-
In his seminal work published in Acta Physica Sinica in 1965, Yu Lu pointed out that the superconducting gap exhibits weak modulations near the pair-breaking magnetic impurity in a superconductor. In the past ten year, a series high-resolution scanning tunneling microscopy works reported weak superconducting gap modulations in certain superconductors and explained these phenomena as pair density waves. In line with Yu Lu’s discovery, Lee D H et al. pointed out that in many cases, the interference effect of pair-breaking scattering can also lead to superconducting gap modulations in space. We will discuss the distinction and unification of these two kinds of mechanisms, as well as their relevance to recent experimental observations.
-
Keywords:
- superconductivity /
- pair density waves /
- scanning tunneling microscopy
[1] Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar
[2] Fulde P, Ferrell R A 1964 Phys. Rev. 135 A550Google Scholar
[3] Larkin A I, Ovchinnikov Y N 1965 Sov. Phys. JETP 20 762
[4] Hamidian M, Edkins S D, Joo S H, et al. 2016 Nature 532 343Google Scholar
[5] Du Z Y, Li H, Joo S H, Donoway E P, Lee J, Séamus Davis J C, Gu G D, Johnson P D, Fujita K 2020 Nature 580 65Google Scholar
[6] Chen H, Yang H T, Hu B, et al. 2021 Nature 599 222Google Scholar
[7] Liu X, Chong Y X, Sharma R, Davis J C S 2021 Science 372 1447Google Scholar
[8] Zhao H, Blackwell R, Thinel M, et al. 2023 Nature 618 940Google Scholar
[9] Liu Y Z, Wei T C, He G Y, Zhang Y, Wang Z Q, Wang J 2023 Nature 618 934Google Scholar
[10] Aishwarya A, May-Mann J, Raghavan A, Nie L M, Romanelli M, Ran S, Saha S R, Paglione J, Butch N P, Fradkin E, Madhavan V 2023 Nature 618 928Google Scholar
[11] Gu Q, Carroll J P, Wang S Q, Ran S, Broyles C, Siddiquee H, Butch N P, Saha S R, Paglione J, Séamus Davis J C, Liu X L 2023 Nature 618 921Google Scholar
[12] Agterberg D F, Séamus Davis J C, Edkins S D, et al. 2020 Annu. Rev. Condens. Matter Phys. 11 231Google Scholar
[13] 于渌 1965 物理学报 21 75Google Scholar
Yu L 1965 Acta Phys. Sin. 21 75Google Scholar
[14] Gao Z Q, Lin Y P, Lee D H 2023 arXiv: 2310.06024 [cond-mat.supr-con]
[15] Ambegaokar V, Baratoff A 1963 Phys. Rev. Lett. 11 104Google Scholar
[16] Jin J T, Jiang K, Yao H, Zhou Y 2022 Phys. Rev. Lett. 129 167001Google Scholar
[17] Deng H B, Qin H L, Liu G W, et al. 2024 Nature DOI: 10.1038/s41586-024-07798-y
-
-
[1] Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar
[2] Fulde P, Ferrell R A 1964 Phys. Rev. 135 A550Google Scholar
[3] Larkin A I, Ovchinnikov Y N 1965 Sov. Phys. JETP 20 762
[4] Hamidian M, Edkins S D, Joo S H, et al. 2016 Nature 532 343Google Scholar
[5] Du Z Y, Li H, Joo S H, Donoway E P, Lee J, Séamus Davis J C, Gu G D, Johnson P D, Fujita K 2020 Nature 580 65Google Scholar
[6] Chen H, Yang H T, Hu B, et al. 2021 Nature 599 222Google Scholar
[7] Liu X, Chong Y X, Sharma R, Davis J C S 2021 Science 372 1447Google Scholar
[8] Zhao H, Blackwell R, Thinel M, et al. 2023 Nature 618 940Google Scholar
[9] Liu Y Z, Wei T C, He G Y, Zhang Y, Wang Z Q, Wang J 2023 Nature 618 934Google Scholar
[10] Aishwarya A, May-Mann J, Raghavan A, Nie L M, Romanelli M, Ran S, Saha S R, Paglione J, Butch N P, Fradkin E, Madhavan V 2023 Nature 618 928Google Scholar
[11] Gu Q, Carroll J P, Wang S Q, Ran S, Broyles C, Siddiquee H, Butch N P, Saha S R, Paglione J, Séamus Davis J C, Liu X L 2023 Nature 618 921Google Scholar
[12] Agterberg D F, Séamus Davis J C, Edkins S D, et al. 2020 Annu. Rev. Condens. Matter Phys. 11 231Google Scholar
[13] 于渌 1965 物理学报 21 75Google Scholar
Yu L 1965 Acta Phys. Sin. 21 75Google Scholar
[14] Gao Z Q, Lin Y P, Lee D H 2023 arXiv: 2310.06024 [cond-mat.supr-con]
[15] Ambegaokar V, Baratoff A 1963 Phys. Rev. Lett. 11 104Google Scholar
[16] Jin J T, Jiang K, Yao H, Zhou Y 2022 Phys. Rev. Lett. 129 167001Google Scholar
[17] Deng H B, Qin H L, Liu G W, et al. 2024 Nature DOI: 10.1038/s41586-024-07798-y
Catalog
Metrics
- Abstract views: 1899
- PDF Downloads: 206
- Cited By: 0