Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inkjet printing high mobility indium-zinc-tin oxide thin film transistor

Zhao Ze-Xian Xu Meng Peng Cong Zhang Han Chen Long-Long Zhang Jian-Hua Li Xi-Feng

Citation:

Inkjet printing high mobility indium-zinc-tin oxide thin film transistor

Zhao Ze-Xian, Xu Meng, Peng Cong, Zhang Han, Chen Long-Long, Zhang Jian-Hua, Li Xi-Feng
PDF
HTML
Get Citation
  • Metal oxide thin film transistor has been widely used in flat panel display industry because of its low leakage current, high mobility and large area uniformity. Besides, with the development of printed display technology, inkjet printing process can fabricate the customizable patterns on diverse substrates with no need of vacuum or lithography to be used, thus significantly reducing cost and receiving more and more attention. In this paper, we use inkjet printing technology to prepare a bottom gate bottom contact thin film transistor (TFT) by using indium-zinc-tin-oxide (IZTO) semiconductor. The surface morphology of the printed IZTO film is modified by adjusting the solvent composition and solute concentration of the printing precursor ink. The experimental result show that the use of binary solvents can effectively overcome the coffee ring shape caused by the accumulation of solute edge in the volatilization process of a single solvent, ultimately presenting a uniform and flat contour surface. Further increase in solute concentration is in favor of formation of convex surface topology. The reason for the formation of the flat surface of the oxide film is the balance between the inward Marangoni reflux of the solute and the outward capillary flow during volatilization. In addition, IZTO thin film transistor printed with binary solvents exhibits excellent electrical properties. The ratio of width/length = 50/30 exhibits a high on-off ratio of 1.21×109, a high saturation field-effect mobility is 16.6 cm2/(V·s), a low threshold voltage is 0.84 V, and subthreshold swing is 0.24 V/dec. The uniform and flat active layer thin film pattern can form good contact with the source leakage electrode, and the contact resistances of TFT devices with different width-to-length ratios are less than 1000 Ω, which can reach the basic conditions of high mobility thin film transistors prepared by inkjet printing. Therefore, using solvent mixture provides a universal and simple way to print oxide films with required surface topology, and present a visible path for inkjet printing of high-mobility thin film transistors.
      Corresponding author: Li Xi-Feng, lixifeng@shu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3603805).
    [1]

    荆斌, 徐萌, 彭聪, 陈龙龙, 张建华, 李喜峰 2022 物理学报 71 138502Google Scholar

    Jing B, Xu M, Peng C, Chen L L, Zhang J H, Li X F 2022 Acta Phys. Sin. 71 138502Google Scholar

    [2]

    Chu S, Hollberg L, Bjorkholm J E, Bolot S, Fuchs P, Knobelspies S, Temel O, Sevilla G T, Gilshtein E, Andres C, Shorubalko I, Liu Y, Troester G, Tiwari A A N, Romanyuk Y E 2019 Adv. Electron. Mater. 5 1800843Google Scholar

    [3]

    Song O, Rhee D, Kim J, Jeon Y, Mazánek V, Söll A, Kwon Y A, Cho J H, Kim Y H, Kang J, Sofer Z 2022 npj 2D Mater. Appl. 6 64Google Scholar

    [4]

    Liang K, Li D W, Ren H H, Zhao M M, Wang H, Ding M F, Xu G W, Zhao X L, Long S B, Zhu S Y, Sheng P, Li W B, Lin X, Zhu B W 2021 Nano-Micro Lett. 13 164Google Scholar

    [5]

    Kwon J, Baek S, Lee Y, Tokito S, Jung S 2021 Langmuir 37 10692Google Scholar

    [6]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar

    [7]

    兰林峰, 陈宝中, 彭俊彪, 曹镛 2021 高分子材料科学与工程 37 150Google Scholar

    Lan L F, Chen B Z, Peng J B, Cao Y 2021 Polym. Mater. Sci. Eng. 37 150Google Scholar

    [8]

    Li Y Z, Lan L F, Gao P, He P H, Dai X, Cao H, Liang L, Peng J B 2019 IEEE Electron Device Lett. 40 228Google Scholar

