Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental research progress of charge order of nickelate based superconductors

Shen Yao

Citation:

Experimental research progress of charge order of nickelate based superconductors

Shen Yao
cstr: 32037.14.aps.73.20240898
PDF
HTML
Get Citation
  • Ever since the discovery, nickelate superconductors have attracted great attention, declaring a “nickel age” of superconductivity. Currently, there are two types of nickelate superconductors: low-valence nickelate superconductors REn+1NinO2n+2 (RE, rare earth; n, number of adjacent NiO2 layers) and high-pressure nickelate superconductors La3Ni2O7 and La4Ni3O10. Charge order plays a crucial role in studying the strongly correlated systems, especially the cuprate superconductors, in which potential correlation between charge order and superconductivity has been indicated. Thus, great efforts have been made to explore the charge order in nickelate superconductors. In the infinite-layer nickelate RENiO2, the evidence of charge order with in-plane wavevector of Q // ≈ (1/3, 0) has been found in the undoped and underdoped regime but not in the superconducting samples. However, subsequent studies have indicated that this is not the true charge order inherent in the NiO2 plane,which carries unconventional superconductivity, but rather originates from the ordered excess apical oxygen in the partially reduced impurity phases. On the other hand, the overdoped low-valence nickelate La4Ni3O8 shows well-defined intertwined charge and magnetic order, with an in-plane wavevector of Q // = (1/3, 1/3). Resonant X-ray scattering study has found that nickel orbitals play the most important role in the multi-orbital contribution of charge order formation in this material, which is significantly different from the cuprates with oxygen orbitals dominating the charge modulation. Although the spin order in La3Ni2O7 has been well established, there is still controversy over its spin structure and the existence of coexisting charge order. In La4Ni3O10, intertwined charge and spin density waves have been reported, the origin and characteristics of which remain unknown. Owing to the research on the nickelate superconductors just starting, many questions have not yet been answered, and the exploration of charge order in nickelate superconductors will still be the center of superconductor research.
      Corresponding author: Shen Yao, yshen@iphy.ac.cn
    [1]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [2]

    Wang B Y, Lee K, Goodge B H 2024 Annu. Rev. Condens. Matter Phys. 15 305Google Scholar

    [3]

    Sun W J, Jiang Z C, Xia C L, Hao B, Li Y Y, Yan S J, Wang M S, Liu H Q, Ding J Y, Liu J Y, Liu Z Y, Liu J S, Chen H H, Shen D W, Nie Y F 2024 arXiv. 2403.07344v1 [cond-mat]

    [4]

    Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M Y N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Natl. Sci. Rev. 11 nwae194Google Scholar

    [5]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [6]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [7]

    Hayden S M, Tranquada J M 2024 Annu. Rev. Condens. Matter Phys. 15 215Google Scholar

    [8]

    Hotta T, Dagotto E 2004 Phys. Rev. Lett. 92 227201Google Scholar

    [9]

    Shen Y, Fabbris G, Miao H, Cao Y, Meyers D, Mazzone D G, Assefa T, Chen X M, Kisslinger K, Prabhakaran D, Boothroyd A T, Tranquada J M, Hu W, Barbour A M, Wilkins S B, Mazzoli C, Robinson I K, Dean M P M 2021 Phys. Rev. Lett. 126 177601Google Scholar

    [10]

    Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S, Chan G K L 2017 Science 358 1155Google Scholar

    [11]

    Huang E W, Mendl C B, Liu S, Johnston S, Jiang H C, Moritz B, Devereaux T P 2017 Science 358 1161Google Scholar

    [12]

    Arpaia R, Ghiringhelli G 2021 J. Phys. Soc. Jpn. 90 111005Google Scholar

    [13]

    Agterberg D F, Davis J C S, Edkins S D, Fradkin E, Van Harlingen D J, Kivelson S A, Lee P A, Radzihovsky L, Tranquada J M, Wang Y 2020 Annu. Rev. Condens. Matter Phys. 11 231Google Scholar

    [14]

    Sears J, Shen Y, Krogstad M J, Miao H, Bozin E S, Robinson I K, Gu G D, Osborn R, Rosenkranz S, Tranquada J M, Dean M P M 2023 Phys. Rev. B 107 115125Google Scholar

    [15]

    Ament L J P, van Veenendaal M, Devereaux T P, Hill J P, van den Brink J 2011 Rev. Mod. Phys. 83 705Google Scholar

    [16]

