Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum enhanced solution method for platform clustering grouping based on quantum K-means

He Yi Zheng Kou-Quan Jing Feng Zhang Yi-Jun Wang Xun Liu Ying Zhao Le

Citation:

Quantum enhanced solution method for platform clustering grouping based on quantum K-means

He Yi, Zheng Kou-Quan, Jing Feng, Zhang Yi-Jun, Wang Xun, Liu Ying, Zhao Le
cstr: 32037.14.aps.73.20241265
PDF
HTML
Get Citation
  • The paper proposes a quantum enhanced solution method based on quantum K-means for platform clustering and grouping in joint operations campaigns. The method first calculates the number of categories for platform clustering based on the determined number of task clusters, and sets the number of clustering categories in the classical K-means algorithm. By using the location information of the tasks, the clustering center points are calculated and derived. Secondly, the Euclidean distance is used as an indicator to measure the distance between the platform data and each cluster center point. The platform data are quantized and transformed into their corresponding quantum state representations. According to theoretical derivation, the Euclidean distance solution is transformed into the quantum state inner product solution. By designing and constructing a universal quantum state inner product solution quantum circuit, the Euclidean distance solution is completed. Then, based on the sum of squared errors of the clustering dataset, the corresponding quantum circuits are constructed through calculation and deduction. The experimental results show that compared with the classical K-means algorithm, the proposed method not only effectively solves the platform clustering and grouping problem on such action scales, but also significantly reduces the time and space complexity of the algorithm.
      Corresponding author: Zhang Yi-Jun, zhangyijun_gfkjdx@163.com
    [1]

    张守玉, 张炜 2016 装备学院学报 27 36Google Scholar

    Zhang S Y, Zhang W 2016 J. Equip. Acad. 27 36Google Scholar

    [2]

    Wang X, Yao P Y, Zhang J Y, Wan L J, Jia F C 2019 J. Syst. Eng. Electron. 30 110Google Scholar

    [3]

    杨宇 2023 电讯技术 63 941

    Yang Y 2023 Telecommun. Eng. 63 941

    [4]

    Márquez C R, Braganholo V, Ribeiro C C 2024 Ann. Oper. Res. 338 05995Google Scholar

    [5]

    Macqueen J 1967 Proceedings of the 5th Berkley Symposium on Mathematical Statistics and Probability (Berkeley: University of California Press) p281

    [6]

    Lin Y S, Wang K D, Ding Z G 2023 Ieee Wirel. Commun. Le. 12 1130Google Scholar

    [7]

    Moyème K D, Yao B, Kwami S S, Pidéname T, Yendoubé L 2024 Energies 17 3022Google Scholar

    [8]

    Mottier M, Chardon G, Pascal F 2024 Ieee T. Aero. Elec. Sys. 60 3639

    [9]

    Ayad M J, Ku R K 2021 Indon. J. Electr. Eng. Co. 24 1744

    [10]

    Li Y X, Liu M L, Wang W C, Zhang Y H 2020 Ieee T. Multimedia 22 1385

    [11]

    Rani R S, Madhavan P, Prakash A 2022 Circ. Syst. Signal Pr. 41 3882Google Scholar

    [12]

    Al-Rahayfeh A, Atiewi S, Abuhussein A, Almiani M 2019 Future Internet 11 109Google Scholar

    [13]

    Tang D, Man J P, Tang L, Feng Y, Yang Q W 2020 Ad Hoc Netw. 102 102145Google Scholar

    [14]

    Pu Y N, Sun J, Tang N S, Xu Z B 2023 Image Vision Comput. 135 104707

    [15]

    Borzooei S, Miranda Ge H B, Abolfathi S, Scibilia G, Meucci L, Zanetti M C 2020 Water Sci. Technol. 81 1541Google Scholar

    [16]

    Culos A E, Andrews J L, Afshari H 2020 Commun. Stat-Simul C. 51 5658

    [17]

    Barkha N, Poonam V, Priya K 2016 IJLTET 7 121

    [18]

    Ikotun A M, Ezugwu A E, Abualigah L, Abuhaija B, Jia H E 2022 Inform. Sci. 622 178

    [19]

    Zhang Z B, Ling B W, Huang G H 2024 Ieee T. Signal Proces. 72 1348Google Scholar

    [20]

    Capó M, Pérez A, Lozano J A 2021 Ieee T. Neur. Net. Lear. 32 2195

    [21]

    Wan B T, Huang W K, Pierre B, Cheng W W, Zhou S F 2024 Granular Comput. 9 45Google Scholar

