Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase stability and thermo-physical properties of Laves-Co2(Hf Ta) alloys

Ding Ning Ni Xiao-Dong Tian Fu-Yang

Citation:

Phase stability and thermo-physical properties of Laves-Co2(Hf Ta) alloys

Ding Ning, Ni Xiao-Dong, Tian Fu-Yang
PDF
HTML
Get Citation
  • There exists still the controversy over the stable structure of Laves-phase Co2(Hf Ta) alloys with the C14, C15 or C36 structures. In this study, the stability, electronic and thermodynamic properties of Laves-phase Co2(Hf Ta) are investigated. In order to fully understand the influence of magnetic state and temperature on phase stability, we systematically study the free energy change at finite temperature, elastic stability, and phonon dispersion. The low Curie temperature can be estimated, which suggests that the Co2(Hf Ta) alloys possess the paramagnetic state in a wide temperature range. Results indicate that the lattice vibration and electronic excitation have an important effect on the phase stability. The ground state of Co2Hf compound has a C14-type structure, while the ground state of Co2Ta has a C36-type structure, without the effect of temperature. After doping Hf with different concentrations (0.25, 0.50, 0.75) into Co2Ta, the most stable structure still possesses the C36-type structure. After considering the contribution of vibration entropy and electron entropy, the relatively stable structures of Co2Hf and Co2Ta undergo the C36 and C14 phase transition, respectively. In addition, the thermodynamic properties, including Debye temperature, heat capacity, and vibration entropy, which vary with pressure and temperature, are studied. The electronic properties of Co2Hf and Co2Ta compounds are analyzed by the charge difference and density of states. The similar electronic density of states between different phases suggest that the Lave phases have the similar stability. The Hf-Co bonding with a certain direction is revealed. Our results are of great significance in understanding the structure and properties of Co2Hf and Co2Ta compounds.
      Corresponding author: Ni Xiao-Dong, nixd@ustb.edu.cn ; Tian Fu-Yang, fuyang@ustb.edu.cn
    [1]

    Schulze G E 1939 Zeitschrift Für Elektrochemie und Angewandte Physikalische Chemie 45 849Google Scholar

    [2]

    Stein F, Leineweber A 2021 J. Mater. Sci. 56 5321Google Scholar

    [3]

    张硕鑫, 刘士余, 严达利, 余浅, 任海涛, 于彬, 李德军 2021 物理学报 70 117102Google Scholar

    Zhang S X, Liu S Y, Yan D L, Yu Q, Ren H T, Yu B, Li D J 2021 Acta Phys. Sin. 70 117102Google Scholar

    [4]

    Zhang Y, Fu H, He J, Xie J 2022 J. Alloys Compd. 891 162016Google Scholar

    [5]

    Burzo E, Gratz E, Pop V 1993 J. Magn. Magn. Mater. 123 159Google Scholar

    [6]

    Chen K C, Peterson E J, Thoma D J 2001 Intermetallics 9 771Google Scholar

    [7]

    Chen K C, Chu F, Kotula P G, Thoma D 2001 Intermetallics 9 785Google Scholar

    [8]

    Concas G, Congiu F, Belošević-Čavor J, Cekić B 2007 Zeitschrift für Naturforschung A 62 452Google Scholar

    [9]

    Wang C, Chen X, Yang P, Zhang Q, Yang S, Lu Y, Guo Y, Liu X 2022 J. Alloys Compd. 925 166723Google Scholar

    [10]

    Ooshima M, Tanaka K, Okamoto N L, Kishida K, Inui H 2010 J. Alloys Compd. 508 71Google Scholar

    [11]

    Omori T, Oikawa K, Sato J, Ohnuma I, Kattner U R, Kainuma R, Ishida K 2013 Intermetallics 32 274Google Scholar

    [12]

    Povstugar I, Choi P P, Neumeier S, Bauer A, Zenk C H, Göken M, Raabe D 2014 Acta Mater. 78 78Google Scholar

    [13]

    Dragsdorf R, Foreing W 1962 Acta Crystallogr. 15 531Google Scholar

    [14]

    Baheti V A, Roy S, Ravi R, Paul A 2013 Intermetallics 33 87Google Scholar

    [15]

    Shinagawa K, Chinen H, Omori T, Oikawa K, Ohnuma I, Ishida K, Kainuma R 2014 Intermetallics 49 87Google Scholar