    Rossi M, Osada M, Choi J, Agrestini S, Jost D, Lee Y, Lu H, Wang B Y, Lee K, Nag A, Chuang Y D, Kuo C T, Lee S J, Moritz B, Devereaux T P, Shen Z X, Lee J S, Zhou K J, Hwang H Y, Lee W S 2022 Nat. Phys. 18 869Google Scholar

    [17]

    Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H, Gao P, García-Fernández M, Qiao L, Zhou K J 2022 Nat. Mater. 21 1116Google Scholar

    [18]

    Krieger G, Martinelli L, Zeng S, Chow L E, Kummer K, Arpaia R, Moretti Sala M, Brookes N B, Ariando A, Viart N, Salluzzo M, Ghiringhelli G, Preziosi D 2022 Phys. Rev. Lett. 129 027002Google Scholar

    [19]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [20]

    Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001Google Scholar

    [21]

    Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801.Google Scholar

    [22]

    Peng C, Jiang H C, Moritz B, Devereaux T P, Jia C J 2023 Phys. Rev. B 108 245115Google Scholar

    [23]

    Chen H H, Yang Y F, Zhang G M, Liu H Q 2023 Nat. Commun. 14 5477Google Scholar

    [24]

    Parzyck C T, Gupta N K, Wu Y, Anil V, Bhatt L, Bouliane M, Gong R, Gregory B Z, Luo A, Sutarto R, He F, Chuang Y D, Zhou T, Herranz G, Kourkoutis L F, Singer A, Schlom D G, Hawthorn D G, Shen K M 2024 Nat. Mater. 23 486Google Scholar

    [25]

    Raji A, Krieger G, Viart N, Preziosi D, Rueff J P, Gloter A 2023 Small 19 2304872Google Scholar

    [26]

    Li H, Hao P, Zhang J, Gordon K, Garrison Linn A, Chen X, Zheng H, Zhou X, Mitchell J. F, Dessau D S 2023 Sci. Adv. 9 eade4418Google Scholar

    [27]

    Zhang J J, Chen Y S, Phelan D, Zheng H, Norman M R, Mitchell J F 2016 Proc. Natl. Acad. Sci. 113 8945Google Scholar

    [28]

    Zhang J J, Pajerowski D M, Botana A S, Zheng H, Harriger L, Rodriguez-Rivera J, Ruff J P C, Schreiber N J, Wang B, Chen Y S, Chen W C, Norman M R, Rosenkranz S, Mitchell J F, Phelan D 2019 Phys. Rev. Lett. 122 247201Google Scholar

    [29]

    Zhang J, Botana A S, Freeland J W, Phelan D, Zheng H, Pardo V, Norman M R, Mitchell J F 2017 Nat. Phys. 13 864Google Scholar

    [30]

    Shen Y, Sears J, Fabbris G, Li J, Pelliciari J, Mitrano M, He W, Zhang J, Mitchell J F, Bisogni V, Norman M R, Johnston S, Dean M P M 2023 Phys. Rev. X 13 011021Google Scholar

    [31]

    Shen Y, Sears J, Fabbris G, Li J, Pelliciari J, Jarrige I, He X, Božović I, Mitrano M, Zhang J, Mitchell J F, Botana A S, Bisogni V, Norman M R, Johnston S, Dean M P M 2022 Phys. Rev. X 12 011055Google Scholar

    [32]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [33]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [34]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040Google Scholar

    [35]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [36]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Huang X, Sun H L, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 arXiv: 2401.12657v1 [cond-mat]

    [37]

    Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 arXiv: 2401.12635v1 [cond-mat]

    [38]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [39]

    Dan Z, Zhou Y B, Huo M W, Wang Y, Nie L P, Wang M, Wu T, Chen X H 2024 arXiv: 2402.03952v1 [cond-mat]

    [40]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2023 Sci. China Phys. Mech. Astron. 66 217411Google Scholar

    [41]

    Khasanov R, Hicken T J, Gawryluk D J, Pierre Sorel L, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2024 arXiv: 2402.10485v1 [cond-mat]

    [42]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [43]

    Wang N N, Wang G, Shen X L, et al. 2024 arXiv: 2407.05681v1 [cond-mat]

    [44]

    Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Wang M, Hong F, Wang X B, Yu X H 2024 arXiv: 2404.19678v1 [cond-mat]

    [45]

    Zhang J J, Phelan D, Botana A S, Chen Y S, Zheng H, Krogstad M, Wang S G, Qiu Y, Rodriguez-Rivera J A, Osborn R, Rosenkranz S, Norman M R, Mitchell J F 2020 Nat. Commun. 11 6003Google Scholar