    [22]

    Hamzehi M, Hosseini S 2022 Multimed. Tools Appl. 81 33233Google Scholar

    [23]

    Serkan T, Fatih O 2022 Appl. Sci. 12 11

    [24]

    Eissa M A Q 2022 Tehnički Glasnik 16 3

    [25]

    Wei R K, Liu Y, Song J K, Xie Y Z, Zhou K 2024 Ieee T. Image Process. 33 1768Google Scholar

    [26]

    Pavan P, Vani B 2022 ECS Transactions 107 13055Google Scholar

    [27]

    Crognale M, Iuliis M D, Rinaldi C, Gattulli V 2023 Earthq. Eng. Eng. Vib. 22 333Google Scholar

    [28]

    Mohit M, Madhur M, Ketan L 2020 Int. J. Futur. Gener. Co. 13 2S

    [29]

    Ibrahem A W, Hashim H A, AbdulKhaleq N Y, Jalal A A 2022 Indon. J. Electr. Eng. Co. 27 1151

    [30]

    Bezdan T, Stoean C, Naamany A A, Bacanin N, Rashid T A, Zivkovic M, Venkatachalam K 2021 Mathematics 9 1929Google Scholar

    [31]

    Tomesh T, Gokhale P, Anschuetz E R, Chong F T C 2021 Electronics 10 1690Google Scholar

    [32]

    Ouedrhiri O, Banouar O, Hadaj S E, Raghay S 2022 Concurr. Comp-Pract E. 34 e6943Google Scholar

    [33]

    Gong C G, Dong Z Y, Gani A, Han Q 2021 Quantum Inf. Process. 20 130Google Scholar

    [34]

    张毅军, 慕晓冬, 郭乐勐, 张朋, 赵导, 白文华 2023 物理学报 72 070302Google Scholar

    Zhang Y J, Mu X D, Guo L M, Zhang P, Zhao D, Bai W H 2023 Acta Phys. Sin. 72 070302Google Scholar

    [35]

    刘雪娟, 袁家斌, 许娟, 段博佳 2018 吉林大学学报(工学版) 48 539

    Liu X J, Yuan J B, Xu J, Duan B J 2018 J. Jilin Univ. (Eng. Ed. ) 48 539

    [36]

    Rebentrost P, Mohseni M, Lloyd S 2014 Phys. Rev. Lett. 113 130503Google Scholar

  • 图 1  K-means算法的具体聚类流程图

    Figure 1.  Specific clustering process diagram of the K-means algorithm.

    图 2  初始化平台集聚类分簇K值图

    Figure 2.  K value graph of initialization platform clustering class clustering.

    图 3  制备量子态${S_{11}}$量子线路概率图

    Figure 3.  Probability diagram for preparing quantum circuits of quantum state ${S_{11}}$.

    图 4  制备量子态${\left| 0 \right\rangle _1}{\left| \varphi \right\rangle _2}{\left| \phi \right\rangle _3}\xrightarrow{{1:H}}\dfrac{1}{{\sqrt 2 }}\left( {{{\left| 0 \right\rangle }_1}{{\left| \varphi \right\rangle }_2}{{\left| \phi \right\rangle }_3} + {{\left| 1 \right\rangle }_1}{{\left| \varphi \right\rangle }_2}{{\left| \phi \right\rangle }_3}} \right)$的通用量子线路图

    Figure 4.  The general quantum circuit diagram for preparing quantum states ${\left| 0 \right\rangle _1}{\left| \varphi \right\rangle _2}{\left| \phi \right\rangle _3}\xrightarrow{{1:H}}\dfrac{1}{{\sqrt 2 }}\left( {{{\left| 0 \right\rangle }_1}{{\left| \varphi \right\rangle }_2}{{\left| \phi \right\rangle }_3} + {{\left| 1 \right\rangle }_1}{{\left| \varphi \right\rangle }_2}{{\left| \phi \right\rangle }_3}} \right)$.

    图 5  量子态内积求解对应的量子线路图

    Figure 5.  The quantum circuit diagram corresponding to solving the inner product of quantum states.

    图 6  在4种公共数据集下, 两种算法的准确率比较图

    Figure 6.  Comparison of accuracy between two algorithms on four common datasets.

    图 7  在4种公共数据集下, 两种算法的运行时间对比图

    Figure 7.  Comparison of runtime between the two algorithms on four common datasets.

    图 8  在4种公共数据集下, 两种算法的迭代次数对比图

    Figure 8.  Comparison of iteration times of two algorithms on four common datasets.

