Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum phase transitions and superradiation phase collapse of cold atoms in a two-mode photomechanical cavity

Zhao Xiu-Qin Zhang Wen-Hui

Citation:

Quantum phase transitions and superradiation phase collapse of cold atoms in a two-mode photomechanical cavity

Zhao Xiu-Qin, Zhang Wen-Hui
cstr: 32037.14.aps.73.20241103
PDF
HTML
Get Citation
  • In this paper, the quantum phase transition of cold atoms in a two-mode photomechanical cavity with nonlinear coupling between the optical field (mode 1) and the mechanical oscillator is studied on the basis of the two-mode Dicke model. The functional of the ground state energy of the system is obtained by spin coherent states and variational method. By solving and judging the stability, the phase transformation point and ground state phase diagram are obtained. It is found that there are bistable state of normal phase and reverse normal phase, coexistent state of superradiation phase and reversed normal phase, and reversed normal phase that exists alone. The different interaction strengths between atoms and two-mode light fields greatly affect the value of the phase transition point. There is a quantum phase transition from a normal phase through a phase transition point to a superradiant phase. The light-phonon nonlinear coupling has no effect on the phase transition point, but induces the collapse of the superradiant phase. There is a turning point through which the quantum phase transition from the superradiant phase to the reversed normal phase can be realized. The region of the superradiation phase decreases with the increase of the photon-phonon coupling, and it shrinks to zero at the critical value of the coupling, that is, the turning point and the phase transition point coincide, and there may be a reversal of the atomic population between the two normal phases. The nonlinear coupling of the light-phonon also produces an unstable non-zero photon state, which corresponds to the superradiation state. In the absence of mechanical oscillators, the results of the two-mode Dicke model are returned.
      Corresponding author: Zhang Wen-Hui, zhangwh@tynu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12304404) and the Basic Research Project of Shanxi Province, China (Grant No. 202203021222236).
    [1]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [2]

    Hepp K, Lieb E H 1973 Ann. Phys. 76 360Google Scholar

    [3]

    Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831Google Scholar

    [4]

    Hioe F T 1973 Phys. Rev. A 8 1440Google Scholar

    [5]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [6]

    Baumann K, Mottl R, Brennecke F, Esslinger T 2011 Phys. Rev. Lett. 107 140402Google Scholar

    [7]

    Emary C, Brandes T 2003 Phys. Rev. Lett. 90 044101Google Scholar

    [8]

    Chen G, Li J Q, Liang J Q 2006 Phys. Rev. A 74 054101Google Scholar

    [9]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [10]

    Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235Google Scholar

    [11]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724Google Scholar

    [12]

    Anetsberger G, Arcizet O, Unterreithmeier Q P, Rivière R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nat. Phys. 5 909Google Scholar

    [13]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar

    [14]

    陈华俊, 米贤武 2011 物理学报 60 124206Google Scholar

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206Google Scholar

    [15]

    严晓波, 杨柳, 田雪冬, 刘一谋, 张岩 2014 物理学报 63 204201Google Scholar

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201Google Scholar

    [16]

    韩明, 谷开慧, 刘一谋, 张岩, 王晓畅, 田雪冬, 付长宝, 崔淬砺 2014 物理学报 63 094206Google Scholar

    Han M, Gu K H, Liu Y M, Zhang Y, Wang X C, Tian X D, Fu C B, Cui C L 2014 Acta Phys. Sin. 63 094206Google Scholar

    [17]

    Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N, Stamper-Kurn D M 2012 Nature 488 476Google Scholar

    [18]

    Ian H, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. A 78 013824Google Scholar

    [19]

    Jiang C, Bian X T, Cui Y S, Chen G B 2016 J. Opt. Soc. Am. B: Opt. Phys. 33 2099Google Scholar

    [20]

    Wang Z M, Lian J L, Liang J Q, Yu Y M, Liu W M 2016 Phys. Rev. A 93 033630Google Scholar

    [21]

    Lian J L, Liu N, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 88 043820Google Scholar

    [22]

    Zhao X Q, Liu N, Bai X M, Liang J Q 2017 Ann. Phys. 378 448Google Scholar

    [23]

    Santos J P, Semião F L, Furuya K 2010 Phys. Rev. A 82 063801Google Scholar

    [24]

    Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nat. Phys. 6 707Google Scholar

    [25]

    Clerk A A, Marquardt F, Harris J G E 2010 Phys. Rev. Lett. 104 213603Google Scholar

    [26]

    Purdy T P, Brooks D W C, Botter T, Brahms N, Ma Z Y, Stamper-Kurn D M 2010 Phys. Rev. Lett. 105 133602Google Scholar

    [27]

    Wang B, Nori F, Xiang Z X 2024 Phys. Rev. Lett. 132 053601Google Scholar

    [28]

    Léonard J, Morales A, Zupancic P, Esslinger T, Donner T 2017 Nature 543 87Google Scholar

    [29]

    Léonard J, Morales A, Zupancic P, Donner T, Esslinger T 2017 Science 358 1415Google Scholar

    [30]

    Zhang G Q, Chen Z, You J Q 2020 Phys. Rev. A 102 032202Google Scholar

    [31]

    Quezada L F, Nahmad-Achar E 2017 Phys. Rev. A 95 013849Google Scholar

    [32]

    Liu N, Zhao X Q, Liang J Q 2019 Int. J. Theor. Phys. 58 558Google Scholar

    [33]

    赵秀琴, 张文慧, 王红梅 2024 物理学报 73 160302Google Scholar

    Zhao X Q, Zhang W H, Wang H M 2024 Acta Phys. Sin. 73 160302Google Scholar

    [34]

    Arecchi F T, Courtens E, Gilmore R, Thomas H 1972 Phys. Rev. A 6 2211Google Scholar

    [35]

    Fox R F 1999 Phys. Rev. A 59 3241Google Scholar

    [36]

    黄洪斌 1991 物理学报 40 1396Google Scholar

    Huang H B 1991 Acta Phys. Sin. 40 1396Google Scholar

    [37]

    Zhu W S, Rabitz H 1998 Phys. Rev. A 58 4741Google Scholar

    [38]

    Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603Google Scholar

    [39]

    Bell S, Crighton J S, Fletcher R 1981 Chem. Phys. Lett. 82 122Google Scholar

    [40]

    Vallone G, Cariolaro G, Pierobon G 2019 Phys. Rev. A 99 023817Google Scholar

    [41]

    Frueholz R P, Camparo J C 1996 Phys. Rev. A 54 3499Google Scholar

    [42]

    Aftalion A, Mason P 2016 Phys. Rev. A 94 023616Google Scholar

    [43]

    Schlittler T M, Mosseri R, Barthel T 2017 Phys. Rev. B 96 195142Google Scholar

    [44]

    Deshpande A, Gorshkov A V, Fefferman B 2022 PRX Quantum 3 040327Google Scholar

    [45]

    Tolkunov D, Solenov D 2007 Phys. Rev. B 75 024402Google Scholar

  • 图 1  双模光机械腔的示意图. 在水平方向上, 机械谐振子的频率是$ {\omega _{\text{b}}} $, 腔模的频率是$ {\omega _1} $; 在垂直方向上, 腔模的频率是$ {\omega _2} $

    Figure 1.  Schematic diagram of a two-mode opto-mechanical cavity. $ {\omega _{\text{b}}} $ is the frequency of the mechanical harmonic oscillator in the horizontal direction, $ {\omega _1} $ is the frequency of the cavity mode, and $ {\omega _2} $ is the frequency of the cavity mode in the vertical direction.

    图 2  $ {g_1}/{\omega _{\mathrm{a}}} $ -$ {g_2}/{\omega _{\text{a}}} $的平面被分成五个区域, 其中$ {g_1}/ {\omega _{\text{a}}} $$ \lt 1, $ $ g_1^2/\omega _{\text{a}}^2 + g_2^2/\omega _{\text{a}}^2 \lt 1 $在区域I; $ {g_1}/{\omega _{\text{a}}} \leqslant 1, {\text{ }}{g_2}/{\omega _{\text{a}}} \leqslant 1, $$ g_1^2/\omega _{\text{a}}^2 + g_2^2/\omega _{\text{a}}^2 \geqslant 1 $在区域II; $ {g_1}/{\omega _{\text{a}}} \lt 1, {\text{ }}{g_2}/{\omega _{\text{a}}} \gt 1 $在区域III; $ {g_1}/{\omega _{\text{a}}} \gt 1, {\text{ }}{g_2}/{\omega _{\text{a}}} \gt 1 $在区域IV; $ {g_1}/{\omega _{\text{a}}} \gt 1, ~~{g_2}/{\omega _{\text{a}}} $$ \lt 1 $在区域V