    [46]

    Li H X, Zhou X Q, Nummy T, Zhang J J, Pardo V, Pickett W E, Mitchell J F, Dessau D S 2017 Nat. Commun. 8 704Google Scholar

    [47]

    Ren X L, Sutarto R, Gao Q, Wang Q S, Li J R, Wang Y, Xiang T, Hu J P, Chang J, Comin R, Zhou X J, Zhu Z H 2023 arXiv: 2303.02865v2 [cond-mat]

  • 图 1  NdNiO2的电荷序[24] (a) 无限层镍氧化物的还原过程示意图, 从前驱体钙钛矿NdNiO3到无限层NdNiO2之间存在许多中间态, 下方小方块灰色表示钙钛矿结构, 红色表示无限层结构, 蓝色表示具有超结构的中间态; (b)—(d) 样品J的STEM测量结果, 可以看到周期性的顶点氧空位(d), 傅里叶变化之后对应Q// ≈ (1/3, 0)的超结构(b); (e) Q// ≈ (1/3, 0)附近Ni L3边的弹性RXS测量结果, 实线和虚线分别是σ偏振和π偏振的测量曲线, 样品D的数据强度乘了20倍; (f) Nd M5边的弹性RXS测量结果; (g), (h) 样品C和样品D不同Q位置的RXS信号随入射X射线能量的变化, 阴影部分即电荷序信号, 黑色和红色箭头分别标识出了Ni 3d-RE 5d杂化峰和Ni L3主峰; 样品C比样品D含有更多的中间相, 因此超结构峰更强

    Figure 1.  Charge order in NdNiO2[24]: (a) Schematic of the reduction pathway from the perovskite NdNiO3 (gray) to the infinite-layer NdNiO2 (red) with various intermediate states (blue); (b)–(d) STEM results of sample J, apical oxygen vacancies can be distinguished in panel (d), leading to Q// ≈ (1/3, 0) superlattice peaks in the Fourier transform image (b); (e) elastic RXS measurements at Ni L3 edge around Q// ≈ (1/3, 0), the solid and dashed lines are data with σ and π polarized incident X-ray, respectively; (f) RXS measurements at Nd M5 edge; (g), (h) energy dependence of RXS signals with fixed wavevectors for samples C and D, the shaded region indicates the nominal charge order contributions. The black and red arrows highlight the Ni 3d-RE 5d hybridized peak and the Ni L3 main resonance, respectively, sample C has a larger volume of intermediate states than sample D, leading to stronger superlattice peaks.

    图 2  La4Ni3O8的电荷序[30] (a) La4Ni3O8的3层结构和电荷序与磁有序示意图, 红色和蓝色分别代表自旋向上和向下的S = 1/2 Ni1+离子, 紫色为S = 0 Ni2+离子; (b) 不同温度下电荷序峰的Ni L2边RXS测量曲线; (c) 电荷序RXS信号强度随入射X射线能量的变化, 插图是电荷序在不同原子上的分布; (d) 计算得到的电荷序能量依赖关系, 柱状图显示了不同RXS中间态的贡献

    Figure 2.  Charge order in La4Ni3O8[30]: (a) Schematic of trilayer structure of La4Ni3O8 and its charge and magnetic order, the red and blue spheres/arrows indicate S = 1/2 Ni1+ ions with spin up and spin down, respectively, while the purple ones indicate S = 0 Ni2+ ions; (b) RXS intensity at Ni L2 edge of charge sequence peaks at different temperatures; (c) variation of the intensity of the charge sequence RXS signal with the incident X-ray energy, the inset shows the orbital distribution of the charge order modulation; (d) simulation of the energy dependence of the charge order RXS intensity, the vertical bars represent the weights of different configurations of the RXS intermediate states.

    图 3  La3Ni2O7的条纹序[36] (a) La3Ni2O7的双层晶体结构; (b)—(d) La3Ni2O7可能的3种条纹序构型, 红色、蓝色、黑色圆圈分别表示自旋向下、自旋向上和没有静态磁矩的电荷位置, 方框代表磁胞

    Figure 3.  Stripe order in La3Ni2O7[36]: (a) Schematic of the bilayer structure of La3Ni2O7; (b)–(d) different stripe order proposed for La3Ni2O7, the red, blue and black circles represent Ni sites with spin down, spin up, and charge with no static moment, the rectangles exhibit the magnetic unit cell.