    图 9  作战任务区域图

    Figure 9.  Operational mission area map.

    图 10  在3组平台数据下, 两种算法的实验结果比较图

    Figure 10.  Comparison of experimental results of two algorithms under three sets of platform data.

    图 11  在3组平台数据下, 两种算法的运行时间对比图

    Figure 11.  Comparison of runtime between two algorithms under three sets of platform data.

    图 12  在3组平台数据下, 两种算法的迭代次数对比图

    Figure 12.  Comparison of iteration times of two algorithms under three platform data groups.

    表 1  实验数据集信息表

    Table 1.  Experimental dataset information table.

    数据集样本数特征维度数类别数
    Haberman30632
    Iris15043
    Diabetes76882
    Wine178133
    DownLoad: CSV

    表 2  基于QK-means的量子增强求解方法的伪代码

    Table 2.  Pseudo code of the quantum enhancement solution method based on QK-means.

    算法1. 基于QK-means的量子增强求解方法的伪代码
    输入: 输入数据集S(N, M, K), 其中N表示数据集样本数量, M表示数据样本维度, K表示数据分类个数. 初始化量子软件开发环境与量子云平台
    输出: K个聚类分簇以及每个分簇所包含的数据样本
    初始化量子软件开发环境${Q_r}$与量子比特数量
    1) 根据输入数据集分类个数确定聚类中心数为K
    2) 结合公共数据集实际情况, 根据3.1节中所述选取聚类中心点的方法, 将每个分簇数据集合的平均值作为初始聚类中心点位置
    3) 对数据样本和聚类中心点进行量子化, 并给SSE赋一个较大值
    4) while SSE值$ \geqslant $阈值 do
    5) 通过基于QK-means的量子线路制备量子态, 计算数据样本与各聚类中心点之间的欧氏距离$D\left( {{x_i}, {c_k}} \right)$
    6) 根据$D\left( {{x_i}, {c_k}} \right)$, 当$D\left( {{x_i}, {c_k}} \right)$取到$\mathop {\min }\limits_{i, k} D\left( {{x_i}, {c_k}} \right)$时, 将${x_i} \to {C_k}$
    7) 计算每个${N_k}$, 并求该聚类分簇的平均值${c'_k} = \dfrac1{{{N_k}}}{{\displaystyle\sum\limits_{{x_i} \in {C_k}} {{x_i}} }}$
    8) 通过${c'_k}$更新聚类中心位置
    9) 求解整个聚类数据集的残差平方和${\text{SSE}} = {\displaystyle\sum\limits_{k = 1}^K {\displaystyle\sum\limits_{{x_i} \in {C_k}} {\left| {D\left( {{x_i}, {c_k}} \right)} \right|} } ^2}$
    10) end while
    11) 输出每个${C_k}$
    DownLoad: CSV
  • [1]

    张守玉, 张炜 2016 装备学院学报 27 36Google Scholar

    Zhang S Y, Zhang W 2016 J. Equip. Acad. 27 36Google Scholar

    [2]

    Wang X, Yao P Y, Zhang J Y, Wan L J, Jia F C 2019 J. Syst. Eng. Electron. 30 110Google Scholar

    [3]

    杨宇 2023 电讯技术 63 941

    Yang Y 2023 Telecommun. Eng. 63 941

    [4]

    Márquez C R, Braganholo V, Ribeiro C C 2024 Ann. Oper. Res. 338 05995Google Scholar

    [5]

    Macqueen J 1967 Proceedings of the 5th Berkley Symposium on Mathematical Statistics and Probability (Berkeley: University of California Press) p281

    [6]

    Lin Y S, Wang K D, Ding Z G 2023 Ieee Wirel. Commun. Le. 12 1130Google Scholar

    [7]

    Moyème K D, Yao B, Kwami S S, Pidéname T, Yendoubé L 2024 Energies 17 3022Google Scholar

    [8]

    Mottier M, Chardon G, Pascal F 2024 Ieee T. Aero. Elec. Sys. 60 3639

    [9]

    Ayad M J, Ku R K 2021 Indon. J. Electr. Eng. Co. 24 1744

    [10]

    Li Y X, Liu M L, Wang W C, Zhang Y H 2020 Ieee T. Multimedia 22 1385

    [11]

    Rani R S, Madhavan P, Prakash A 2022 Circ. Syst. Signal Pr. 41 3882Google Scholar

    [12]

    Al-Rahayfeh A, Atiewi S, Abuhussein A, Almiani M 2019 Future Internet 11 109Google Scholar

