Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculation of radiation damage of key components of China Spallation Neutron Source II target station

Cao Song Yin Wen Zhou Bin Hu Zhi-Liang Shen Fei Yi Tian-Cheng Wang Song-Lin Liang Tian-Jiao

Citation:

Calculation of radiation damage of key components of China Spallation Neutron Source II target station

Cao Song, Yin Wen, Zhou Bin, Hu Zhi-Liang, Shen Fei, Yi Tian-Cheng, Wang Song-Lin, Liang Tian-Jiao
PDF
HTML
Get Citation
  • China Spallation Neutron Source (CSNS) I project passed the national acceptance in 2018, and current beam power has reached 140 kW. In order to further improve the output neutron strength of the target station moderator, a 500 kW power upgrade plan has been proposed for CSNS II. The target station is an important part of the spallation neutron source. In the target station, a large number of neutrons are produced by the spallation reaction between high energy protons and the target, these neutrons are moderated by the moderator and become neutrons for neutron scattering experiments. During operation, the target and other key components such as the target container, the moderator reflector container, and the proton beam window are irradiated by high-flux and high-energy particles for a long time, which will result in serious radiation damage. It is important to assess the accumulated radiation damage during operation to determine the service life of each component. At present, the physical quantities used to evaluate the radiation damage degree of materials include displacement per atom (DPA), H and He production. In this work, the displacement damage cross sections of protons and neutrons and the H, He production cross sections for W, SS316 and Al-6061 materials are obtained by using PHITS. The effects of the Norgett-Robinson-Torrens (NRT) model and athermal recombination corrected (ARC) model on the calculation of displacement damage are analyzed. The results show that the cross section calculated based on ARC model is lower than that based on NRT model, because the NRT model does not take into account the resetting of the atoms before reaching thermodynamic equilibrium. On this basis, DPA, H and He production of the key components of the target station operating for 5000 h at a power of 500 kW are calculated by combining the baseline model of the second phase target station of the spallation neutron source in China. The results show that the yields of NRT-dpa, ARC-dpa, H and He produced by irradiation are 8.01 dpa/y (in this paper, 1 y = 2500 MW·h), 2.39 dpa/y, 5110 appm/y and 884 appm/y, respectively. The radiation damage values of the target vessel are 5.34 dpa/y, 1.92 dpa/y, 2180 appm/y and 334 appm/y, respectively. The radiation damage values of the moderators and reflectors are 3.78 dpa/y, 1.77 dpa/y, 124 appm/y, and 36.7 appm/y. The radiation damage values of the proton beam window are 0.35 dpa/y, 0.19 dpa/y, 962 appm/y, and 216 appm/y. Subsequently, the life of each component is estimated by analyzing the radiation damage. These results are very important for analyzing the radiation damage of these parts, and constructing reasonable maintenance programs.
      Corresponding author: Wang Song-Lin, wangsl@ihep.ac.cn ; Liang Tian-Jiao, liangtj@ihep.ac.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1932219), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams, China (Grant No. 2017ZT07S225), and the Mobility Programme endorsed by the Joint Committee of the Sino-German Center, China (Grant No. M-0728).
    [1]

    Wei J, Fu S N, Tang J Y, Tao J Z, Wang D S, Wang F W, Wang S 2009 Chin. Phys. C 33 1033Google Scholar

    [2]

    于全芝, 殷雯, 梁天骄 2011 物理学报 60 052501Google Scholar

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501Google Scholar

    [3]

    Yin W, Yu Q Z, Lu Y L, Wang S L, Tong J F, Liang T J 2012 J. Nucl. Mater. 431 39Google Scholar

    [4]

    Simon G W, Denney J M, Downing R G 1963 Phys. Rev. 129 2454Google Scholar

    [5]

    Norgett M J, Robinson M T, Torrens I M 1975 Nucl. Engs. Des. 33 50Google Scholar

    [6]

    Broeders C H M, Konobeyev A Yu 2005 J. Nucl. Mater. 336 201Google Scholar

    [7]

    Broeders C H M, Konobeyev A Yu, Villagrasa C 2005 J. Nucl. Mater. 342 68Google Scholar