    图 4  La4Ni3O10的电荷序[45] (a) La4Ni3O10的3层晶体结构; (b), (c) La4Ni3O10一个单独的3层单元内的电荷密度波和自旋密度波示意图

    Figure 4.  Charge order in La4Ni3O10[45]: (a) Schematic of the trilayer structure of La4Ni3O10; (b), (c) model for the charge density wave and spin density wave of La4Ni3O10 in a trilayer unit.

  • [1]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [2]

    Wang B Y, Lee K, Goodge B H 2024 Annu. Rev. Condens. Matter Phys. 15 305Google Scholar

    [3]

    Sun W J, Jiang Z C, Xia C L, Hao B, Li Y Y, Yan S J, Wang M S, Liu H Q, Ding J Y, Liu J Y, Liu Z Y, Liu J S, Chen H H, Shen D W, Nie Y F 2024 arXiv. 2403.07344v1 [cond-mat]

    [4]

    Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M Y N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Natl. Sci. Rev. 11 nwae194Google Scholar

    [5]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [6]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [7]

    Hayden S M, Tranquada J M 2024 Annu. Rev. Condens. Matter Phys. 15 215Google Scholar

    [8]

    Hotta T, Dagotto E 2004 Phys. Rev. Lett. 92 227201Google Scholar

    [9]

    Shen Y, Fabbris G, Miao H, Cao Y, Meyers D, Mazzone D G, Assefa T, Chen X M, Kisslinger K, Prabhakaran D, Boothroyd A T, Tranquada J M, Hu W, Barbour A M, Wilkins S B, Mazzoli C, Robinson I K, Dean M P M 2021 Phys. Rev. Lett. 126 177601Google Scholar

    [10]

    Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S, Chan G K L 2017 Science 358 1155Google Scholar

    [11]

    Huang E W, Mendl C B, Liu S, Johnston S, Jiang H C, Moritz B, Devereaux T P 2017 Science 358 1161Google Scholar

    [12]

    Arpaia R, Ghiringhelli G 2021 J. Phys. Soc. Jpn. 90 111005Google Scholar

    [13]

    Agterberg D F, Davis J C S, Edkins S D, Fradkin E, Van Harlingen D J, Kivelson S A, Lee P A, Radzihovsky L, Tranquada J M, Wang Y 2020 Annu. Rev. Condens. Matter Phys. 11 231Google Scholar

    [14]

    Sears J, Shen Y, Krogstad M J, Miao H, Bozin E S, Robinson I K, Gu G D, Osborn R, Rosenkranz S, Tranquada J M, Dean M P M 2023 Phys. Rev. B 107 115125Google Scholar

    [15]

    Ament L J P, van Veenendaal M, Devereaux T P, Hill J P, van den Brink J 2011 Rev. Mod. Phys. 83 705Google Scholar

    [16]

    Rossi M, Osada M, Choi J, Agrestini S, Jost D, Lee Y, Lu H, Wang B Y, Lee K, Nag A, Chuang Y D, Kuo C T, Lee S J, Moritz B, Devereaux T P, Shen Z X, Lee J S, Zhou K J, Hwang H Y, Lee W S 2022 Nat. Phys. 18 869Google Scholar

    [17]

    Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H, Gao P, García-Fernández M, Qiao L, Zhou K J 2022 Nat. Mater. 21 1116Google Scholar

    [18]

    Krieger G, Martinelli L, Zeng S, Chow L E, Kummer K, Arpaia R, Moretti Sala M, Brookes N B, Ariando A, Viart N, Salluzzo M, Ghiringhelli G, Preziosi D 2022 Phys. Rev. Lett. 129 027002Google Scholar

    [19]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [20]

    Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001Google Scholar

    [21]

    Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801.Google Scholar

    [22]

    Peng C, Jiang H C, Moritz B, Devereaux T P, Jia C J 2023 Phys. Rev. B 108 245115Google Scholar

    [23]

    Chen H H, Yang Y F, Zhang G M, Liu H Q 2023 Nat. Commun. 14 5477Google Scholar

    [24]

    Parzyck C T, Gupta N K, Wu Y, Anil V, Bhatt L, Bouliane M, Gong R, Gregory B Z, Luo A, Sutarto R, He F, Chuang Y D, Zhou T, Herranz G, Kourkoutis L F, Singer A, Schlom D G, Hawthorn D G, Shen K M 2024 Nat. Mater. 23 486Google Scholar

