uhrin M, Pickard C J 2016 Nano Lett. 16 2975Google Scholar

    [14]

    Lu Y L, Dong S, Zhou W, Dai S, Zhou B, Zhao H, Wu P 2018 Phys. Chem. Chem. Phys. 20 11967Google Scholar

    [15]

    Zhang L, Huang H, Zhang B, Gu M, Zhao D, Zhao X, Li L, Zhou J, Wu K, Cheng Y, Zhang J 2020 Angew. Chem. Int. Ed. 132 1090Google Scholar

    [16]

    Zhang B, Wang Z, Huang H, Zhang L, Gu M, Cheng Y, Wu K, Zhou J, Zhang J 2020 J. Mater. Chem. A 8 8586Google Scholar

    [17]

    Dai S, Zhou W, Liu Y, Lu Y L, Sun L, Wu P 2018 Appl. Surf. Sci. 448 281Google Scholar

    [18]

    Han R, Qi M, Mao Z, Lin X, Wu P 2021 Appl. Surf. Sci. 541 148454Google Scholar

    [19]

    Xue R, Han R, Lin X, Wu P 2023 Appl. Surf. Sci. 608 155240Google Scholar

    [20]

    Lin X, Mao Z, Dong S, Jian X, Han R, Wu P 2021 Physica E 127 114524Google Scholar

    [21]

    Han R, Qi M, Dong S, Mao Z, Lin X, Wu P 2021 Physica E 129 114667Google Scholar

    [22]

    Lu Y L, Dong S, Li J, Wu Y, Zhao H 2022 Physica E 138 115068Google Scholar

    [23]

    Baumer F, Ma Y, Shen C, Zhang A, Chen L, Liu Y, Pfister D, Nilges T, Zhou C 2017 ACS Nano 11 4105Google Scholar

    [24]

    Lu Y L, Dong S, He H, Li J, Wang X, Zhao H, Wu P 2019 Comput. Mater. Sci. 163 209Google Scholar

    [25]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [26]

    Khan I, Hong J 2015 New J. Phys. 17 023056Google Scholar

    [27]

    Zheng H, Zhang J, Yang B, Du X, Yan Y 2015 Phys. Chem. Chem. Phys. 17 16341Google Scholar

    [28]

    Yang L, Mi W, Wang X 2016 J. Alloys Compd. 662 528Google Scholar

    [29]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 R558Google Scholar

    [30]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [31]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [34]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [35]

    Lu Y L, Dong S, Zhou W, Liu Y, Zhao H, Wu P 2017 J. Magn. Magn. Mater. 441 799Google Scholar

    [36]

    Safari F, Fathipour M, Goharrizi A Y 2018 J. Comput. Electron. 17 499Google Scholar

    [37]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

  • 图 1  不同掺杂位点掺杂单层紫磷烯的几何结构模型. 紫色和红色小球分别表示磷原子和掺杂原子. 标记的1, 2和3分别代表与杂质原子距离最近的3个磷原子P1, P2和P3

    Figure 1.  Geometric structure of the doped Hittorf’s violet phosphorene with different doping sites. The violet and red spheres represent the phosphorus atoms and the dopant atom, respectively. The marked 1, 2, and 3 denote the sites of three nearest-neighboring P atoms P1, P2, and P3.

    图 2  掺杂体系键长、形成能与掺杂位置的关系图 (a)键长dX-P1; (b)键长dX-P2; (c)键长dX-P3; (d)形成能

    Figure 2.  Calculated bond length, forming energy of doping system as a function of differential substitutional sites: (a) Bond length dX-P1; (b) bond length dX-P2; (c) bond length dX-P3; (d) formation energy.

    图 3  掺杂体系的能带结构 (a) B掺杂; (b) C掺杂; (c) N掺杂; (d) O掺杂

    Figure 3.  Energy band structures of doping system: (a) B doping; (b) C doping; (c) N doping; (d) O doping.

    图 4  掺杂体系的态密度, 其中每一张图的上半部分和下半部分分别为P原子和X原子的分态密度 (a) B掺杂; (b) C掺杂; (c) N掺杂; (d) O掺杂

    Figure 4.  Density of states for doping system, and the graphs above and below indicate the partial density of states for the P atoms and X atom, respectively: (a) B doping; (b) C doping; (c) N doping; (d) O doping.