    Figure 2.  Plane $ {g_1}/{\omega _{\text{a}}} {\text{-}} {g_2}/{\omega _{\text{a}}} $ is divided into five regions, $ {g_1}/{\omega _{\text{a}}} \lt 1 $, $ g_1^2/\omega _{\text{a}}^2 + g_2^2/\omega _{\text{a}}^2 \lt 1 $ in region I; $ {g_1}/{\omega _{\text{a}}} \leqslant 1, $$ {\text{ }}{g_2}/{\omega _{\text{a}}} \leqslant 1,~~ g_1^2/\omega _{\text{a}}^2 + g_2^2/\omega _{\text{a}}^2 \geqslant 1 $ in region II; $ {g_1}/{\omega _{\text{a}}} \lt 1 $, $ {g_2}/{\omega _{\text{a}}} \gt 1 $ in region III; $ {g_1}/{\omega _{\text{a}}} \gt 1 $, $ {g_2}/{\omega _{\text{a}}} \gt 1 $ in region IV; $ {g_1}/{\omega _{\text{a}}} \gt 1 $, $ {g_2}/{\omega _{\text{a}}} \lt 1 $ in region V.

    图 3  平均光子数${n_{{\text{p}}1}}$ (a), ${n_{{\text{p}}2}}$ (b), 原子布居数差分布$\Delta {n_{\text{a}}}$ (c)和平均基态能量$\varepsilon $ (d)

    Figure 3.  Average photon number ${n_{{\text{p}}1}}$ (a), ${n_{{\text{p}}2}}$ (b), atomic population difference $\Delta {n_{\text{a}}}$ (c) and average energy $\varepsilon $ (d).

    图 4  $ g/{\omega _{\text{a}}}{\text{ - }}\zeta /{\omega _{\text{a}}} $平面中的相图 $ \left( {\text{a}} \right){\text{ }}\delta = - {1}. {\text{0;}} $ $ \left(\text{b}\right)\text{ }\delta =-0.5; $ $ \left( {\text{c}} \right){\text{ }}\delta = 0.0; $ $ \left( {\text{d}} \right){\text{ }}\delta = 0.5 $

    Figure 4.  Phase diagram in a plane $ g/{\omega _{\text{a}}}{\text{ - }}\zeta /{\omega _{\text{a}}} $: $ \left( {\text{a}} \right){\text{ }}\delta = - {1}. {\text{0;}} $ $ \left( {\text{b}} \right){\text{ }}\delta = - 0.5; $ $ \left( {\text{c}} \right){\text{ }}\delta = 0.0; $ $ \left( {\text{d}} \right){\text{ }}\delta = 0.5 $

    表 1  光-声子的非线性参量$ \zeta = 0 $、平均基态能量为$ {\varepsilon _ - } $时, 相应点的计算值

    Table 1.  Calculated values of the corresponding point when nonlinear parameters of the light-phonon $ \zeta = 0 $ and the average ground state energy is $ {\varepsilon _ - } $