    [25]

    Raji A, Krieger G, Viart N, Preziosi D, Rueff J P, Gloter A 2023 Small 19 2304872Google Scholar

    [26]

    Li H, Hao P, Zhang J, Gordon K, Garrison Linn A, Chen X, Zheng H, Zhou X, Mitchell J. F, Dessau D S 2023 Sci. Adv. 9 eade4418Google Scholar

    [27]

    Zhang J J, Chen Y S, Phelan D, Zheng H, Norman M R, Mitchell J F 2016 Proc. Natl. Acad. Sci. 113 8945Google Scholar

    [28]

    Zhang J J, Pajerowski D M, Botana A S, Zheng H, Harriger L, Rodriguez-Rivera J, Ruff J P C, Schreiber N J, Wang B, Chen Y S, Chen W C, Norman M R, Rosenkranz S, Mitchell J F, Phelan D 2019 Phys. Rev. Lett. 122 247201Google Scholar

    [29]

    Zhang J, Botana A S, Freeland J W, Phelan D, Zheng H, Pardo V, Norman M R, Mitchell J F 2017 Nat. Phys. 13 864Google Scholar

    [30]

    Shen Y, Sears J, Fabbris G, Li J, Pelliciari J, Mitrano M, He W, Zhang J, Mitchell J F, Bisogni V, Norman M R, Johnston S, Dean M P M 2023 Phys. Rev. X 13 011021Google Scholar

    [31]

    Shen Y, Sears J, Fabbris G, Li J, Pelliciari J, Jarrige I, He X, Božović I, Mitrano M, Zhang J, Mitchell J F, Botana A S, Bisogni V, Norman M R, Johnston S, Dean M P M 2022 Phys. Rev. X 12 011055Google Scholar

    [32]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [33]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [34]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040Google Scholar

    [35]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [36]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Huang X, Sun H L, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 arXiv: 2401.12657v1 [cond-mat]

    [37]

    Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 arXiv: 2401.12635v1 [cond-mat]

    [38]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [39]

    Dan Z, Zhou Y B, Huo M W, Wang Y, Nie L P, Wang M, Wu T, Chen X H 2024 arXiv: 2402.03952v1 [cond-mat]

    [40]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2023 Sci. China Phys. Mech. Astron. 66 217411Google Scholar

    [41]

    Khasanov R, Hicken T J, Gawryluk D J, Pierre Sorel L, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2024 arXiv: 2402.10485v1 [cond-mat]

    [42]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [43]

    Wang N N, Wang G, Shen X L, et al. 2024 arXiv: 2407.05681v1 [cond-mat]

    [44]

    Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Wang M, Hong F, Wang X B, Yu X H 2024 arXiv: 2404.19678v1 [cond-mat]

    [45]

    Zhang J J, Phelan D, Botana A S, Chen Y S, Zheng H, Krogstad M, Wang S G, Qiu Y, Rodriguez-Rivera J A, Osborn R, Rosenkranz S, Norman M R, Mitchell J F 2020 Nat. Commun. 11 6003Google Scholar

    [46]

    Li H X, Zhou X Q, Nummy T, Zhang J J, Pardo V, Pickett W E, Mitchell J F, Dessau D S 2017 Nat. Commun. 8 704Google Scholar

    [47]

    Ren X L, Sutarto R, Gao Q, Wang Q S, Li J R, Wang Y, Xiang T, Hu J P, Chang J, Comin R, Zhou X J, Zhu Z H 2023 arXiv: 2303.02865v2 [cond-mat]