    图 5  C掺杂(a)和O掺杂(b)紫磷烯的自旋密度图. 等值面为0.003 e/Å, 上图为侧视图, 下图为俯视图

    Figure 5.  Spatial spin density for C doping (a) and O doping (b), respectively. Isovalue is set to 0.003 e/Å, and the upper panel is the side view and the down panel is the top view.

    图 6  缺陷引起的杂质能级的电子填充状态的示意图. 实心圆圈和空心圆圈分别表示电子和空穴

    Figure 6.  Schematic representations of the defect-induced impurity band electronic states. Filled and open circles denote electrons and holes, respectively.

    图 7  各原子掺杂紫磷烯的差分电荷密度图(等值面为0.02 e–3) (a) B掺杂; (b) C掺杂; (c) N掺杂; (d) O掺杂

    Figure 7.  Charge density difference for atom doped violet phosphoene (Isovalue is set to 0.02 e–3): (a) B doping; (b) C doping; (c) N doping; (d) O doping.

    图 8  O掺杂浓度为2.38%时, 掺杂紫磷烯在外加电场下的能带结构

    Figure 8.  Energy band structures of the O-doped Hittorf’s violet phosphorene with effective O-concentration of 2.38% under different applied external electric fields.

    图 9  O掺杂浓度为1.19%时, 掺杂紫磷烯的能带(a)和态密度(b)

    Figure 9.  Energy band structures (a) and density of states (b) of the O-doped Hittorf’s violet phosphorene with effective O-concentration of 1.19%.

    图 10  O掺杂浓度为1.19%时, 掺杂紫磷烯在外加电场下的能带结构

    Figure 10.  Energy band structures of the O-doped Hittorf’s violet phosphorene with effective O-concentration of 1.19% under different applied external electric fields.

    图 11  (a)基于O掺杂紫磷烯材料的场效应自旋滤通器模拟示意图; (b)电场控制下O掺杂紫磷烯的能带结构示意图

    Figure 11.  (a) Schematic diagram of a field-effect spin filter based on O-doped Hittorf’s violet phosphorene; (b) schematic illustration of the electrical control of the band structure of O-doped Hittorf’s violet phosphorene.

    表 1  非金属原子掺杂单层紫磷烯的总磁矩Mtot, 非金属原子X的局部磁矩MX, 磷原子的局部磁矩MP以及间隙区域的局部磁矩Mint

    Table 1.  Total magnetic moment Mtot, the partial magnetic moment of the dopant MX, the P atoms MP, and the interstitial region Mint, respectively.

    掺杂体系 Mtot/μB MX/μB MP/μB Mint/μB
    B掺杂 0 0 0 0
    C掺杂 0.988 0.262 0.229 0.497
    N掺杂 0 0 0 0
    O掺杂 0.991 0.012 0.471 0.520
    DownLoad: CSV

    表 2  掺杂紫磷烯中X, P1, P2和P3原子的Bader电荷值

    Table 2.  Bader charges of the dopant X, P1, P2, and P3 atoms, respectively.

    掺杂体系 X P1 P2 P3
    B掺杂 2.73 5.11 5.11 5.10
    C掺杂 5.50 4.44 4.55 4.50
    N掺杂 6.81 4.37 4.37 4.35
    O掺杂 7.38 4.26 4.25
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, Lu J 2012 Nano Lett. 12 113Google Scholar

    [3]

    Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K 2012 Phys. Rev. Lett. 109 056804Google Scholar

    [4]

    Chiappe D, Grazianetti C, Tallarida G, Fanciulli M, Molle A 2012 Adv. Mater. 24 5088Google Scholar

    [5]

    Zhu C, Shao R, Chen S, Cai R, Wu Y, Yao L, Xia W, Nie M, Sun L, Gao P, Xin H L, Xu F 2019 Small Methods 3 1900061Google Scholar

    [6]

    Wu G, Wu X, Xu Y, Cheng H, Meng J, Yu Q, Shi X, Zhang K, Chen W, Chen S 2019 Adv. Mater. 31 1806492Google Scholar

    [7]

    Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S, Matsuda I 2017 Phys. Rev. Lett. 118 096401Google Scholar

    [8]

    Kiraly B, Liu X, Wang L, Zhang Z, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816Google Scholar

    [9]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [10]