    [16]

    Wang P, Koßmann J, Kattner U R, Palumbo M, Hammerschmidt T, Olson G B 2019 Calphad 64 205Google Scholar

    [17]

    Zhou C, Guo C, Li C, Du Z 2019 Calphad 66 101649Google Scholar

    [18]

    Asano S, Ishida S 1988 J. Phys. F: Metal Phys. 18 501Google Scholar

    [19]

    Stein F, Palm M, Sauthoff G 2004 Intermetallics 12 713Google Scholar

    [20]

    Von Keitz A, Sauthoff G 2002 Intermetallics 10 497Google Scholar

    [21]

    Thoma D, Perepezko J 1995 J. Alloys Compd. 224 330Google Scholar

    [22]

    Wang L, Kong Y, Oehring M, Song M, Pyczak F 2022 J. Alloys Compd. 906 164261Google Scholar

    [23]

    Levy O, Hart G L, Curtarolo S 2010 Acta Mater. 58 2887Google Scholar

    [24]

    Segall M, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S, Payne M 2002 J. Phys.: Condens. Matter 14 2717Google Scholar

    [25]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K, Payne M C 2005 Z. Krist. -Cryst. Mater. 220 567Google Scholar

    [26]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Pfrommer B G, Côté M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

    [29]

    Wang Q, Li Q, Ding H, Tian F 2022 Comput. Condens. Matter 32 e00721Google Scholar

    [30]

    Sun Y, Zhou Y, Gurunathan R, Zhang J Y, Hu M, Liu W, Xu B, Snyder G J 2021 J. Mater. Chem. C 9 8506Google Scholar

    [31]

    Wu R, Wang Y P, Shao L, Wang W, Tang B Y 2021 Chin. J. Chem. Eng. 40 315Google Scholar

    [32]

    Gao J, Liu Q, Jiang C, Fan D, Zhang M, Liu F, Tang B 2022 Chin. J. High Press. Phys 36 051101Google Scholar

    [33]

    Jana A, Sridar S, Fries S G, Hammerschmidt T, Kumar K H 2020 Intermetallics 116 106640Google Scholar

    [34]

    Chen S, Sun Y, Duan Y H, Huang B, Peng M J 2015 J. Alloys Compd. 630 202Google Scholar

    [35]

    Özer T 2020 Canadian J. Phys. 98 357Google Scholar

    [36]

    Cheng T M, Yu G L, Zhang X X 2022 Physica B 645 414268Google Scholar

    [37]

    Xu Y, Cao Y, Hu C, Zhang C, Tian C, Alzoabi S, Santos N, Zhou S 2021 Solid State Sci. 115 106580Google Scholar

    [38]

    Xu N, Chen Y, Chen S, Zhang W, Li S, Song R, Zhang J 2023 J. Mater. Res. Technol. 26 4825Google Scholar

    [39]

    Jian Y, Huang Z, Xing J, Sun L, Liu Y, Gao P 2019 Mater. Chem. Phys. 221 311Google Scholar

    [40]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504Google Scholar

    [41]

    Hong D, Zeng W, Liu F S, Tang B, Liu Q J 2019 Physica B 558 100Google Scholar

  • 图 1  Laves相三种类型结构示意图 (a) C14结构; (b) C15结构; (c) C36结构

    Figure 1.  Schematic diagrams of three types of Laves phase: (a) C14 structure; (b) C15 structure; (c) C36 structure.

    图 2  在0 GPa下Co2Hf (a) 和Co2Ta (b) Laves相的FM态和PM态的声子色散曲线

    Figure 2.  Phonon dispersion of Co2Hf (a) and Co2Ta (b) Laves phases with FM and PM at 0 GPa.

    图 3  Co2(HfxTa1–x)合金的晶格参数(a)和形成能(b)随Hf含量x的变化

    Figure 3.  Lattice parameters (a) and formation energy (b) of Co2(HfxTa1–x) alloys versus the Hf composition.

    图 4  Co2Hf (a)和 Co2Ta (b)的弹性模量、泊松比($ \nu $)及B/G参数

    Figure 4.  Elastic modulus, Poisson's ratio ($ \nu $) and B/G for Co2Hf (a) and Co2Ta (b).

    图 5  Co2(Hf Ta)合金的弹性模量、泊松比($ \nu $)和及B/G参数

    Figure 5.  Elastic modulus, Poisson’s ratio ($ \nu $) and B/G values of Co2(Hf Ta) alloys.