    [9]

    Ryu S O, Ha C H, Jun H Y, Ryu S O 2020 J. Electron. Mater. 49 2003Google Scholar

    [10]

    Gillan L, Li S, Lahtinen J, Chang C H, Alastalo A, Leppäniemi J 2021 Adv. Mater. Interfaces 8 2100728Google Scholar

    [11]

    Matavz A, Ursic U, Mocivnik J, Richter D, Humar M, Copar S, Malic B, Bobnar V 2022 J. Colloid Interface Sci. 608 1718Google Scholar

    [12]

    Sun D W, Chen C H, Zhang J, Wu X M, Chen H P, Guo T L 2018 Appl. Phys. Lett. 112 012102Google Scholar

    [13]

    Zhu Z N, Zhang J H, Zhou Z W, Ning H L, Cai W, Wei J L, Zhou S X, Yao R H, Lu X B, Peng J B A 2019 ACS Appl. Mater. Interfaces 11 5193Google Scholar

    [14]

    Zhu Z N, Ning H L, Cai W, Wei J L, Zhou S X, Yao R H, Lu X B, Zhang J H, Zhou Z W, Peng J B A 2018 Langmuir 34 6413Google Scholar

    [15]

    Still T, Yunker P J, Yodh A G 2012 Langmuir 28 4984Google Scholar

    [16]

    Hu H L, Zhu J G, Chen M S, Guo T L, Li F S 2018 Appl. Surf. Sci. 441 295Google Scholar

    [17]

    Zhong X, Duan F 2016 Eur. Phys. J. B 39 18Google Scholar

    [18]

    Oh G, Jeong W, Jung N, Kang S H, Weon B M 2022 Phys. Rev. Appl. 17 024010Google Scholar

    [19]

    Kim D, Jeong S, Park B K, Moon J 2006 Appl. Phys. Lett. 89 264101Google Scholar

    [20]

    Kim M G, Kim H S, Ha Y G, He J Q, Kanatzidis M G, Facchetti A, Marks T J 2010 J. Am. Chem. Soc. 132 10352Google Scholar

    [21]

    朱乐永, 高娅娜, 李喜峰, 张建华 2015 物理学报 64 168501Google Scholar

    Zhu L Y, Gao Y N, Zhang J H, Li X F 2015 Acta Phys. Sin. 64 168501Google Scholar

    [22]

    Choi S, Kim K T, Park S K, Kim Y H 2019 Materials 12 852Google Scholar

    [23]

    Friederich A, Binder J R, Bauer W 2013 J. Am. Ceram. Soc. 96 2093Google Scholar

    [24]

    Ishizuka H, Fukai J 2018 Exp. Fluids 59 4Google Scholar

    [25]

    Li Y Z, He P H, Chen S T, Lan L F, Dai X Q, Peng J B 2019 ACS Appl. Mater. Interfaces 11 28052Google Scholar

    [26]

    Park J, Moon J 2006 Langmuir 22 3506Google Scholar

    [27]

    Huang H, Hu H L, Zhu J G, Guo T L 2017 J. Electron. Mater. 46 4497Google Scholar

    [28]

    陶洪, 罗浩德, 宁洪龙, 姚日晖, 蔡炜, 郑喜凤, 汪洋, 王铂, 曹慧, 彭俊彪 2021 液晶与显示 36 663Google Scholar

    Tao H, Luo H D, Ning H L, Yao R H, Cai W, Zheng X F, Wang Y, Wang B, Cao H, Peng, J B 2021 Chin. J. Liq. Cryst. Disp. 36 663Google Scholar

    [29]

    Chen S T, Li Y Z, Lin Y L, He P H, Long T, Deng C H, Chen Z, Chen G S, Tao H, Lan L F, Peng J B 2020 Coatings 10 425Google Scholar

    [30]

    Fan C L, Hsin T C, Yu X W, Lin Z C 2024 Mater. Sci. Semicond. Process. 172 1396Google Scholar

    [31]

    Weber C, Oberberg M, Weber D, Bock C, Pham D V, Kunze U 2014 Adv. Mater. Interfaces 1 1400137Google Scholar

    [32]

    林奕龙, 陈思婷, 吴永波, 兰林锋, 彭俊彪 2021 液晶与显示 36 1239Google Scholar

    Lin Y L, Chen S T, Wu Y B, Lan L F, Peng J B A 2021 Chin. J. Liq. Cryst. Disp. 36 1239Google Scholar

  • 图 1  IZTO TFT器件的光学显微镜图像, 插图显示截面示意图

    Figure 1.  Microscope images of the IZTO TFT device, where the inset shows the schematic cross section.