    [8]

    Konobeyev A Yu, Broeders C H M, Fischer U 2007 Proceedings of the 8th International Topical Meeting on the Nuclear Applications of Accelerator Technology (AccApp’07) Pocatello, Idaho, July 29–August 2, 2007 p241

    [9]

    Konobeyev A Yu, Fischer U 2014 Proceedings of the HB 2014 East-Lansing, MI, USA, November 10–14, 2014 pTHO4AB02

    [10]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 Nat. Common. 9 1084Google Scholar

    [11]

    Konobeyev A Yu, Fischer U, Simakov S P 2018 Nucl. Instrum. Methods Phys. Res., Sect. B 431 55Google Scholar

    [12]

    Konobeyev A Yu, Fischer U, Simakov S P 2019 Nucl. Eng. Technol. 51 170Google Scholar

    [13]

    Herbach C M, Hilscher D, Jahnke U, Tishchenko V G, Galin J, Letourneau A, Péghaire A, Filges D, Goldenbaum F, Pienkowski L, Schröder W U, Tõke J 2006 Nucl. Phys. A 765 426Google Scholar

    [14]

    Barnett M H, Wechsler M S, Dudziak D J, Mansur L K, Murphy B D 2001 J. Nucl. Mater. 296 54Google Scholar

    [15]

    Lu W, Wechsler M S, Dai Y 2003 J. Nucl. Mater. 318 176Google Scholar

    [16]

    Meigo S, Ooi M, Harada M, Kinoshita H, Akutsu A 2014 J. Nucl. Mater. 450 141Google Scholar

    [17]

    Koning A J, Rochman D, Sublet J C, Dzysiuk N, Fleming M, Marck S 2019 Nucl. Data Sheets 155 1Google Scholar

    [18]

    Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe S, Kai T, Tsai P, Matsuda N, Iwase H, Shigyo N, Sihver L, Niita K 2018 J. Nucl. Sci. Technol. 55 684Google Scholar

    [19]

    Konobeyev A Yu, Fischer U, Korovin Y A 2017 Nucl. Eng. Technol. 3 169Google Scholar

    [20]

    Yin W, Konobeyev A Yu, Leichtle D, Cao L Z 2023 J. Nucl. Mater. 573 154143Google Scholar

    [21]

    Lindhard J, Nielsen V, Scharff M 1968 Mat. Fys. Medd. Dan. Vid. Selsk. 36 3

    [22]

    Jun I 2001 IEEE T. Nucl. Sci. 48 162Google Scholar

    [23]

    Burke E A 1986 IEEE T. Nucl. Sci. 33 1276Google Scholar

    [24]

    Boudard A, Cugnon J, David J C, Leray S, Mancusi D 2013 Phys. Rev. C 87 014606Google Scholar

    [25]

    Niita K 1995 Phys. Rev. C 52 2620Google Scholar

    [26]

    Furihata S 2000 Nucl. Instrum. Methods Phys. Res. B 171 251Google Scholar

    [27]

    Jung P 1983 J. Nucl. Mater. 117 70Google Scholar

    [28]

    Iwamoto Y, Yoshida M, Matsuda H, Meigo S, Satoh D, Yashima H, Yabuuchi A, Shima T 2021 Mater. Sci. Forum. 1024 95Google Scholar

    [29]

    Iwamoto Y, Yoshida M, Matsuda H, Meigo S, Satoh D, Yashima H, Yabuuchi A, Shima T 2020 JPS Conf. Proc. 28 061003Google Scholar

    [30]

    Greene G A, Snead C L, Finfrock C C, Hanson A L, James M R, Sommer W F, Pitcher E J, Waters L S 2003 Proceedings of the 6th International Meeting on Nuclear Applications of Accelerator Technology (AccApp’03) San Diego, USA, June 1–5, 2003 pp881–892

    [31]

    Dai Y, Foucher Y, James M R, Oliver B M 2003 J. Nucl. Mater. 318 167Google Scholar

    [32]

    Chen J, Ullmaier H, Floβdorf T, Kuhnlein W, Duwe R, Carsughi F, Broome T 2001 J. Nucl. Mater. 298 248Google Scholar

    [33]

    Oak Ridge National Laboratory 2020 Spallation neutron Source Second Target Station Conceptual Design Report Volume 1: Overview, Technical experimental system S01010000-TR0001, R00

    [34]

    Iwamoto Y, Meigo S, Hashimoto S 2020 J. Nucl. Mater. 538 1522Google Scholar

  • 图 1  CSNS靶站的TMR结构示意图

    Figure 1.  Structural diagram of TMR of CSNS target station.

