Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of F adsorption by TiN with its oxide surface in three-dimensional NAND flash memory

Fang Yu-Xuan Yang Yi Xia Zhi-Liang Huo Zong-Liang

Citation:

First-principles study of F adsorption by TiN with its oxide surface in three-dimensional NAND flash memory

Fang Yu-Xuan, Yang Yi, Xia Zhi-Liang, Huo Zong-Liang
PDF
HTML
Get Citation
  • Three-dimensional (3D) NAND flash memory is a key technology in the field of mainstream memory solutions, which is primarily due to its extremely low bit cost. The architecture of 3D NAND, characterized by its vertically stacked design, substantially enhances the capacity of individual chips. This advancement is completely consistent with the demands for high-capacity data storage in contemporary environments, securing its widespread adoption in diverse application scenarios. As storage density increases, the complexity of process integration increases, bringing new challenges. The word lines in 3D NAND are typically filled by using gate replacement techniques, and compared with chemical vapor deposition (CVD), atomic layer deposition (ALD) is favored for its superior step-coverage, especially for depositing tungsten (W) at the gate. However, due to the complexity of the replacement gate deposition structure, fluorine (F) residues are found in the voids of the tungsten metal gate filling structure and diffuse into the surrounding structure under subsequent process conditions, corroding other films such as silicon oxide and degrading device performance and reliability. To alleviate the problem of fluorine attack, a thin layer of titanium nitride is usually deposited as a barrier layer before deposition of tungsten gate, which blocks the fluorine in the tungsten gate and prevents its diffusion into the oxide layer. Previously, there were studies to increase the ability to stop F diffusion by varying the thickness of the F blocking layer (TiN). However, increasing the thickness of TiN will further increase the complexity of high aspect ratio etching in the 3D NAND process, which will have adverse effect on subsequent processes. To further minimize the effect of fluorine erosion, residual fluorine elements can be removed by introducing annealing in the subsequent process flow. In the actual 3D NAND process, elemental fluorine (F) is adsorbed and accumulates on the TiN surface, and is further activated by subsequent high-temperature processes, leading to severe fluorine erosion. The delay between TiN deposition and subsequent processing steps is hypothesized to facilitate fluorine adsorption due to the oxidation of TiN. This work corroborates this hypothesis through first-principles calculations, and demonstrates the role of TiN oxidation in fluorine adsorption. In this work, we evaluate the effect of this oxidation on the fluorine-blocking effectiveness of the TiN barrier layer. We simulate the adsorption of fluorine-containing by-products on TiN and its oxides, providing theoretical insights into mitigating fluorine attack. The higher degree of oxidation of TiN is more likely to cause F adsorption, and Ti exposed surface TiN is more prone to oxidation, which is more likely to cause F adsorption in unoxidized condition and oxidized condition. Based on these insights, we implemente an ammonia purge treatment in 3D NAND manufacturing, which effectively minimizes fluorine attack, reducing the leakage probability of word line by 25% and wafer warpage by 43%.
      Corresponding author: Xia Zhi-Liang, Albert_Xia@YMTC.com ; Huo Zong-Liang, Zongliang_Huo@YMTC.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFB4402500).
    [1]

    Compagnoni C M, Goda A, Spinelli A S, Feeley P, Lacaita A L, Visconti A 2017 Proc. IEEE 105 1609Google Scholar

    [2]

    Vasilyev V, Chung S H, Song Y W 2007 Solid State Technol. 50 53

    [3]

    Mistry K, Allen C, Auth C, Beattie B, Bergstrom D, Bost M, Brazier M, Buehler M, Cappellani A, Chau R 2007 IEEE International Electron Devices Meeting Washington, DC, USA, December 10–12, 2007 p247

    [4]

    Song Y J, Xia Z L, Hua W Y, Liu F, Huo Z L 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA) Beijing, China, November 21–23, 2018 p120

    [5]

    Schulze S, Wolansky D, Katzer J, Schubert M, Costina I, Mai A 2018 IEEE Trans. Semicond. Manuf. 31 528Google Scholar

    [6]

    Bakke J, Lei Y, Xu Y, Daito K, Fu X, Jian G, Wu K, Hung R, Jakkaraju R, Breil N 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC) San Jose, California, USA, May 23–26, 2016 p108

    [7]

    Lee J H, Hidayat R, Ramesh R, Roh H, Nandi D K, Lee W J, Kim S H 2022 Appl. Surf. Sci. 578 152062Google Scholar

    [8]

    Subramaniyan A, Luppi D F, Makela N, Bauer L, Madan A, Murphy R, Baumann F, Kohli K, Parks C 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) Saratoga Springs, New York, USA, May 16–19, 2016 p313

    [9]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [10]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos A J 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [11]