    图 2  IZTO前驱体墨水的热重曲线(实线)和热重微分曲线(虚线)

    Figure 2.  The TGA curve (solid lines) and DTG curve (dotted lines) of IZTO precursor ink.

    图 3  不同溶剂、不同浓度下的IZTO薄膜的表面轮廓图

    Figure 3.  Surface profiles of IZTO films with different solvents and concentrations.

    图 4  印刷薄膜的凝胶化过程机理

    Figure 4.  Mechanism about gelation process of the printing film.

    图 5  (a) 单溶剂和(b)二元溶剂制备IZTO薄膜的O 1s峰的XPS光谱

    Figure 5.  XPS spectra of O 1s peaks of IZTO films prepared with (a) single solvent and (b) binary solvents.

    图 6  IZTO TFT器件转移特性曲线

    Figure 6.  Transfer characteristic curves of IZTO TFT devices.

    图 7  IZTO TFT器件的(a), (b)输出与(c), (d)转移曲线 (a), (c)凸状轮廓; (b), (d)平坦轮廓

    Figure 7.  (a), (b) Output and (c), (d) transfer curves of IZTO TFT device: (a), (c) Convex profile and (b), (d) uniform flat profile.

    图 8  喷墨打印10个IZTO TFT器件的转移特性曲线汇总图

    Figure 8.  Summary of transfer characteristic curves of 10 IZTO TFT devices fabricated by inkjet printing.

    图 9  不同沟道宽长比的IZTO TFT器件的转移特性曲线

    Figure 9.  Transfer characteristic curves of IZTO TFT devices with different aspect ratios.

    图 10  沟道长度为10—30 μm时IZTO TFT 获得的总电阻与沟道长度(RT-L)图

    Figure 10.  Total resistance vs. channel length (RT-L) plots obtained from IZTO TFTs with a channel length of 10–30 μm.

    表 1  不同浓度、溶剂下对应的IZTO墨水的物理参数

    Table 1.  Structural parameters of IZTO ink of different concentration and solvents.

    IZTO墨水样品 ρ/(g·cm–3) η/cP γ/(mN·m–1) Z
    c = 0.2 mol/L,
    2-MOE
    1.04 4.05 34.4 6.59
    c = 0.2 mol/L,
    2-MOE+EG
    1.07 6.90 38.1 4.14
    c = 0.4 mol/L,
    2-MOE+EG
    1.10 8.44 39.1 3.48
    DownLoad: CSV

    表 2  喷墨打印法制备TFT器件的性能对比

    Table 2.  Performance comparison of TFT devices prepared by inkjet printing method.

    成膜方式 μsat/(cm2·V–1·s–1) VTH/V S.S/(V·dec–1) Ion/Ioff 关态电流/A 文献
    喷墨打印 4.63 –1.44 0.18 >107 <10–12 [8]
    喷墨打印 1.3 0.14 0.44 2.3×104 <10–9 [10]
    喷墨打印 4.6 0.9 >105 1×10–10 [28]
    喷墨打印 3.0 –0.51 0.21 1.59×107 5×10–13 [29]
    磁控溅射 13.6 1.04 0.18 5.65×106 2×10–12 [30]
    喷墨打印 16.6 0.84 0.24 1.21×109 ≤10–13 本文
    DownLoad: CSV

    表 3  喷墨打印IZTO TFT的电性能参数平均值

    Table 3.  Average electrical performance parameters of inkjet printed IZTO TFT.