    [13]

    Tang D, Man J P, Tang L, Feng Y, Yang Q W 2020 Ad Hoc Netw. 102 102145Google Scholar

    [14]

    Pu Y N, Sun J, Tang N S, Xu Z B 2023 Image Vision Comput. 135 104707

    [15]

    Borzooei S, Miranda Ge H B, Abolfathi S, Scibilia G, Meucci L, Zanetti M C 2020 Water Sci. Technol. 81 1541Google Scholar

    [16]

    Culos A E, Andrews J L, Afshari H 2020 Commun. Stat-Simul C. 51 5658

    [17]

    Barkha N, Poonam V, Priya K 2016 IJLTET 7 121

    [18]

    Ikotun A M, Ezugwu A E, Abualigah L, Abuhaija B, Jia H E 2022 Inform. Sci. 622 178

    [19]

    Zhang Z B, Ling B W, Huang G H 2024 Ieee T. Signal Proces. 72 1348Google Scholar

    [20]

    Capó M, Pérez A, Lozano J A 2021 Ieee T. Neur. Net. Lear. 32 2195

    [21]

    Wan B T, Huang W K, Pierre B, Cheng W W, Zhou S F 2024 Granular Comput. 9 45Google Scholar

    [22]

    Hamzehi M, Hosseini S 2022 Multimed. Tools Appl. 81 33233Google Scholar

    [23]

    Serkan T, Fatih O 2022 Appl. Sci. 12 11

    [24]

    Eissa M A Q 2022 Tehnički Glasnik 16 3

    [25]

    Wei R K, Liu Y, Song J K, Xie Y Z, Zhou K 2024 Ieee T. Image Process. 33 1768Google Scholar

    [26]

    Pavan P, Vani B 2022 ECS Transactions 107 13055Google Scholar

    [27]

    Crognale M, Iuliis M D, Rinaldi C, Gattulli V 2023 Earthq. Eng. Eng. Vib. 22 333Google Scholar

    [28]

    Mohit M, Madhur M, Ketan L 2020 Int. J. Futur. Gener. Co. 13 2S

    [29]

    Ibrahem A W, Hashim H A, AbdulKhaleq N Y, Jalal A A 2022 Indon. J. Electr. Eng. Co. 27 1151

    [30]

    Bezdan T, Stoean C, Naamany A A, Bacanin N, Rashid T A, Zivkovic M, Venkatachalam K 2021 Mathematics 9 1929Google Scholar

    [31]

    Tomesh T, Gokhale P, Anschuetz E R, Chong F T C 2021 Electronics 10 1690Google Scholar

    [32]

    Ouedrhiri O, Banouar O, Hadaj S E, Raghay S 2022 Concurr. Comp-Pract E. 34 e6943Google Scholar

    [33]

    Gong C G, Dong Z Y, Gani A, Han Q 2021 Quantum Inf. Process. 20 130Google Scholar

    [34]

    张毅军, 慕晓冬, 郭乐勐, 张朋, 赵导, 白文华 2023 物理学报 72 070302Google Scholar

    Zhang Y J, Mu X D, Guo L M, Zhang P, Zhao D, Bai W H 2023 Acta Phys. Sin. 72 070302Google Scholar

    [35]

    刘雪娟, 袁家斌, 许娟, 段博佳 2018 吉林大学学报(工学版) 48 539

    Liu X J, Yuan J B, Xu J, Duan B J 2018 J. Jilin Univ. (Eng. Ed. ) 48 539

    [36]