    区域 $ \left( {\dfrac{{{g_1}}}{{{\omega _{\text{a}}}}}, \dfrac{{{g_2}}}{{{\omega _{\text{a}}}}}} \right) $ $ (\overline{{\gamma }_{1}^{2}}, \text{ }\overline{{\gamma }_{2}^{2}}) $ $ {\varepsilon _ - } $ $ {{\boldsymbol{H}}_ - } = \left[ {\begin{array}{*{20}{c}} {\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial \gamma _1^2}}}&{\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial {\gamma _1}\partial {\gamma _2}}}} \\ {\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial {\gamma _2}\partial {\gamma _1}}}}&{\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial \gamma _2^2}}} \end{array}} \right] $ 特征值$ \left[ {{H_ - }} \right] $
    I (0.3, 0.4) (0, 0) –0.5 $ \left[ {\begin{array}{*{20}{c}} {1.82}&{ - 0.24} \\ { - 0.24}&{1.68} \end{array}} \right] $ (2, 1.5)
    II (0.8, 0.7) (0.0347, 0.0266) –0.5037 $ \left[ {\begin{array}{*{20}{c}} {1.1129}&{ - 0.7762} \\ { - 0.7762}&{1.3208} \end{array}} \right] $ (2, 0.4337)
    III (0.6, 1.6) (0.0794, 0.5649) –0.8156 $ \left[ {\begin{array}{*{20}{c}} {1.9711}&{ - 0.0711} \\ { - 0.0711}&{1.7943} \end{array}} \right] $ (2, 1.7654)
    IV (1.5, 1.5) (0.5347, 0.5347) –1.1806 $ \left[ {\begin{array}{*{20}{c}} {1.9506}&{ - 0.0494} \\ { - 0.0494}&{1.9506} \end{array}} \right] $ (2, 1.9012)
    V (1.5, 0.5) (0.4725, 0.0525) –0.725 $ \left[ {\begin{array}{*{20}{c}} {1.7119}&{ - 0.0960} \\ { - 0.0960}&{1.9680} \end{array}} \right] $ (2, 1.6800)
    DownLoad: CSV

    表 2  光-声子的非线性参量$ \zeta /{\omega _{\text{a}}} = 1.0 $、平均基态能量为$ {\varepsilon _ - } $时, 相应点的计算值

    Table 2.  Calculated values of the corresponding point when nonlinear parameters of the light-phonon $ \zeta /{\omega _{\text{a}}} = 1.0 $ and the average ground state energy is $ {\varepsilon _ - } $.

    区域 $ \left( {\dfrac{{{g_1}}}{{{\omega _{\text{a}}}}}, \dfrac{{{g_2}}}{{{\omega _{\text{a}}}}}} \right) $ $ (\overline {\gamma _1^2} , {\text{ }}\overline {\gamma _2^2} ) $ $ {\varepsilon _ - } $ $ {{\boldsymbol{H}}_ - } = \left[ \begin{array}{*{20}{c}} {\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial \gamma _1^2}}}&{\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial {\gamma _1}\partial {\gamma _2}}}} \\ {\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial {\gamma _2}\partial {\gamma _1}}}}&{\dfrac{{{\partial ^2}{\varepsilon _ - }}}{{\partial \gamma _2^2}}} \end{array} \right] $ 特征值$ \left[ {{H_ - }} \right] $
    I (0.4, 0.3) (4.5925, 0.01716) 1.2585 $ \left[ \begin{array}{*{20}{c}} { - 3.5436}&{ - 0.0326} \\ { - 0.0326}&{1.9674} \end{array} \right] $ (–3.5438, 1.9676)
    II (0.7, 0.8) $ \left\{ {\begin{aligned} &{\left( {4.1771, 0.1478} \right)} \\ &{\left( {0.0273, 0.0353} \right)} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{0.7714} \\ &{ - 0.5038} \end{aligned}} \right. $ $ \left\{ \begin{aligned} {\left[ \begin{array}{*{20}{c}} { - 3.033}&{ - 0.0237} \\ { - 0.0237}&{1.9730} \end{array} \right]} \\ {\left[ \begin{array}{*{20}{c}} {1.2929}&{ - 0.7707} \\ { - 0.7707}&{1.1192} \end{array} \right]} \end{aligned} \right. $ $ \left\{ {\begin{aligned} &{\left( { - 0.0334, 1.9731} \right)} \\ &{\left( {1.9816, 0.4305} \right)} \end{aligned}} \right. $
    III (0.8, 1.2) $ \left\{ {\begin{aligned} &{\left( {4.0258, 0.3439} \right)} \\ &{\left( {0.1303, 0.2781} \right)} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{0.3866} \\ & { - 0.6418} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} {\left[ \begin{array}{*{20}{c}} { - 2.8431}&{ - 0.0182} \\ { - 0.0182}&{1.9727} \end{array} \right]} \\ {\left[ \begin{array}{*{20}{c}} {1.7048}&{ - 0.2082} \\ { - 0.2082}&{1.6878} \end{array} \right]} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{\left( { - 2.8432, 1.9728} \right)} \\ &{\left( {1.9046, 1.4880} \right)} \end{aligned}} \right. $
    IV (1.5, 1.5) $ \left\{ {\begin{aligned} &{\left( {2.7669, 0.5519} \right)} \\ &{\left( {0.7439, 0.5390} \right)} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{ - 1.0907} \\ & { - 1.2190} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} {\left[ \begin{array}{*{20}{c}} { - 1.3319}&{ - 0.0116} \\ { - 0.0116}&{1.9884} \end{array} \right]} \\ {\left[ \begin{array}{*{20}{c}} {1.7048}&{ - 0.2082} \\ { - 0.2082}&{1.6878} \end{array} \right]} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{\left( { - 1.3220, 1.9884} \right)} \\ & {\left( {1.9632, 1.0673} \right)} \end{aligned}} \right. $
    V (1.2, 0.8) $ \left\{ {\begin{aligned} &{\left( {3.4015, 0.1540} \right)} \\ &{\left( {0.3252, 0.1263} \right)} \end{aligned}} \right. $ $ \left\{ {\begin{aligned}& { - 0.1776} \\ &{ - 0.6491} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{\left[ \begin{array}{*{20}{c}} { - 2.1072}&{ - 0.0141} \\ { - 0.0141}&{1.9907} \end{array} \right]} \\ &{\left[ \begin{array}{*{20}{c}} {1.3319}&{ - 0.1853} \\ { - 0.1853}&{1.8765} \end{array} \right]} \end{aligned}} \right. $ $ \left\{ {\begin{aligned} &{\left( { - 2.1073, 1.9907} \right)} \\ &{\left( {1.9336, 1.2748} \right)} \end{aligned}} \right. $
    DownLoad: CSV