    图 6  Co2Hf (a)和Co2Ta (b) 的弹性模量和各向异性因子AU, ABAG

    Figure 6.  Elastic moduli and anisotropy factors AU, AB and AG of Co2Hf (a) and Co2Ta (b).

    图 7  Co2Ta1–xHfx稳定结构的杨氏模量 (E)的三维图(颜色刻度值以GPa为单位) (a) 铁磁态C14相Co2Hf; (b) 顺磁态C15相Co2Hf; (c) 铁磁态C36相 Co2Ta; (d)—(f) 铁磁C36相 Co2Hf0.25Ta0.75, Co2Hf0.5Ta0.5, Co2Hf0.75Ta0.25

    Figure 7.  Anisotropy of Young’s modulus (E) of Co2Ta1–xHfx along different crystalline directions: (a) Ferromagnetic C14 Co2Hf; (b) paramagnetic C15 Co2Hf; (c) ferromagnetic C36 Co2Ta; (d)–(f) ferromagnetic C36 Co2Hf0.25Ta0.75, Co2Hf0.5Ta0.5 and Co2Hf0.75Ta0.25. The color scale is in GPa.

    图 8  不同压强下热容随温度的变化 (a) C14-PM Co2Hf; (b) C36-PM Co2Ta; (c) C36- PM Co2Hf0.25Ta0.75; (d) C36-PM Co2Hf0.5Ta0.5; (e) C36-PM Co2Hf0.75Ta0.25

    Figure 8.  Heat capacity with temperature under different pressures: (a) C14-PM Co2Hf; (b) C36-PM Co2Ta; (c) C36-PM Co2Hf0.25Ta0.75; (d) C36-PM Co2Hf0.5Ta0.5; (e) C36-PM Co2Hf0.75Ta0.25.

    图 9  德拜温度与温度和压强的关系 (a) C15 Co2Hf; (b) C36 Co2Ta; (c) C36 Co2Hf0.25Ta0.75; (d) C36 Co2Hf0.5Ta0.5; (e) C36 Co2Hf0.75Ta0.25

    Figure 9.  Debye temperature versus temperature at finite pressure: (a) C15 Co2Hf; (b) C36 Co2Ta; (c) C36 Co2Hf0.25Ta0.75; (d) C36 Co2Hf0.5Ta0.5; (e) C36 Co2Hf0.75Ta0.25.

    图 10  不同压强下, 振动熵与温度的变化关系, 其中(a) C15 Co2Hf; (b) C36 Co2Ta; (c)—(e) C36 Co2Hf0.25Ta0.75, Co2Hf0.5Ta0.5, Co2Hf0.75Ta0.25; (f) Co2Hf和Co2Ta 的自由能随温度的变化

    Figure 10.  Vibrational entropy versus temperature under different pressures: (a) C15 Co2Hf; (b) C36 Co2Ta; (c)–(e) C36 Co2Hf0.25Ta0.75, Co2Hf0.5Ta0.5, Co2Hf0.75Ta0.25. (f) The free energy versus temperature for Co2Hf and Co2Ta.

    图 11  Co2Hf和Co2Ta总态密度和分态密度(垂直虚线表示费米能级) (a), (b) C14, C15, C36相的Co2Hf和 Co2Ta的总电子态密度; (c), (e) C14相 Co2Hf的分态密度; (d), (f) C36相Co2Ta的分态密度

    Figure 11.  Total density of states and partial density of states of Co2Hf and Co2Ta : (a), (b) The total electronic density of states of Co2Hf and Co2Ta in C14, C15 and C36 phases; (c), (e) the partial density of states of C14 phase Co2Hf; (d), (f) the partial density of states of C36 phase Co2Ta. The vertical dotted line represents the Fermi level.

    图 12  差分电荷密度图 (a) Co2Hf 的C14结构$ (11 \bar{2} 0)$面; (b) Co2Hf 的C15结构的(110)面; (c), (d) 代表为铁磁和顺磁Co2Ta的C36 的$(11 \bar{2}0) $面

    Figure 12.  Differential charge density diagram: (a) C14-FM $ (11\bar{2}0) $ plane of C14 structure of Co2Hf; (b) C15-FM (110) plane of C15 structure of Co2Hf; (c), (d) the $ (11\bar{2} 0)$ plane of C36 with ferromagnetic and paramagnetic Co2Ta.