    μ/(cm2·V–1·s–1) VTH/V S.S/(mV·dec–1)
    Average value 11 ± 2 0.6 ± 0.15 90 ± 15
    DownLoad: CSV

    表 4  不同沟道宽长比的IZTO为有源层TFT器件性能对比

    Table 4.  Structural parameters of IZTO TFT devices with different aspect ratios.

    W/Lμsat/
    (cm2·V–1·s–1)
    VTH/
    V
    S.S/(V·dec–1)
    Ion/Ioff
    50/3016.60.840.241.21×109
    50/2014.90.730.152.79×109
    50/1011.50.570.103.74×109
    DownLoad: CSV
  • [1]

    荆斌, 徐萌, 彭聪, 陈龙龙, 张建华, 李喜峰 2022 物理学报 71 138502Google Scholar

    Jing B, Xu M, Peng C, Chen L L, Zhang J H, Li X F 2022 Acta Phys. Sin. 71 138502Google Scholar

    [2]

    Chu S, Hollberg L, Bjorkholm J E, Bolot S, Fuchs P, Knobelspies S, Temel O, Sevilla G T, Gilshtein E, Andres C, Shorubalko I, Liu Y, Troester G, Tiwari A A N, Romanyuk Y E 2019 Adv. Electron. Mater. 5 1800843Google Scholar

    [3]

    Song O, Rhee D, Kim J, Jeon Y, Mazánek V, Söll A, Kwon Y A, Cho J H, Kim Y H, Kang J, Sofer Z 2022 npj 2D Mater. Appl. 6 64Google Scholar

    [4]

    Liang K, Li D W, Ren H H, Zhao M M, Wang H, Ding M F, Xu G W, Zhao X L, Long S B, Zhu S Y, Sheng P, Li W B, Lin X, Zhu B W 2021 Nano-Micro Lett. 13 164Google Scholar

    [5]

    Kwon J, Baek S, Lee Y, Tokito S, Jung S 2021 Langmuir 37 10692Google Scholar

    [6]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar

    [7]

    兰林峰, 陈宝中, 彭俊彪, 曹镛 2021 高分子材料科学与工程 37 150Google Scholar

    Lan L F, Chen B Z, Peng J B, Cao Y 2021 Polym. Mater. Sci. Eng. 37 150Google Scholar

    [8]

    Li Y Z, Lan L F, Gao P, He P H, Dai X, Cao H, Liang L, Peng J B 2019 IEEE Electron Device Lett. 40 228Google Scholar

    [9]

    Ryu S O, Ha C H, Jun H Y, Ryu S O 2020 J. Electron. Mater. 49 2003Google Scholar

    [10]

    Gillan L, Li S, Lahtinen J, Chang C H, Alastalo A, Leppäniemi J 2021 Adv. Mater. Interfaces 8 2100728Google Scholar

    [11]

    Matavz A, Ursic U, Mocivnik J, Richter D, Humar M, Copar S, Malic B, Bobnar V 2022 J. Colloid Interface Sci. 608 1718Google Scholar

    [12]

    Sun D W, Chen C H, Zhang J, Wu X M, Chen H P, Guo T L 2018 Appl. Phys. Lett. 112 012102Google Scholar

    [13]

    Zhu Z N, Zhang J H, Zhou Z W, Ning H L, Cai W, Wei J L, Zhou S X, Yao R H, Lu X B, Peng J B A 2019 ACS Appl. Mater. Interfaces 11 5193Google Scholar

    [14]

    Zhu Z N, Ning H L, Cai W, Wei J L, Zhou S X, Yao R H, Lu X B, Zhang J H, Zhou Z W, Peng J B A 2018 Langmuir 34 6413Google Scholar

    [15]

    Still T, Yunker P J, Yodh A G 2012 Langmuir 28 4984Google Scholar

    [16]

    Hu H L, Zhu J G, Chen M S, Guo T L, Li F S 2018 Appl. Surf. Sci. 441 295Google Scholar

    [17]

    Zhong X, Duan F 2016 Eur. Phys. J. B 39 18Google Scholar

    [18]

    Oh G, Jeong W, Jung N, Kang S H, Weon B M 2022 Phys. Rev. Appl. 17 024010Google Scholar

    [19]