    表 3  模式2光场$ {\gamma _2} = 0 $、光-声子的非线性参量$ \zeta /{\omega _{\text{a}}} = 1.0 $、基态能量取$ {\varepsilon _ + } $时, 相应点的计算值

    Table 3.  Calculated values of the corresponding point when the light field of mode 2 $ {\gamma _2} = 0 $, nonlinear parameters of the light-phonon $ \zeta /{\omega _{\text{a}}} = 1.0 $ and the average ground state energy is $ {\varepsilon _ + } $.

    $ {{{g_1}}}/{{{\omega _{\text{a}}}}} $ $ \overline {\gamma _1^2} $ $ {\varepsilon _ + } $ $ {{{\partial ^2}{\varepsilon _ + }}}/{{\partial \gamma _1^2}} $
    0.4 5.0910 3.531 –4.0728
    0.8 5.0614 4.3676 –4.0491
    1.2 5.0437 5.2408 –4.0350
    1.6 5.0336 6.1243 –4.0269
    DownLoad: CSV
  • [1]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [2]

    Hepp K, Lieb E H 1973 Ann. Phys. 76 360Google Scholar

    [3]

    Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831Google Scholar

    [4]

    Hioe F T 1973 Phys. Rev. A 8 1440Google Scholar

    [5]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [6]

    Baumann K, Mottl R, Brennecke F, Esslinger T 2011 Phys. Rev. Lett. 107 140402Google Scholar

    [7]

    Emary C, Brandes T 2003 Phys. Rev. Lett. 90 044101Google Scholar

    [8]

    Chen G, Li J Q, Liang J Q 2006 Phys. Rev. A 74 054101Google Scholar

    [9]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [10]

    Brennecke F, Ritter S, Donner T, Esslinger T 2008 Science 322 235Google Scholar

    [11]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724Google Scholar

    [12]

    Anetsberger G, Arcizet O, Unterreithmeier Q P, Rivière R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nat. Phys. 5 909Google Scholar

    [13]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar

    [14]

    陈华俊, 米贤武 2011 物理学报 60 124206Google Scholar

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206Google Scholar

    [15]

    严晓波, 杨柳, 田雪冬, 刘一谋, 张岩 2014 物理学报 63 204201Google Scholar

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201Google Scholar

    [16]

    韩明, 谷开慧, 刘一谋, 张岩, 王晓畅, 田雪冬, 付长宝, 崔淬砺 2014 物理学报 63 094206Google Scholar

    Han M, Gu K H, Liu Y M, Zhang Y, Wang X C, Tian X D, Fu C B, Cui C L 2014 Acta Phys. Sin. 63 094206Google Scholar