    表 1  Laves相晶体结构的基本信息; 表中x = 1/6, z (C14-A1) = 9/16, z (C36-A1) = 21/32, z (C36-A2) = 3/32, z (C36-B3) = 1/8理想原子位置附近, 随A和B的不同, 6h和4e, 4f位的位置参数xz会有微小的变化[2]

    Table 1.  Details on Laves phase crystal structure. Depending on A and B sites, the position parameters x and z of the 6h and 4e, 4f sites slightly vary around the ideal atom position values of x = 1/6, z (C14-A1) = 9/16, z (C36-A1) = 21/32, z (C36-A2) = 3/32, z (C36-B3) = 1/8[2].

    结构名称 结构类型 空间群 原子 亚格点位置以及占位
    x y z
    C15 MgCu2 227 A 8a 0 0 0
    B 16d 5/8 5/8 5/8
    C14 MgZn2 194 A 4f 1/3 2/3 z
    B1 6h x 2x 1/4
    B2 2a 0 0 0
    C36 MgNi2 194 A1 4f 1/3 2/3 z
    A2 4e 0 0 z
    B1 6h
    x
    2x 1/4
    B2 6g 1/2 0 0
    B3 4f 1/3 2/3 z
    DownLoad: CSV

    表 2  Co2Hf和Co2Ta Laves相的晶格常数ac、体积V、钴的局域磁矩M、形成能ΔH、有无自旋极化状态下的能量差ΔE, 及可利用的实验或模拟数据

    Table 2.  Lattice constants a, c, volume V, local magnetic moment M, formation energy ΔH, energy difference ΔE with and without spin polarization state , and available experimental or simulated data of Co2Hf and Co2Ta Laves phases.

    体系 结构 a c V/(Å3·atom–1) M/(μB·atom–1) ΔH/(eV·atom–1) ΔE/(eV·atom–1) Refs.
    Co2Hf C14 4.873 7.939 13.605 0.69
    0.79
    –0.3788 –0.017
    C15 4.870 13.615 0.76 –0.3752 –0.002
    4.824
    4.909

    13.945
    Cal.[22]
    Cal.[34]
    C36 4.876 15.837 13.585 0.68
    0.70
    0.58
    –0.3779 –0.007
    4.816 15.650 Cal.[22]
    Co2Ta C14 4.766 7.750 12.703 0.33
    0.68
    –0.2378 –0.002
    4.797 7.827 12.730 Exp.[13]
    C15 4.759 12.702 0.40 –0.2442 –0.005
    4.791 12.957 Cal.[34]
    C36 4.760 15.529 12.698 0.39
    0.41
    0.27
    –0.2447 –0.003
    DownLoad: CSV

    表 3  Co2Hf和Co2Ta的C14, C15和C36结构以及Co2(Ta1–xHfx)基态结构的弹性常数cij (GPa), 其中, 结构部分, FM和PM代表铁磁和顺磁态, 数字156, 186表示空间群

    Table 3.  Elastic constants cij (GPa) of C14, C15, C36Co2Hf and Co2Ta as well as Co2(Ta1–xHfx), where the structural part, FM and PM represent ferromagnetic and paramagnetic states, and the numbers 156, 186 represent the space group.

    体系 结构 c11 c33 c44 c12 c13 $c_{66}, {c_{14}}^* $ Refs.
    Co2Hf C14-FM 274.14 332.76 81.86 86.14 126.48 94.00
    C14-PM 299.75 348.07 73.80 90.11 113.04 104.82
    C15-FM 308.80 85.60 154.53
    C15-PM 298.50 106.00 139.12
    C15 270.20 85.50 117.50 Cal.[34]
    C36-FM 308.11 293.50 80.53 121.99 113.90 93.06
    C36-PM 329.08 343.58 81.90 120.83 117.89 104.12
    Co2Ta C14-FM 407.15 430.80 97.10 138.20 151.11 134.48
    C14-PM 442.04 421.53 89.27 167.32 137.34 137.36
    C15-FM 357.11 141.47 137.90
    C15-PM 395.37 151.94 165.32
    C15 383.50 143.90 173.40 Cal.[34]
    C36-FM 424.64 429.32 98.18 154.27 143.77 135.19
    C36-PM 444.08 481.10 88.70 174.90 177.34 134.59
    Co2Hf0.25Ta0.75 156-FM 390.67 383.02 80.43 153.72 146.41 –1.13
    Co2Hf0.5Ta0.5 186-FM 358.36 362.80 84.35 132.40 126.78
    Co2Hf0.75Ta0.25 156-FM 327.16 312.04 77.66 130.90 122.88 0.68
    *: c66, c14数据列, 其中后3行时c14数值, 其他行为c66数值.
    DownLoad: CSV
  • [1]