    Zhou Q, Chen Q, Tong Y, Wang J 2016 Angew. Chem. Int. Ed. 55 11437Google Scholar

    [11]

    Chen Z, Zhu Y, Wang Q, Liu W, Cui Y, Tao X, Zhang D 2019 Electrochimica Acta 295 230Google Scholar

    [12]

    Tsai H S, Lai C C, Hsiao C H, Medina H, Su T Y, Ouyang H, Chen T H, Liang J H, Chueh Y L 2015 ACS Appl. Mater. Interf. 7 13723Google Scholar

    [13]

    Schusteritsch G, Uhrin M, Pickard C J 2016 Nano Lett. 16 2975Google Scholar

    [14]

    Lu Y L, Dong S, Zhou W, Dai S, Zhou B, Zhao H, Wu P 2018 Phys. Chem. Chem. Phys. 20 11967Google Scholar

    [15]

    Zhang L, Huang H, Zhang B, Gu M, Zhao D, Zhao X, Li L, Zhou J, Wu K, Cheng Y, Zhang J 2020 Angew. Chem. Int. Ed. 132 1090Google Scholar

    [16]

    Zhang B, Wang Z, Huang H, Zhang L, Gu M, Cheng Y, Wu K, Zhou J, Zhang J 2020 J. Mater. Chem. A 8 8586Google Scholar

    [17]

    Dai S, Zhou W, Liu Y, Lu Y L, Sun L, Wu P 2018 Appl. Surf. Sci. 448 281Google Scholar

    [18]

    Han R, Qi M, Mao Z, Lin X, Wu P 2021 Appl. Surf. Sci. 541 148454Google Scholar

    [19]

    Xue R, Han R, Lin X, Wu P 2023 Appl. Surf. Sci. 608 155240Google Scholar

    [20]

    Lin X, Mao Z, Dong S, Jian X, Han R, Wu P 2021 Physica E 127 114524Google Scholar

    [21]

    Han R, Qi M, Dong S, Mao Z, Lin X, Wu P 2021 Physica E 129 114667Google Scholar

    [22]

    Lu Y L, Dong S, Li J, Wu Y, Zhao H 2022 Physica E 138 115068Google Scholar

    [23]

    Baumer F, Ma Y, Shen C, Zhang A, Chen L, Liu Y, Pfister D, Nilges T, Zhou C 2017 ACS Nano 11 4105Google Scholar

    [24]

    Lu Y L, Dong S, He H, Li J, Wang X, Zhao H, Wu P 2019 Comput. Mater. Sci. 163 209Google Scholar

    [25]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [26]

    Khan I, Hong J 2015 New J. Phys. 17 023056Google Scholar

    [27]

    Zheng H, Zhang J, Yang B, Du X, Yan Y 2015 Phys. Chem. Chem. Phys. 17 16341Google Scholar

    [28]

    Yang L, Mi W, Wang X 2016 J. Alloys Compd. 662 528Google Scholar

    [29]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 R558Google Scholar

    [30]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [31]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [34]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [35]

    Lu Y L, Dong S, Zhou W, Liu Y, Zhao H, Wu P 2017 J. Magn. Magn. Mater. 441 799Google Scholar

    [36]

    Safari F, Fathipour M, Goharrizi A Y 2018 J. Comput. Electron. 17 499Google Scholar