    Blöchl P E, Kästner J, Först C J 2005 Handbook of Materials Modeling: Methods (Springer) p93

    [12]

    Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azais T, Ashbrook S E, Griffin J M, Yates J R, Mauri F 2012 Chem. Rev. 112 5733Google Scholar

    [13]

    Zhang W, Cai J, Wang D, Wang Q, Wang S 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP) Xi’an, China, August 16–19, 2010 pp7–11

    [14]

    Abrahams S, Bernstein J 1971 J. Chem. Phys. 55 3206Google Scholar

    [15]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [16]

    Armstrong D, Perkins P 1969 Theor. Chim. Acta 15 413Google Scholar

    [17]

    Carosati E, Sciabola S, Cruciani G 2004 J. Med. Chem. 47 5114Google Scholar

    [18]

    Lennard-Jones J 1932 Trans. Faraday Soc. 28 333Google Scholar

    [19]

    Perron H, Domain C, Roques J, Drot R, Simoni E, Catalette H 2007 Theor. Chem. Acc. 117 565Google Scholar

    [20]

    Nilsson K B 2005 Coordination Chemistry in Liquid Ammonia and Phosphorous Donor Solvents (Department of Chemistry, Swedish University of Agricultural Sciences) p7

    [21]

    Kuchitsu K, Konaka S 1966 J. Chem. Phys. 45 4342Google Scholar

    [22]

    Jebasty R M, Vidya R 2019 ACS Biomaster Sci. Eng. 5 2001Google Scholar

    [23]

    Izadi S, Anandakrishnan R, Onufriev A V 2014 J. Phys. Chem. Lett. 5 3863Google Scholar

  • 图 1  替换栅结构与氟攻击氧化物的示意图, 说明氧化物层被腐蚀的机理, 蓝色箭头表示退火后氟逸散的通道, 说明退火可以排出剩余的氟元素

    Figure 1.  Schematic diagram of fluorine attacks oxide, illustrating the corrosion mechanism of the ox-ide layer in the W gate. The blue arrow indicates the channel for fluorine escape after annealing, illustrating that thermal processing can discharge the remaining F element.

    图 2  TiN沉积后经过不同等待时间后的F元素在W与TiN界面附近的浓度分布图

    Figure 2.  Concentration distribution of element F near the W-TiN interface after TiN deposition after different waiting times.

    图 3  (a)洁净的N暴露面TiN 12层原子模型; (b)洁净的Ti暴露面TiN 12层原子模型

    Figure 3.  (a) Clean N-exposed surface TiN 12-layer atomic model; (b) clean Ti-exposed surface TiN 12-layer atomic model.

    图 4  (a) TiN(111) N暴露表面吸附HF后的稳定结构; (b) TiN(111) N暴露表面吸附BF3后的稳定结构; (c) TiN(111) Ti暴露表面吸附HF后的稳定结构; (d) TiN(111) Ti暴露表面吸附BF3后的稳定结构

    Figure 4.  (a) Stable structure of TiN(111) after adsorption of HF on the N exposed surface; (b) stable structure of TiN(111) after adsorption of BF3 on the N exposed surface; (c) stable structure of TiN(111) after adsorption of HF on the Ti exposed surface; (d) stable structure of TiN(111) after adsorption of BF3 on the Ti exposed surface.

    图 5  (a) TiO2(100)表面吸附HF后的稳定结构; (b) TiO2(100)表面吸附BF3后的稳定结构

    Figure 5.  (a) Stable structure of HF adsorption on the TiO2(100) surface; (b) stable structure of BF3 adsorption on the TiO2(100) surface.

    图 6  (a) TiN(111)N暴露表面氧化产生TiON(111)的表面模型; (b) TiN(111)Ti暴露表面氧化产生TiON(111)的表面模型

    Figure 6.  (a) Surface model of TiON(111) generated by oxidation of the N-exposed surface of TiN(111); (b) surface model of TiON(111) generated by oxidation of the Ti-exposed surface of TiN(111).

    图 7  (a) N暴露表面氧化后的TiON(111)表面吸附HF后的稳定结构; (b) N暴露表面氧化后的TiON(111) 表面吸附BF3后的稳定结构; (c) Ti暴露表面氧化后的TiON(111) 表面吸附HF后的稳定结构; (d) Ti暴露表面氧化后的TiON(111) 表面吸附BF3后的稳定结构

    Figure 7.  (a) Stable structure of HF adsorption on the TiON(111) surface oxidized from the N-exposed surface; (b) stable structure of BF3 adsorption on the TiON(111) surface oxidized from the N-exposed surface; (c) stable structure of HF adsorption on the TiON(111) surface oxidized from the Ti-exposed surface; (d) stable structure of BF3 adsorption on the TiON(111) surface oxidized from the Ti-exposed surface.