    Schulze G E 1939 Zeitschrift Für Elektrochemie und Angewandte Physikalische Chemie 45 849Google Scholar

    [2]

    Stein F, Leineweber A 2021 J. Mater. Sci. 56 5321Google Scholar

    [3]

    张硕鑫, 刘士余, 严达利, 余浅, 任海涛, 于彬, 李德军 2021 物理学报 70 117102Google Scholar

    Zhang S X, Liu S Y, Yan D L, Yu Q, Ren H T, Yu B, Li D J 2021 Acta Phys. Sin. 70 117102Google Scholar

    [4]

    Zhang Y, Fu H, He J, Xie J 2022 J. Alloys Compd. 891 162016Google Scholar

    [5]

    Burzo E, Gratz E, Pop V 1993 J. Magn. Magn. Mater. 123 159Google Scholar

    [6]

    Chen K C, Peterson E J, Thoma D J 2001 Intermetallics 9 771Google Scholar

    [7]

    Chen K C, Chu F, Kotula P G, Thoma D 2001 Intermetallics 9 785Google Scholar

    [8]

    Concas G, Congiu F, Belošević-Čavor J, Cekić B 2007 Zeitschrift für Naturforschung A 62 452Google Scholar

    [9]

    Wang C, Chen X, Yang P, Zhang Q, Yang S, Lu Y, Guo Y, Liu X 2022 J. Alloys Compd. 925 166723Google Scholar

    [10]

    Ooshima M, Tanaka K, Okamoto N L, Kishida K, Inui H 2010 J. Alloys Compd. 508 71Google Scholar

    [11]

    Omori T, Oikawa K, Sato J, Ohnuma I, Kattner U R, Kainuma R, Ishida K 2013 Intermetallics 32 274Google Scholar

    [12]

    Povstugar I, Choi P P, Neumeier S, Bauer A, Zenk C H, Göken M, Raabe D 2014 Acta Mater. 78 78Google Scholar

    [13]

    Dragsdorf R, Foreing W 1962 Acta Crystallogr. 15 531Google Scholar

    [14]

    Baheti V A, Roy S, Ravi R, Paul A 2013 Intermetallics 33 87Google Scholar

    [15]

    Shinagawa K, Chinen H, Omori T, Oikawa K, Ohnuma I, Ishida K, Kainuma R 2014 Intermetallics 49 87Google Scholar

    [16]

    Wang P, Koßmann J, Kattner U R, Palumbo M, Hammerschmidt T, Olson G B 2019 Calphad 64 205Google Scholar

    [17]

    Zhou C, Guo C, Li C, Du Z 2019 Calphad 66 101649Google Scholar

    [18]

    Asano S, Ishida S 1988 J. Phys. F: Metal Phys. 18 501Google Scholar

    [19]

    Stein F, Palm M, Sauthoff G 2004 Intermetallics 12 713Google Scholar

    [20]

    Von Keitz A, Sauthoff G 2002 Intermetallics 10 497Google Scholar

    [21]

    Thoma D, Perepezko J 1995 J. Alloys Compd. 224 330Google Scholar

    [22]

    Wang L, Kong Y, Oehring M, Song M, Pyczak F 2022 J. Alloys Compd. 906 164261Google Scholar

    [23]

    Levy O, Hart G L, Curtarolo S 2010 Acta Mater. 58 2887Google Scholar

    [24]

    Segall M, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S, Payne M 2002 J. Phys.: Condens. Matter 14 2717Google Scholar

    [25]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K, Payne M C 2005 Z. Krist. -Cryst. Mater. 220 567Google Scholar

    [26]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [27]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [28]

    Pfrommer B G, Côté M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

    [29]

    Wang Q, Li Q, Ding H, Tian F 2022 Comput. Condens. Matter 32 e00721Google Scholar

    [30]