    Kim D, Jeong S, Park B K, Moon J 2006 Appl. Phys. Lett. 89 264101Google Scholar

    [20]

    Kim M G, Kim H S, Ha Y G, He J Q, Kanatzidis M G, Facchetti A, Marks T J 2010 J. Am. Chem. Soc. 132 10352Google Scholar

    [21]

    朱乐永, 高娅娜, 李喜峰, 张建华 2015 物理学报 64 168501Google Scholar

    Zhu L Y, Gao Y N, Zhang J H, Li X F 2015 Acta Phys. Sin. 64 168501Google Scholar

    [22]

    Choi S, Kim K T, Park S K, Kim Y H 2019 Materials 12 852Google Scholar

    [23]

    Friederich A, Binder J R, Bauer W 2013 J. Am. Ceram. Soc. 96 2093Google Scholar

    [24]

    Ishizuka H, Fukai J 2018 Exp. Fluids 59 4Google Scholar

    [25]

    Li Y Z, He P H, Chen S T, Lan L F, Dai X Q, Peng J B 2019 ACS Appl. Mater. Interfaces 11 28052Google Scholar

    [26]

    Park J, Moon J 2006 Langmuir 22 3506Google Scholar

    [27]

    Huang H, Hu H L, Zhu J G, Guo T L 2017 J. Electron. Mater. 46 4497Google Scholar

    [28]

    陶洪, 罗浩德, 宁洪龙, 姚日晖, 蔡炜, 郑喜凤, 汪洋, 王铂, 曹慧, 彭俊彪 2021 液晶与显示 36 663Google Scholar

    Tao H, Luo H D, Ning H L, Yao R H, Cai W, Zheng X F, Wang Y, Wang B, Cao H, Peng, J B 2021 Chin. J. Liq. Cryst. Disp. 36 663Google Scholar

    [29]

    Chen S T, Li Y Z, Lin Y L, He P H, Long T, Deng C H, Chen Z, Chen G S, Tao H, Lan L F, Peng J B 2020 Coatings 10 425Google Scholar

    [30]

    Fan C L, Hsin T C, Yu X W, Lin Z C 2024 Mater. Sci. Semicond. Process. 172 1396Google Scholar

    [31]

    Weber C, Oberberg M, Weber D, Bock C, Pham D V, Kunze U 2014 Adv. Mater. Interfaces 1 1400137Google Scholar

    [32]

    林奕龙, 陈思婷, 吴永波, 兰林锋, 彭俊彪 2021 液晶与显示 36 1239Google Scholar

    Lin Y L, Chen S T, Wu Y B, Lan L F, Peng J B A 2021 Chin. J. Liq. Cryst. Disp. 36 1239Google Scholar