    图 8  氨气处理前后失效概率对比

    Figure 8.  Comparison of failure probability before and after ammonia treatment.

    图 9  氨气处理前后片弯曲度对比

    Figure 9.  Comparison of wafer bow before and after ammonia treatment.

    图 10  氨气处理前后电阻值对比

    Figure 10.  Comparison of resistance values before and after ammonia treatment.

    表 1  TiN(111) N暴露表面、TiN(111) Ti暴露表面吸附HF和BF3后的键长

    Table 1.  Bond lengths after HF and BF3 adsorption on the N-exposed surface of TiN(111) and the Ti-exposed surface of TiN(111).

    吸附表面吸附分子成键类型键长/Å理想键长/Å吸附能/eV
    N-TiN(111)HFN—H1.831.01(NH3)[20]–0.08
    BF3B—F1.331.31(BF3)[21]–0.02
    Ti-TiN(111)HFN—H1.651.01(NH3)–2.03
    Ti—F1.101.74(TiF4)[22]
    BF3Ti—F2.231.74(TiF4)–1.77
    B—F1.441.31(BF3)
    DownLoad: CSV

    表 2  TiO2(100) 表面吸附HF和BF3后的键长

    Table 2.  Bond lengths after HF and BF3 adsorption on the TiO2(100) surface.

    吸附表面吸附分子成键类型键长/Å理想键长/Å吸附能/eV
    TiO2(100)HFTi—F1.831.74(TiF4)–1.92
    O—H0.970.96(H2O)[23]
    TiO2(100)BF3Ti—F2.101.74(TiF4)–1.98
    B—F1.481.31(BF3)
    DownLoad: CSV

    表 3  TiON(111) N暴露表面、TiON(111) Ti暴露表面吸附HF和BF3后的键长

    Table 3.  Bond lengths after HF and BF3 adsorption on the N-exposed surface of TiON(111) and the Ti-exposed surface of TiON(111).

    吸附表面吸附分子成键类型键长/Å理想键长/Å吸附能/eV
    N-TiON(111)HFO—H1.860.96(H2O)–0.23
    BF3B—F1.321.31(BF3)–0.06
    Ti-TiON(111)HFO—H0.970.96(H2O)–2.28
    Ti—F2.181.74(TiF4)
    BF3Ti—F2.181.74(TiF4)–1.40
    B—F1.331.31(BF3)
    DownLoad: CSV
  • [1]

    Compagnoni C M, Goda A, Spinelli A S, Feeley P, Lacaita A L, Visconti A 2017 Proc. IEEE 105 1609Google Scholar

    [2]

    Vasilyev V, Chung S H, Song Y W 2007 Solid State Technol. 50 53

    [3]

    Mistry K, Allen C, Auth C, Beattie B, Bergstrom D, Bost M, Brazier M, Buehler M, Cappellani A, Chau R 2007 IEEE International Electron Devices Meeting Washington, DC, USA, December 10–12, 2007 p247

    [4]

    Song Y J, Xia Z L, Hua W Y, Liu F, Huo Z L 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA) Beijing, China, November 21–23, 2018 p120

    [5]

    Schulze S, Wolansky D, Katzer J, Schubert M, Costina I, Mai A 2018 IEEE Trans. Semicond. Manuf. 31 528Google Scholar

    [6]

    Bakke J, Lei Y, Xu Y, Daito K, Fu X, Jian G, Wu K, Hung R, Jakkaraju R, Breil N 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC) San Jose, California, USA, May 23–26, 2016 p108

    [7]

    Lee J H, Hidayat R, Ramesh R, Roh H, Nandi D K, Lee W J, Kim S H 2022 Appl. Surf. Sci. 578 152062Google Scholar

    [8]

    Subramaniyan A, Luppi D F, Makela N, Bauer L, Madan A, Murphy R, Baumann F, Kohli K, Parks C 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) Saratoga Springs, New York, USA, May 16–19, 2016 p313

    [9]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [10]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos A J 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [11]

    Blöchl P E, Kästner J, Först C J 2005 Handbook of Materials Modeling: Methods (Springer) p93

    [12]

    Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azais T, Ashbrook S E, Griffin J M, Yates J R, Mauri F 2012 Chem. Rev. 112 5733Google Scholar

    [13]

    Zhang W, Cai J, Wang D, Wang Q, Wang S 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP) Xi’an, China, August 16–19, 2010 pp7–11

    [14]

    Abrahams S, Bernstein J 1971 J. Chem. Phys. 55 3206Google Scholar

    [15]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [16]

    Armstrong D, Perkins P 1969 Theor. Chim. Acta 15 413Google Scholar

    [17]