    Rebentrost P, Mohseni M, Lloyd S 2014 Phys. Rev. Lett. 113 130503Google Scholar

  • [1] Sun Xiao-Cong, Li Wei, Wang Ya-Jun, Zheng Yao-Hui. Quantum-enhanced optical phase tracking via squeezed state. Acta Physica Sinica, 2024, 73(5): 054203. doi: 10.7498/aps.73.20231835
    [2] He Yi, Zheng Kouquan, Jing Feng, Zhang Yijun, Wang Xun, Liu Ying, Zhao Le. Quantum Enhancement Solution Method Based on Quantum K-means for Platform Clustering Grouping. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.20241265
    [3] Ma Teng-Fei, Wang Min-Jie, Wang Sheng-Zhi, Jiao Hao-Le, Xie Yan, Li Shu-Jing, Xu Zhong-Xiao, Wang Hai. Experimental study of retrieval efficiency of Duan-Lukin-Cirac-Zoller quantum memory by optical cavity-enhanced. Acta Physica Sinica, 2022, 71(2): 020301. doi: 10.7498/aps.71.20210881
    [4] Zhao Zi-Bo, Zhuang Ge, Xie Jin-Lin, Qu Cheng-Ming, Qiang Zi-Wei. Implementation of spectral clustering algorithm for automatic identification of plasma coherence patterns. Acta Physica Sinica, 2022, 71(15): 155202. doi: 10.7498/aps.71.20220367
    [5] Experimental Study on Retrieval efficiency of Duan-Lukin-Cirac-Zoller Quantum Memory by Optical Cavity-Enhanced. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210881
    [6] Yang Rong-Guo, Zhang Chao-Xia, Li Ni, Zhang Jing, Gao Jiang-Rui. Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process. Acta Physica Sinica, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [7] Yang Li, Song Yu-Rong, Li Yin-Wei. Network structure optimization algorithm for information propagation considering edge clustering and diffusion characteristics. Acta Physica Sinica, 2018, 67(19): 190502. doi: 10.7498/aps.67.20180395
    [8] Wu Ying, Li Jin-Fang, Liu Jin-Ming. Enhancement of quantum Fisher information of quantum teleportation by optimizing partial measurements. Acta Physica Sinica, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [9] Dong Yang, Du Bo, Zhang Shao-Chun, Chen Xiang-Dong, Sun Fang-Wen. Solid quantum sensor based on nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [10] Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua. Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons. Acta Physica Sinica, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [11] Bi Guo-Ling, Xu Zhi-Jun, Chen Tao, Wang Jian-Li, Zhang Yan-Kun. Complex background model and foreground detection based on random aggregation. Acta Physica Sinica, 2015, 64(15): 150701. doi: 10.7498/aps.64.150701
    [12] Wang Hai-Yan, Dou Xiu-Ming, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Photoluminescence from plasmon-enhanced single InAs quantum dots. Acta Physica Sinica, 2014, 63(2): 027801. doi: 10.7498/aps.63.027801
    [13] Wang Hong-Pei, Wang Guang-Long, Ni Hai-Qiao, Xu Ying-Qiang, Niu Zhi-Chuan, Gao Feng-Qi. Quantum-dot gated field effect enhanced single-photon detectors. Acta Physica Sinica, 2013, 62(19): 194205. doi: 10.7498/aps.62.194205
    [14] Du Ling-Xiao, Hu Lian, Zhang Bing-Po, Cai Xi-Kun, Lou Teng-Gang, Wu Hui-Zhen. Photoluminescence enhancement of colloidal quantum dots embedded in a microcavity. Acta Physica Sinica, 2011, 60(11): 117803. doi: 10.7498/aps.60.117803
    [15] Tan Zhen-Bing, Ma Li, Liu Guang-Tong, Lü Li, Yang Chang-Li. Scaling law of quantum Hall plateau-to-plateau transition in single layer graphene. Acta Physica Sinica, 2011, 60(10): 107204. doi: 10.7498/aps.60.107204
    [16] Zhang Jun-Feng, Hu Shou-Song. Chaotic time series prediction based on RBF neural networks with a new clustering algorithm. Acta Physica Sinica, 2007, 56(2): 713-719. doi: 10.7498/aps.56.713
    [17] Cui Yuan-Shun. Effect of quantum current magnification in a mesoscopic multi-ring coupling sys tem. Acta Physica Sinica, 2005, 54(4): 1799-1803. doi: 10.7498/aps.54.1799
    [18] WANG CHUAN-KUI, JIANG ZHAO-TAN. QUANTUM BOUND STATES OF ONE KIND OF BENT QUANTUM WIRES. Acta Physica Sinica, 2000, 49(8): 1574-1579. doi: 10.7498/aps.49.1574
    [19] TU XIAN-HUA, LI DAO-HUO. BLUE-LIGHT ENHANCEMENT EFFECT IN ION IMPLANTED NANO-Si3N4 QUANTUM DOTS. Acta Physica Sinica, 2000, 49(7): 1383-1385. doi: 10.7498/aps.49.1383
    [20] Gong Shang-Qing, Xu Zhi-Zhan, Pan Shao-Hua. . Acta Physica Sinica, 1995, 44(7): 1051-1055. doi: 10.7498/aps.44.1051
Metrics
  • Abstract views:  614
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  09 September 2024
  • Accepted Date:  27 October 2024
  • Available Online:  18 November 2024
  • Published Online:  05 December 2024

/

返回文章
返回