    [17]

    Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N, Stamper-Kurn D M 2012 Nature 488 476Google Scholar

    [18]

    Ian H, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. A 78 013824Google Scholar

    [19]

    Jiang C, Bian X T, Cui Y S, Chen G B 2016 J. Opt. Soc. Am. B: Opt. Phys. 33 2099Google Scholar

    [20]

    Wang Z M, Lian J L, Liang J Q, Yu Y M, Liu W M 2016 Phys. Rev. A 93 033630Google Scholar

    [21]

    Lian J L, Liu N, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 88 043820Google Scholar

    [22]

    Zhao X Q, Liu N, Bai X M, Liang J Q 2017 Ann. Phys. 378 448Google Scholar

    [23]

    Santos J P, Semião F L, Furuya K 2010 Phys. Rev. A 82 063801Google Scholar

    [24]

    Sankey J C, Yang C, Zwickl B M, Jayich A M, Harris J G E 2010 Nat. Phys. 6 707Google Scholar

    [25]

    Clerk A A, Marquardt F, Harris J G E 2010 Phys. Rev. Lett. 104 213603Google Scholar

    [26]

    Purdy T P, Brooks D W C, Botter T, Brahms N, Ma Z Y, Stamper-Kurn D M 2010 Phys. Rev. Lett. 105 133602Google Scholar

    [27]

    Wang B, Nori F, Xiang Z X 2024 Phys. Rev. Lett. 132 053601Google Scholar

    [28]

    Léonard J, Morales A, Zupancic P, Esslinger T, Donner T 2017 Nature 543 87Google Scholar

    [29]

    Léonard J, Morales A, Zupancic P, Donner T, Esslinger T 2017 Science 358 1415Google Scholar

    [30]

    Zhang G Q, Chen Z, You J Q 2020 Phys. Rev. A 102 032202Google Scholar

    [31]

    Quezada L F, Nahmad-Achar E 2017 Phys. Rev. A 95 013849Google Scholar

    [32]

    Liu N, Zhao X Q, Liang J Q 2019 Int. J. Theor. Phys. 58 558Google Scholar

    [33]

    赵秀琴, 张文慧, 王红梅 2024 物理学报 73 160302Google Scholar

    Zhao X Q, Zhang W H, Wang H M 2024 Acta Phys. Sin. 73 160302Google Scholar

    [34]

    Arecchi F T, Courtens E, Gilmore R, Thomas H 1972 Phys. Rev. A 6 2211Google Scholar

    [35]

    Fox R F 1999 Phys. Rev. A 59 3241Google Scholar

    [36]

    黄洪斌 1991 物理学报 40 1396Google Scholar

    Huang H B 1991 Acta Phys. Sin. 40 1396Google Scholar

    [37]

    Zhu W S, Rabitz H 1998 Phys. Rev. A 58 4741Google Scholar

    [38]

    Stannigel K, Komar P, Habraken S J M, Bennett S D, Lukin M D, Zoller P, Rabl P 2012 Phys. Rev. Lett. 109 013603Google Scholar

    [39]

    Bell S, Crighton J S, Fletcher R 1981 Chem. Phys. Lett. 82 122Google Scholar

    [40]

    Vallone G, Cariolaro G, Pierobon G 2019 Phys. Rev. A 99 023817Google Scholar

    [41]

    Frueholz R P, Camparo J C 1996 Phys. Rev. A 54 3499Google Scholar

    [42]

    Aftalion A, Mason P 2016 Phys. Rev. A 94 023616Google Scholar

    [43]

    Schlittler T M, Mosseri R, Barthel T 2017 Phys. Rev. B 96 195142Google Scholar

    [44]

    Deshpande A, Gorshkov A V, Fefferman B 2022 PRX Quantum 3 040327Google Scholar

    [45]