    图 2  弹性散射和非弹性散射对W的质子离位损伤截面的贡献

    Figure 2.  Contribution of elastic scattering and inelastic scattering to the proton displacement cross section of W.

    图 3  W, SS316, Al-6061的离位损伤截面 (a) p+W; (b) n+W; (c) p+SS316; (d) n+SS316; (e) p+Al-6061; (f) n+Al-6061

    Figure 3.  Displacement cross section of W, SS316, Al-6061: (a) p+W; (b) n+W; (c) p+SS316; (d) n+SS316; (e) p+Al-6061; (f) n+Al-6061.

    图 4  W, SS316, Al-6061的H, He产生截面 (a) W-H; (b) W-He; (c) SS316-H; (d) SS316-He; (e) Al-6061-H; (f) Al-6061-He

    Figure 4.  H, He production cross section of W, SS316, Al-6061: (a) W-H; (b) W-He; (c) SS316-H; (d) SS316-He; (e) Al-6061-H; (f) Al-6061-He.

    图 5  靶站几何模型 (a) TMR系统y-z轴截面图, 其中+y为质子入射方向; (b)质子束窗

    Figure 5.  Geometric model of target station: (a) Plane diagram of the y-z axis of the TMR system, where +y is the proton incident direction; (b) proton beam window.

    图 6  靶站入射质子束斑形状

    Figure 6.  Shape of the incident proton beam at the target station.

    图 7  靶、靶容器和慢化器反射体容器的质子和中子通量

    Figure 7.  Proton and neutron fluxes of targets, target containers, and moderator reflector containers.

    图 8  靶体ARC-dpa的空间分布(x-y平面) (a) p+ARC-dpa; (b) n+ARC-dpa; (c) total+ARC-dpa

    Figure 8.  ARC-dpa spatial distribution of target (x-y plane): (a) p+ARC-dpa; (b) n+ARC-dpa; (c) total+ARC-dpa.

    图 9  靶体DPA在y (质子入射)方向的分布

    Figure 9.  DPA distribution of target in the y (proton incidence) direction.

    图 10  靶窗ARC-dpa的空间分布(x-z平面) (a) p+ARC-dpa; (b) n+ARC-dpa

    Figure 10.  ARC-dpa spatial distribution of target window (x-z plane): (a) p+ARC-dpa; (b) n+ARC-dpa.

    图 11  CHM容器靠近靶体位置He产额分布(x-y平面) (a)质子; (b)中子

    Figure 11.  He production spatial distribution of CHM vessel: (a) Proton; (b) neutron.

    表 1  SS316不锈钢、6061铝合金的核素组成

    Table 1.  Nuclide composition of SS316 stainless steel and 6061 aluminum alloy.

    材料 核素原子数百分比
    SS316 Fe (65.4%), Cr (17.0%), Ni (12.0%),
    Mo (2.5%)
    Mn (2%), Si (1%),
    P (0.045%), C (0.03%)
    Al-6061 Al (98.2%), Mg (1.1%), Si (0.0057%)
    DownLoad: CSV

    表 2  部分元素的Ed, barc, carc参数值

    Table 2.  The Ed, barc, carc values of some elements.

    元素 Ed/eV barc carc
    Mg 20 –1.00 0.45
    Al 27 –0.82 0.44
    Cr 40 –1.01 0.37
    Fe 40 –0.57 0.29
    Ni 39 –1.01 0.23
    Mn 32.5 –1.00 0.33
    W 70 –0.55 -0.25
    DownLoad: CSV

    表 3  质子束窗辐照损伤最大值

    Table 3.  Maximum radiation damage value of proton beam window.