    Carosati E, Sciabola S, Cruciani G 2004 J. Med. Chem. 47 5114Google Scholar

    [18]

    Lennard-Jones J 1932 Trans. Faraday Soc. 28 333Google Scholar

    [19]

    Perron H, Domain C, Roques J, Drot R, Simoni E, Catalette H 2007 Theor. Chem. Acc. 117 565Google Scholar

    [20]

    Nilsson K B 2005 Coordination Chemistry in Liquid Ammonia and Phosphorous Donor Solvents (Department of Chemistry, Swedish University of Agricultural Sciences) p7

    [21]

    Kuchitsu K, Konaka S 1966 J. Chem. Phys. 45 4342Google Scholar

    [22]

    Jebasty R M, Vidya R 2019 ACS Biomaster Sci. Eng. 5 2001Google Scholar

    [23]

    Izadi S, Anandakrishnan R, Onufriev A V 2014 J. Phys. Chem. Lett. 5 3863Google Scholar

  • [1] Fang Yu-Xuan, Xia Zhi-Liang, Yang Tao, Zhou Wen-Xi, Huo Zong-Liang. Improvement of fluorine attack induced word-line leakage in 3D NAND flash memory. Acta Physica Sinica, 2024, 73(6): 068502. doi: 10.7498/aps.73.20231557
    [2] Qin Jing-Yun, Shu Qun-Wei, Yuan Yi, Qiu Wei, Xiao Li-Hua, Peng Ping, Lu Guo-Song. First-principles investigation on electronic structure and solar radiation shielding performance of Tl0.33WO3. Acta Physica Sinica, 2020, 69(4): 047102. doi: 10.7498/aps.69.20191577
    [3] Fu Xian-Kai, Chen Wan-Qi, Jiang Zhong-Sheng, Yang Bo, Zhao Xiang, Zuo Liang. First-principles investigation on elastic, electronic, and optical properties of Ti3O5. Acta Physica Sinica, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [4] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [5] Shi Yu, Bai Yang, Mo Li-Bin, Xiang Qing-Yun, Huang Ya-Li, Cao Jiang-Li. First-principles calculation for hydrogen-doped hematite. Acta Physica Sinica, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [6] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [7] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [8] Zhou Peng-Li, Shi Ru-Qian, He Jing-Fang, Zheng Shu-Kai. First principle study on B-Al co-doped 3C-SiC. Acta Physica Sinica, 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [9] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [10] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [11] Ru Qiang, Li Yan-Ling, Hu She-Jun, Peng Wei, Zhang Zhi-Wen. The investigation of lithium insertion mechanism for Sn3InSb4 alloy based on first-principle calculation. Acta Physica Sinica, 2012, 61(3): 038210. doi: 10.7498/aps.61.038210
    [12] Deng Yang, Wang Ru-Zhi, Xu Li-Chun, Fang Hui, Yan Hui. Pressure induced band-gap changes in (Ba0.5Sr0.5)TiO3 (BST) from first-principles calculations. Acta Physica Sinica, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [13] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [14] Fan Kai-Min, Yang Li, Peng Shu-Ming, Long Xing-Gui, Wu Zhong-Cheng, Zu Xiao-Tao. First-principles calculation for elastic constantsof α-ScDx(D=H, He). Acta Physica Sinica, 2011, 60(7): 076201. doi: 10.7498/aps.60.076201
    [15] Li Shi-Na, Liu Yong. First-principles calculation of elastic and thermodynamic properties of copper nitride. Acta Physica Sinica, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [16] Sun Yuan, Huang Zu-Fei, Fan Hou-Gang, Ming Xing, Wang Chun-Zhong, Chen Gang. First-principles investigation on the role of ions in ferroelectric transition of BiFeO3. Acta Physica Sinica, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [17] Zhu Guo-Liang, Shu Da, Dai Yong-Bing, Wang Jun, Sun Bao-De. First principles study on substitution behaviour of Si in TiAl3. Acta Physica Sinica, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [18] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] Yu Xiao, Luo Xiao-Guang, Chen Gui-Feng, Shen Jun, Li Yang-Xian. First principle calculation of structural, elastic and electronic properties of XHfO3(X=Ba, Sr). Acta Physica Sinica, 2007, 56(9): 5366-5370. doi: 10.7498/aps.56.5366
    [20] Zhao Zong-Yan, Liu Qing-Ju, Zhang Jin, Zhu Zhong-Qi. First-principles study of 3d transition metal-doped anatase. Acta Physica Sinica, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
Metrics
  • Abstract views:  367
  • PDF Downloads:  34
  • Cited By: 0
Publishing process
  • Received Date:  08 February 2024
  • Accepted Date:  17 April 2024
  • Available Online:  08 May 2024
  • Published Online:  20 June 2024

/

返回文章
返回