    Tolkunov D, Solenov D 2007 Phys. Rev. B 75 024402Google Scholar

  • [1] Zhao Xiu-Qin, Zhang Wen-Hui, Wang Hong-Mei. Nonlinear interactions caused novel quantum phase transitions in two-mode Dicke models. Acta Physica Sinica, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] Tan Hui, Cao Rui, Li Yong-Qiang. Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory. Acta Physica Sinica, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [3] Chen Xi-Hao, Xia Ji-Hong, Li Meng-Hui, Zhai Fu-Qiang, Zhu Guang-Yu. Quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [4] You Bing-Ling, Liu Xue-Ying, Cheng Shu-Jie, Wang Chen, Gao Xian-Long. The quantum phase transition in the Jaynes-Cummings lattice model and the Rabi lattice model. Acta Physica Sinica, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [5] A study in quantum phases and transitions of spin-1/2 quantum compass chain. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211433
    [6] Zhou Xiao-Fan, Fan Jing-Tao, Chen Gang, Jia Suo-Tang. Exotic supersolid phase of one-dimensional Bose-Hubbard model inside an optical cavity. Acta Physica Sinica, 2021, 70(19): 193701. doi: 10.7498/aps.70.20210778
    [7] Bao An. Mott transition of fermions in anisotropic ruby lattice. Acta Physica Sinica, 2021, 70(23): 230305. doi: 10.7498/aps.70.20210963
    [8] Chen Ai-Min, Liu Dong-Chang, Duan Jia, Wang Hong-Lei, Xiang Chun-Huan, Su Yao-Heng. Quantum phase transition and topological order scaling in spin-1 bond-alternating Heisenberg model with Dzyaloshinskii-Moriya interaction. Acta Physica Sinica, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [9] Liu Biao, Zhou Xiao-Fan, Chen Gang, Jia Suo-Tang. Current phases in Hofstadter ladder with staggered hopping. Acta Physica Sinica, 2020, 69(8): 080501. doi: 10.7498/aps.69.20191964
    [10] Wen Kai, Wang Liang-Wei, Zhou Fang, Chen Liang-Chao, Wang Peng-Jun, Meng Zeng-Ming, Zhang Jing. Experimental realization of Mott insulator of ultracold 87Rb atoms in two-dimensional optical lattice. Acta Physica Sinica, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [11] Xie Wu, Shen Bin, Zhang Yong-Jun, Guo Chun-Yu, Xu Jia-Cheng, Lu Xin, Yuan Hui-Qiu. Heavy fermion materials and physics. Acta Physica Sinica, 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
    [12] Chen Xi-Hao, Wang Xiu-Juan. Topological orders and quantum phase transitions in a one-dimensional extended quantum compass model. Acta Physica Sinica, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [13] Huang Shan, Liu Ni, Liang Jiu-Qing. Stimulated radiation characteristics and quantum phase transition for two-component Bose-Einstein condensate in optical cavity. Acta Physica Sinica, 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [14] Song Jia-Li, Zhong Ming, Tong Pei-Qing. Quantum phase transitions of one-dimensional period-two anisotropic XY models in a transverse field. Acta Physica Sinica, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [15] Yu Li-Xian, Liang Qi-Feng, Wang Li-Rong, Zhu Shi-Qun. Firstorder quantum phase transition in the two-mode Dicke model. Acta Physica Sinica, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [16] Liu Ni. Quantum phase transition of a Bose-Einstein condensate in an optical cavity driven by a laser field. Acta Physica Sinica, 2013, 62(1): 013402. doi: 10.7498/aps.62.013402
    [17] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [18] Yang Jin-Hu, Wang Hang-Dong, Du Jian-Hua, Zhang Zhu-Jun, Fang Ming-Hu. Ferromagnetic quantum phase transition in Co(S1-xSex)2 system. Acta Physica Sinica, 2009, 58(2): 1195-1199. doi: 10.7498/aps.58.1195
    [19] Yang Jin-Hu, Wang Hang-Dong, Du Jian-Hua, Zhang Zhu-Jun, Fang Ming-Hu. Antiferromagnetic quantum phase transition near x=1.00 in NiS2-xSex system. Acta Physica Sinica, 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [20] Shi Zhu-Yi, Tong Hong, Shi Zhu-Ya, Zhang Chun-Mei, Zhao Xing-Zhi, Ni Shao-Yong. A possible route of nuclear quantum phase transition induced by rotation. Acta Physica Sinica, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
Metrics
  • Abstract views:  175
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2024
  • Accepted Date:  19 November 2024
  • Available Online:  25 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回