    ProtonNeutronTotal
    NRT-dpa/(dpa·y–1)0.340.00690.35
    ARC-dpa/(dpa·y–1)0.180.00440.19
    比值/(NRT/ARC)1.871.571.86
    H 产额/(appm·y–1)9610.61962
    He 产额/(appm·y–1)2160.19216
    DownLoad: CSV

    表 4  W, SS316, Al-6061的辐照损伤限值

    Table 4.  Radiation damage limit of W, SS316, Al-6061.

    材料 NRT-dpa
    限值/dpa
    ARC-dpa
    限值/dpa
    He产额
    限值/appm
    W 10 3.0
    SS316 12 4.3
    Al-6061 40 18.7 2000
    DownLoad: CSV

    表 5  靶站关键部件的辐照损伤值和预期寿命

    Table 5.  Radiation damage value and lifetime of key components of target station.

    部件 材料 NRT-dpa/(dpa·y–1) ARC-dpa/(dpa·y–1) H产额/(appm·y–1) He产额/(appm·y–1) 寿命/year
    靶体 W 8.01 2.39 5110 884 1.25
    靶容器 SS316 5.34 1.92 2180 334 2.25
    慢化器容器 Al-6061 3.78 1.77 124 36.7 10.5
    质子束窗 Al-6061 0.348 0.187 962 216 9.26
    DownLoad: CSV
  • [1]

    Wei J, Fu S N, Tang J Y, Tao J Z, Wang D S, Wang F W, Wang S 2009 Chin. Phys. C 33 1033Google Scholar

    [2]

    于全芝, 殷雯, 梁天骄 2011 物理学报 60 052501Google Scholar

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501Google Scholar

    [3]

    Yin W, Yu Q Z, Lu Y L, Wang S L, Tong J F, Liang T J 2012 J. Nucl. Mater. 431 39Google Scholar

    [4]

    Simon G W, Denney J M, Downing R G 1963 Phys. Rev. 129 2454Google Scholar

    [5]

    Norgett M J, Robinson M T, Torrens I M 1975 Nucl. Engs. Des. 33 50Google Scholar

    [6]

    Broeders C H M, Konobeyev A Yu 2005 J. Nucl. Mater. 336 201Google Scholar

    [7]

    Broeders C H M, Konobeyev A Yu, Villagrasa C 2005 J. Nucl. Mater. 342 68Google Scholar

    [8]

    Konobeyev A Yu, Broeders C H M, Fischer U 2007 Proceedings of the 8th International Topical Meeting on the Nuclear Applications of Accelerator Technology (AccApp’07) Pocatello, Idaho, July 29–August 2, 2007 p241

    [9]

    Konobeyev A Yu, Fischer U 2014 Proceedings of the HB 2014 East-Lansing, MI, USA, November 10–14, 2014 pTHO4AB02

    [10]

    Nordlund K, Zinkle S J, Sand A E, Granberg F, Averback R S, Stoller R, Suzudo T, Malerba L, Banhart F, Weber W J, Willaime F, Dudarev S L, Simeone D 2018 Nat. Common. 9 1084Google Scholar

    [11]

    Konobeyev A Yu, Fischer U, Simakov S P 2018 Nucl. Instrum. Methods Phys. Res., Sect. B 431 55Google Scholar

    [12]

    Konobeyev A Yu, Fischer U, Simakov S P 2019 Nucl. Eng. Technol. 51 170Google Scholar

    [13]

    Herbach C M, Hilscher D, Jahnke U, Tishchenko V G, Galin J, Letourneau A, Péghaire A, Filges D, Goldenbaum F, Pienkowski L, Schröder W U, Tõke J 2006 Nucl. Phys. A 765 426Google Scholar

    [14]

    Barnett M H, Wechsler M S, Dudziak D J, Mansur L K, Murphy B D 2001 J. Nucl. Mater. 296 54Google Scholar

    [15]

    Lu W, Wechsler M S, Dai Y 2003 J. Nucl. Mater. 318 176Google Scholar

    [16]

    Meigo S, Ooi M, Harada M, Kinoshita H, Akutsu A 2014 J. Nucl. Mater. 450 141Google Scholar

    [17]