  • [1] Zhang Xue, Kim Bokyung, Lee Hyeonju, Park Jaehoon. Low-temperature rapid preparation of high-performance indium oxide thin films and transistors based on solution technology. Acta Physica Sinica, 2024, 73(9): 096802. doi: 10.7498/aps.73.20240082
    [2] Song Jia-Ning, Mao Yu, Wang Jun-Jie, Li Dan-Yang, Ou Jia-Qi, Peng Jun-Biao. Study on ZnO quantum dot ligands for inkjet printing of light-emitting diodes. Acta Physica Sinica, 2023, 72(13): 137301. doi: 10.7498/aps.72.20230312
    [3] Xu Hua, Liu Jing-Dong, Cai Wei, Li Min, Xu Miao, Tao Hong, Zou Jian-Hua, Peng Jun-Biao. Effect of N 2O treatment on performance of back channel etched metal oxide thin film transistors. Acta Physica Sinica, 2022, 71(5): 058503. doi: 10.7498/aps.71.20211350
    [4] Zhu Yu-Bo, Xu Hua, Li Min, Xu Miao, Peng Jun-Biao. Analysis of low frequency noise characteristics of praseodymium doped indium gallium oxide thin film transistor. Acta Physica Sinica, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [5] Liu Xian-Zhe, Zhang Xu, Tao Hong, Huang Jian-Lang, Huang Jiang-Xia, Chen Yi-Tao, Yuan Wei-Jian, Yao Ri-Hui, Ning Hong-Long, Peng Jun-Biao. Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method. Acta Physica Sinica, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [6] Qin Ting, Huang Sheng-Xiang, Liao Cong-Wei, Yu Tian-Bao, Luo Heng, Liu Sheng, Deng Lian-Wen. Floating gate effect in amorphous InGaZnO thin-film transistor. Acta Physica Sinica, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [7] Shao Yan, Ding Shi-Jin. Effects of hydrogen impurities on performances and electrical reliabilities of indium-gallium-zinc oxide thin film transistors. Acta Physica Sinica, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [8] Lan Lin-Feng, Zhang Peng, Peng Jun-Biao. Research progress on oxide-based thin film transisitors. Acta Physica Sinica, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [9] Wang Jing, Liu Yuan, Liu Yu-Rong, Wu Wei-Jing, Luo Xin-Yue, Liu Kai, Li Bin, En Yun-Fei. Extraction of density of localized states in indium zinc oxide thin film transistor. Acta Physica Sinica, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [10] Ning Hong-Long, Hu Shi-Ben, Zhu Feng, Yao Ri-Hui, Xu Miao, Zou Jian-Hua, Tao Hong, Xu Rui-Xia, Xu Hua, Wang Lei, Lan Lin-Feng, Peng Jun-Biao. Improved performance of the amorphous indium-gallium-zinc oxide thin film transistor with Cu-Mo source/drain electrode. Acta Physica Sinica, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [11] Gao Ya-Na, Li Xi-Feng, Zhang Jian-Hua. Solution-processed high performance HIZO thin film transistor with AZO gate dielectric. Acta Physica Sinica, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [12] Liu Yuan, Wu Wei-Jing, Li Bin, En Yun-Fei, Wang Lei, Liu Yu-Rong. Analysis of low-frequency noise in the amorphous indium zinc oxide thin film transistors. Acta Physica Sinica, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [13] Xu Hua, Lan Lin-Feng, Li Min, Luo Dong-Xiang, Xiao Peng, Lin Zhen-Guo, Ning Hong-Long, Peng Jun-Biao. Effect of source/drain preparation on the performance of oxide thin-film transistors. Acta Physica Sinica, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [14] Wu Ping, Zhang Jie, Li Xi-Feng, Chen Ling-Xiang, Wang Lei, Lü Jian-Guo. Ultraviolet photoresponse of ZnO thin-film transistor fabricated at room temperature. Acta Physica Sinica, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [15] Li Shuai-Shuai, Liang Chao-Xu, Wang Xue-Xia, Li Yan-Hui, Song Shu-Mei, Xin Yan-Qing, Yang Tian-Lin. The preparation and characteristics research of high mobility amorphous indium gallium zinc oxide thin-film transistors. Acta Physica Sinica, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [16] Chen Xiao-Xue, Yao Ruo-He. DC characteristic research based on surface potential for a-Si:H thin-film transistor. Acta Physica Sinica, 2012, 61(23): 237104. doi: 10.7498/aps.61.237104
    [17] Qiang Lei, Yao Ruo-He. Distributions of the threshold voltage and the temperature in the channel of amorphous silicon thin film transistors. Acta Physica Sinica, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [18] Zhao Kong-Sheng, Xuan Rui-Jie, Han Xiao, Zhang Geng-Ming. Junctionless low-voltage thin-film transistors based on indium-tin-oxide. Acta Physica Sinica, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [19] Wang Xiong, Cai Xi-Kun, Yuan Zi-Jian, Zhu Xia-Ming, Qiu Dong-Jiang, Wu Hui-Zhen. Study of zinc tin oxide thin-film transistor. Acta Physica Sinica, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [20] Xu Tian-Ning, Wu Hui-Zhen, Zhang Ying-Ying, Wang Xiong, Zhu Xia-Ming, Yuan Zi-Jian. Fabrication and performance of indium oxide based transparent thin film transistors. Acta Physica Sinica, 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
Metrics
  • Abstract views:  2037
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  14 March 2024
  • Accepted Date:  04 May 2024
  • Available Online:  08 May 2024
  • Published Online:  20 June 2024

/

返回文章
返回