  • [1] Li Qi-Zhi, Zhang Shi-Long, Peng Ying-Ying. Resonant inelastic X-ray scattering study of charge density waves and elementary excitations in cuprate superconductors. Acta Physica Sinica, 2024, 73(19): 197401. doi: 10.7498/aps.73.20240983
    [2] Zhong Guo-Hua, Lin Hai-Qing. Aromatic superconductors: Electron-phonon coupling and electronic correlations. Acta Physica Sinica, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [3] Chen Chen, Liu Qin, Zhang Tong, Feng Dong-Lai. Vortex bound states and Majorana zero mode in electron-doped FeSe-based high-temperature superconductor. Acta Physica Sinica, 2021, 70(1): 017401. doi: 10.7498/aps.70.20201673
    [4] An Ming, Dong Shuai. Charge-mediated magnetoelectricity: from ferroelectric field effect to charge-ordering ferroelectrics. Acta Physica Sinica, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [5] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission studies on iron based high temperature superconductors. Acta Physica Sinica, 2018, 67(20): 207413. doi: 10.7498/aps.67.20181768
    [6] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [7] Xu Hai-Chao, Niu Xiao-Hai, Ye Zi-Rong, Feng Dong-Lai. Unified phase diagram of Fe-based superconductors based on electron correlation strength. Acta Physica Sinica, 2018, 67(20): 207405. doi: 10.7498/aps.67.20181541
    [8] Li Shi-Chao, Gan Yuan, Wang Jing-Hui, Ran Ke-Jing, Wen Jin-Sheng. Magnetic neutron scattering studies on the Fe-based superconductor system Fe1+yTe1-xSex. Acta Physica Sinica, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [9] Wang Qiang. Electron spin resonance study on charge ordering and spin ordering in nanocrystalline Bi0.2Ca0.8MnO3. Acta Physica Sinica, 2015, 64(18): 187501. doi: 10.7498/aps.64.187501
    [10] Yu Rong. Electron correlations and orbital selectivities in multiorbital models for iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [11] Wang Wei, Yin Xin-Guo. First-principles study on phonon properties of iron-based fluoride superconductors SrFe1-xCoxAsF (x=0, 0.125). Acta Physica Sinica, 2014, 63(9): 097401. doi: 10.7498/aps.63.097401
    [12] Wu Zhong-Hua, Sun Guang-Ai, Liu Yi, Chen Bo, Yan Guan-Yun, Wang Jie, Huang Chao-Qiang, Wu Er-Dong, Li Wu-Hui. Small angle X-ray scattering study of the microstructure and interface characteristics of single crystal superalloys during creep process. Acta Physica Sinica, 2011, 60(1): 016102. doi: 10.7498/aps.60.016102
    [13] Lu Hong-Yan, Chen San, Liu Bao-Tong. Theoretical research on two gaps in cuprate superconductors:an electronic Raman scattering study. Acta Physica Sinica, 2011, 60(3): 037402. doi: 10.7498/aps.60.037402
    [14] Zhou Ke-Jin, Yasuhisa Tezuka, Cui Ming-Qi, Ma Chen-Yan, Zhao Yi-Dong, Wu Zi-Yu, Akira Yagishita. Electronic structure of MnS studied by resonant inelastic soft X-ray scattering. Acta Physica Sinica, 2007, 56(5): 2986-2991. doi: 10.7498/aps.56.2986
    [15] Yu Min, Yang Hong-Shun, Cai Yi-Sheng, Ruan Ke-Qing, Li Peng-Cheng, Li Zhi-Quan, Chen Zhao-Jia, Cao Lie-Zhao. . Acta Physica Sinica, 2002, 51(3): 674-678. doi: 10.7498/aps.51.674
    [16] Wang Yong-Gang, Pang Huan-Gang, Liu Mei. . Acta Physica Sinica, 2000, 49(3): 548-552. doi: 10.7498/aps.49.548
    [17] DU SHENG-WANG, DAI YUAN-DONG, WANG SHI-GUANG. TO PROBE THE PHASE OF THE ORDER PARAMETER IN HIGH-TEMPERATURE SUPERCONDUCTORS BY USING r.f. SQUID. Acta Physica Sinica, 1999, 48(12): 2364-2368. doi: 10.7498/aps.48.2364
    [18] Wang Nan-lin, Tan Ming-qiu, Zhao Zhan-chun, Wang Jing-song, Sha Jian, Liu Xian-ming, Ji Ming-rong, Zhang Qi-rui. X-RAY PHOTOELECTRON SPECTROSCOPY STUDY ON THE HOLE STATES IN YBa2Cu3O7 SUPERCONDUCTOR. Acta Physica Sinica, 1991, 40(5): 821-825. doi: 10.7498/aps.40.821
    [19] LEI XIAO-LIN. SOFT PHONON AND ITS RAMAN SCATTERING IN A CHARGE-DENSITY-WAVE SUPERCONDUCTOR. Acta Physica Sinica, 1983, 32(10): 1292-1301. doi: 10.7498/aps.32.1292
    [20] YU LUH. . Acta Physica Sinica, 1965, 21(2): 471-475. doi: 10.7498/aps.21.471
Metrics
  • Abstract views:  1106
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2024
  • Accepted Date:  19 August 2024
  • Available Online:  27 August 2024
  • Published Online:  05 October 2024

/

返回文章
返回