    [37]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

  • [1] Lü Yong-Jie, Chen Yan, Ye Fang-Cheng, Cai Li-Bin, Dai Zi-Jie, Ren Yun-Peng. Influcence of external electric field and B/N doping on the band gap of stanene. Acta Physica Sinica, 2024, 73(8): 083101. doi: 10.7498/aps.73.20231935
    [2] Deng Chen-Hua, Yu Zhong-Hai, Wang Yu-Tao, Kong Sen, Zhou Chao, Yang Sen. Crystallization kinetics of Ti-doped Nd2Fe14B/α-Fe nanocomposite permanent magnets. Acta Physica Sinica, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [3] Zhang Hua-Lin, He Xin, Zhang Zhen-Hua. Magneto-electronic property in zigzag phosphorene nanoribbons doped with transition metal atom. Acta Physica Sinica, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [4] Yu Peng, Cao Sheng, Zeng Ruo-Sheng, Zou Bing-Suo, Zhao Jia-Long. Advances in improved photoluminescence properties of all inorganic perovskite nanocrystals via metal-ion doping. Acta Physica Sinica, 2020, 69(18): 187801. doi: 10.7498/aps.69.20200795
    [5] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [6] Liu Kui-Li, Zhou Si-Hua, Chen Song-Ling. Exchange bias tuning of metal ions doped in CuO nanocomposites. Acta Physica Sinica, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [7] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [8] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [9] Hu Xiao-Hui, Xu Jun-Min, Sun Li-Tao. Research of electronic and magnetic properties on gold doped zigzag graphene nanoribbons. Acta Physica Sinica, 2012, 61(4): 047106. doi: 10.7498/aps.61.047106
    [10] Zhou Chuan-Cang, Liu Fa-Min, Ding Peng, Zhong Wen-Wu, Cai Lu-Gang, Zeng Le-Gui. Molten salt synthesis, V-doped and magnetic properties of columbite MnNb2O6. Acta Physica Sinica, 2011, 60(4): 048101. doi: 10.7498/aps.60.048101
    [11] Liu Su, Li Bin, Wang Wei, Wang Jun, Liu Mei. Electronic structure and magnetism of SrFeAsF and Co-doped superconductor SrFe0.875Co0.125AsF. Acta Physica Sinica, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
    [12] Le Ling-Cong, Ma Xin-Guo, Tang Hao, Wang Yang, Li Xiang, Jiang Jian-Jun. Electronic structure and optical properties of transition metal doped titanate nanotubes. Acta Physica Sinica, 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [13] Wang Run-Sheng, Meng Wei-Min, Peng Ying-Quan, Ma Chao-Zhu, Li Rong-Hua, Xie Hong-Wei, Wang Ying, Zhao Ming, Yuan Jian-Ting. The theory of physical doping in organic semiconductor. Acta Physica Sinica, 2009, 58(11): 7897-7903. doi: 10.7498/aps.58.7897
    [14] Tang Li-Bin, Ji Rong-Bin, Song Li-Yuan, Chen Xue-Mei, Li Yong-Liang, Rong Bai-Lian, Song Bing-Wen. Study on doping and electrical properties of organic infrared semiconductor phthalocyanine erbium(Ⅲ). Acta Physica Sinica, 2008, 57(11): 7244-7251. doi: 10.7498/aps.57.7244
    [15] Yu Zhou, Li Xiang, Long Xue, Cheng Xing-Wang, Wang Jing-Yun, Liu Ying, Cao Mao-Sheng, Wang Fu-Chi. Study of synthesis and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Acta Physica Sinica, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [16] Kim Sung-Chol, Huang Zu-Fei, Ming Xing, Wang Chun-Zhong, Meng Xing, Chen Gang. Effect of bivalent metal element doping on the electronic transport properties of LiCoO2. Acta Physica Sinica, 2007, 56(10): 6008-6012. doi: 10.7498/aps.56.6008
    [17] Shen Yi-Bin, Zhou Xun, Xu Ming, Ding Ying-Chun, Duan Man-Yi, Linghu Rong-Feng, Zhu Wen-Jun. Electronic structure and optical properties of ZnO doped with transition metals. Acta Physica Sinica, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [18] Zhang Jia-Hong, Ma Rong, Liu Su, Liu Mei. First-principles calculations on the superconductivity and magnetism of doping MgCNi3. Acta Physica Sinica, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [19] Lin Qiu-Bao, Li Ren-Quan, Zeng Yong-Zhi, Zhu Zi-Zhong. Electronic and magnetic properties of 3d transition-metal-doped Ⅲ-Ⅴ semiconductors:first-principle calculations. Acta Physica Sinica, 2006, 55(2): 873-878. doi: 10.7498/aps.55.873
    [20] Zhu Zhi-Yong, Wang Wen-Quan, Miao Yuan-Hua, Wang Yan-Song, Chen Li-Jie, Dai Xue-Fang, Liu Guo-Dong, Chen Jing-Lan, Wu Guang-Heng. Dopant effects on martensitic transition and magnetic properties of Ni51.5Mn25Ga23.5 materials. Acta Physica Sinica, 2005, 54(10): 4894-4897. doi: 10.7498/aps.54.4894
Metrics
  • Abstract views:  2589
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2023
  • Accepted Date:  06 September 2023
  • Available Online:  09 October 2023
  • Published Online:  05 January 2024

/

返回文章
返回