    Koning A J, Rochman D, Sublet J C, Dzysiuk N, Fleming M, Marck S 2019 Nucl. Data Sheets 155 1Google Scholar

    [18]

    Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe S, Kai T, Tsai P, Matsuda N, Iwase H, Shigyo N, Sihver L, Niita K 2018 J. Nucl. Sci. Technol. 55 684Google Scholar

    [19]

    Konobeyev A Yu, Fischer U, Korovin Y A 2017 Nucl. Eng. Technol. 3 169Google Scholar

    [20]

    Yin W, Konobeyev A Yu, Leichtle D, Cao L Z 2023 J. Nucl. Mater. 573 154143Google Scholar

    [21]

    Lindhard J, Nielsen V, Scharff M 1968 Mat. Fys. Medd. Dan. Vid. Selsk. 36 3

    [22]

    Jun I 2001 IEEE T. Nucl. Sci. 48 162Google Scholar

    [23]

    Burke E A 1986 IEEE T. Nucl. Sci. 33 1276Google Scholar

    [24]

    Boudard A, Cugnon J, David J C, Leray S, Mancusi D 2013 Phys. Rev. C 87 014606Google Scholar

    [25]

    Niita K 1995 Phys. Rev. C 52 2620Google Scholar

    [26]

    Furihata S 2000 Nucl. Instrum. Methods Phys. Res. B 171 251Google Scholar

    [27]

    Jung P 1983 J. Nucl. Mater. 117 70Google Scholar

    [28]

    Iwamoto Y, Yoshida M, Matsuda H, Meigo S, Satoh D, Yashima H, Yabuuchi A, Shima T 2021 Mater. Sci. Forum. 1024 95Google Scholar

    [29]

    Iwamoto Y, Yoshida M, Matsuda H, Meigo S, Satoh D, Yashima H, Yabuuchi A, Shima T 2020 JPS Conf. Proc. 28 061003Google Scholar

    [30]

    Greene G A, Snead C L, Finfrock C C, Hanson A L, James M R, Sommer W F, Pitcher E J, Waters L S 2003 Proceedings of the 6th International Meeting on Nuclear Applications of Accelerator Technology (AccApp’03) San Diego, USA, June 1–5, 2003 pp881–892

    [31]

    Dai Y, Foucher Y, James M R, Oliver B M 2003 J. Nucl. Mater. 318 167Google Scholar

    [32]

    Chen J, Ullmaier H, Floβdorf T, Kuhnlein W, Duwe R, Carsughi F, Broome T 2001 J. Nucl. Mater. 298 248Google Scholar

    [33]

    Oak Ridge National Laboratory 2020 Spallation neutron Source Second Target Station Conceptual Design Report Volume 1: Overview, Technical experimental system S01010000-TR0001, R00

    [34]