    Sun Y, Zhou Y, Gurunathan R, Zhang J Y, Hu M, Liu W, Xu B, Snyder G J 2021 J. Mater. Chem. C 9 8506Google Scholar

    [31]

    Wu R, Wang Y P, Shao L, Wang W, Tang B Y 2021 Chin. J. Chem. Eng. 40 315Google Scholar

    [32]

    Gao J, Liu Q, Jiang C, Fan D, Zhang M, Liu F, Tang B 2022 Chin. J. High Press. Phys 36 051101Google Scholar

    [33]

    Jana A, Sridar S, Fries S G, Hammerschmidt T, Kumar K H 2020 Intermetallics 116 106640Google Scholar

    [34]

    Chen S, Sun Y, Duan Y H, Huang B, Peng M J 2015 J. Alloys Compd. 630 202Google Scholar

    [35]

    Özer T 2020 Canadian J. Phys. 98 357Google Scholar

    [36]

    Cheng T M, Yu G L, Zhang X X 2022 Physica B 645 414268Google Scholar

    [37]

    Xu Y, Cao Y, Hu C, Zhang C, Tian C, Alzoabi S, Santos N, Zhou S 2021 Solid State Sci. 115 106580Google Scholar

    [38]

    Xu N, Chen Y, Chen S, Zhang W, Li S, Song R, Zhang J 2023 J. Mater. Res. Technol. 26 4825Google Scholar

    [39]

    Jian Y, Huang Z, Xing J, Sun L, Liu Y, Gao P 2019 Mater. Chem. Phys. 221 311Google Scholar

    [40]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504Google Scholar

    [41]

    Hong D, Zeng W, Liu F S, Tang B, Liu Q J 2019 Physica B 558 100Google Scholar

  • [1] Zhou Jin-Ping, Li Chun-Mei, Jiang Bo, Huang Ren-Zhong. First-principles study of Co and Ni excess effects on crystal structure and phase stability of Co2NiGa alloy. Acta Physica Sinica, 2023, 72(15): 156301. doi: 10.7498/aps.72.20230626
    [2] Yang Shun-Jie, Li Chun-Mei, Zhou Jin-Ping. First-principles study of magnetic disordering and alloying effects on phase stability and elastic constants of Co2CrZ (Z = Ga, Si, Ge) alloys. Acta Physica Sinica, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [3] Chen Guang-Ping, Yang Jin-Ni, Qiao Chang-Bing, Huang Lu-Jun, Yu Jing. First-principles calculations of local structure and electronic properties of Er3+-doped TiO2. Acta Physica Sinica, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [4] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [5] Hu Qian-Ku, Qin Shuang-Hong, Wu Qing-Hua, Li Dan-Dan, Zhang Bin, Yuan Wen-Feng, Wang Li-Bo, Zhou Ai-Guo. First-principles calculations of stabilities and physical properties of ternary niobium borocarbides and tantalum borocarbides. Acta Physica Sinica, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [6] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [7] Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound. Acta Physica Sinica, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [8] Bai Jing, Wang Xiao-Shu, Zu Qi-Rui, Zhao Xiang, Zuo Liang. Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study. Acta Physica Sinica, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [9] Peng Qiong, He Chao-Yu, Li Jin, Zhong Jian-Xin. First-principles study of electronic properties of MoSi2 thin films. Acta Physica Sinica, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [10] Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou. The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg). Acta Physica Sinica, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [11] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [12] Li Xue-Mei, Han Hui-Lei, He Guang-Pu. Lattice dynamical, dielectric and thermodynamic properties of LiNH2 from first principles. Acta Physica Sinica, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [13] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [14] Ding Hang-Chen, Shi Si-Qi, Jiang Ping, Tang Wei-Hua. First-principles investigation on the phase transitions of BiFeO3. Acta Physica Sinica, 2010, 59(12): 8789-8793. doi: 10.7498/aps.59.8789
    [15] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [16] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [17] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [18] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [19] Sun Bo, Liu Shao-Jun, Duan Su-Qing, Zhu Wen-Jun. First-principles calculations of structures, properties and high pressures effects of Fe. Acta Physica Sinica, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
    [20] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
Metrics
  • Abstract views:  1691
  • PDF Downloads:  55
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2024
  • Accepted Date:  10 March 2024
  • Available Online:  28 April 2024
  • Published Online:  20 June 2024

/

返回文章
返回