    Iwamoto Y, Meigo S, Hashimoto S 2020 J. Nucl. Mater. 538 1522Google Scholar

  • [1] Zhao Po, Wang Jian-Qiang, Chen Mei-Qing, Yang Jin-Xue, Su Zheng-Xiong, Lu Chen-Yang, Liu Hua-Jun, Hong Zhi-Yong, Gao Rui. Effect of doping on evolution of He+ ion irradiation defects and superconductivity in EuBa2Cu3O7–δ superconducting strips. Acta Physica Sinica, 2024, 73(8): 087401. doi: 10.7498/aps.73.20240124
    [2] Wei Wen-Jing, Gao Xu-Dong, Lü Liang-Liang, Xu Nan-Nan, Li Gong-Ping. Simulation study of neutron radiation damage to cadmium zinc telluride. Acta Physica Sinica, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [3] Zhu Te, Cao Xing-Zhong. Research progress of hydrogen/helium effects in metal materials by positron annihilation spectroscopy. Acta Physica Sinica, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [4] Ran Qin, Wang Huan, Zhong Rui, Wu Jian-Chun, Zou Yu, Wang Jun. Diffusion behavior of di-interstitials with different configurations in tungsten. Acta Physica Sinica, 2019, 68(12): 126701. doi: 10.7498/aps.68.20190310
    [5] Wang Tie-Shan, Zhang Duo-Fei, Chen Liang, Lü Peng, Du Xin, Yuan Wei, Yang Di. Irradiation-induced modifications in the mechanical properties of borosilicate glass. Acta Physica Sinica, 2017, 66(2): 026101. doi: 10.7498/aps.66.026101
    [6] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping. First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [7] Yao Bao-Dian, Hu Gui-Qing, Yu Zhi-Shui, Zhang Hui-Fen, Shi Li-Qun, Shen Hao, Wang Yue-Xia. Effect of H and He on the mechanical properties of Ti3SiC2: the first-principles calculation. Acta Physica Sinica, 2016, 65(2): 026202. doi: 10.7498/aps.65.026202
    [8] Chang Xiao-Yang, Yao Shun, Zhang Qi-Ling, Zhang Yang, Wu Bo, Zhan Rong, Yang Cui-Bai, Wang Zhi-Yong. Anti-radiation of space triple-junction solar cell based on distributed Bragg reflector structure. Acta Physica Sinica, 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [9] Qi Jia-Hong, Hu Jian-Min, Sheng Yan-Hui, Wu Yi-Yong, Xu Jian-Wen, Wang Yue-Yuan, YANG Xiao-Ming, Zhang Zi-Rui, Zhou Yang. Carrier transport mechanism of GaAs/Ge solar cells under electrons irradiation. Acta Physica Sinica, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [10] Jiang Shao-Ning, Wan Fa-Rong, Long Yi, Liu Chuan-Xin, Zhan Qian, Ohnuki Somei. Effects of helium and deuterium on irradiation damage in pure iron. Acta Physica Sinica, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [11] Cui Zhen-Guo, Gou Cheng-Jun, Hou Qing, Mao Li, Zhou Xiao-Song. Computer simulation of radiation damage caused by low energy neutron in zirconium. Acta Physica Sinica, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [12] Sun Peng, Du Lei, He Liang, Chen Wen-Hao, Liu Yu-Dong, Zhao Ying. Radiation degradation mechanism of pn-junction diode based on 1/f noise variation. Acta Physica Sinica, 2012, 61(12): 127808. doi: 10.7498/aps.61.127808
    [13] Zhu Yong, Li Bao-Hua, Xie Guo-Feng. Investigation of proton irradiation damage in BaTiO3 thin film by computer simulation. Acta Physica Sinica, 2012, 61(4): 046103. doi: 10.7498/aps.61.046103
    [14] Yu Quan-Zhi, Yin Wen, Liang Tian-Jiao. Calculation and analysis of DPA in the main components of CSNS target station. Acta Physica Sinica, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [15] Lan Mu-Jie, Wu Yi-Yong, Hu Jian-Min, He Shi-Yu, Yue Long, Xiao Jing-Dong, Yang De-Zhuang, Zhang Zhong-Wei, Wang Xun-Chun, Qian Yong, Chen Ming-Bo. Radiation damage of space GaAs/Ge solar cells evaluated by displacement damage dose. Acta Physica Sinica, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [16] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing. Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [17] Hu Wang-Yu, Yang Jian-Yu, Ao Bing-Yun, Wang Xiao-Lin, Chen Pi-Heng, Shi Peng. Energy calculation of point defects in plutonium by embedded atom method. Acta Physica Sinica, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [18] He Xin-Fu, Yang Wen, Fan Sheng. Multi-scale modeling of radiation damage in FeCr alloy. Acta Physica Sinica, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [19] Wang Hai-Yan, Zhu Wen-Jun, Song Zhen-Fei, Liu Shao-Jun, Chen Xiang-Rong, He Hong-Liang. The influence of helium bubble on the elastic properties of aluminum. Acta Physica Sinica, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [20] Fan Xian-Hong, Li Min, Ni Qi-Liang, Liu Shi-Jie, Wang Xiao-Guang, Chen Bo. Change of reflectivity of Mo/Si multilayer irradiated by proton. Acta Physica Sinica, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
Metrics
  • Abstract views:  2425
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2024
  • Accepted Date:  16 February 2024
  • Available Online:  08 March 2024
  • Published Online:  05 May 2024

/

返回文章
返回