-
Ferrimagnetic materials exhibit ultrafast dynamic behaviors similar to those of antiferromagnetic materials near the angular momentum compensation point, where a non-zero net spin density is maintained. This unique feature makes their magnetic structures detectable and manipulable by using traditional magnetic techniques, thus positioning ferrimagnetic materials as promising candidates for next-generation high-performance spintronic devices. However, effectively controlling the dynamics of ferrimagnetic domain walls remains a significant challenge in current spintronics research. In this work, based on the classic Heisenberg spin model, Landau-Lifshitz-Gilbert (LLG) simulation is used to investigate the dynamic behaviors of ferrimagnetic domain walls driven by sinusoidal wave periodic magnetic field and square wave periodic magnetic field, respectively. The results show that these two types of oscillating magnetic fields induce distinct domain wall motion modes. Specifically, the domain wall surface, which has non-zero net spin angular momentum, oscillates in response to the external magnetic field. It is found that the domain wall velocity decreases as the net spin angular momentum increases. Moreover, the displacement of the ferrimagnetic domain wall driven by a sinusoidal magnetic field increases monotonically with time, while the displacement driven by a square wave magnetic field follows a more tortuous trajectory over time. Under high-frequency field conditions, the domain wall displacement shows more pronounced linear growth, and the domain wall surface rotates linearly with time. In this work, how material parameters, such as net spin angular momentum, anisotropy, and the damping coefficient, influence domain wall dynamics is also explored. Specifically, increasing the anisotropy parameter (dz) or the damping coefficient (α) results in a reduction of domain wall velocity. Furthermore, the study demonstrates that, compared with the square wave magnetic fields, the sinusoidal magnetic fields drive the domain wall more efficiently, leading domain wall to move faster. By adjusting the frequency and waveform of the periodic magnetic field, the movement of ferrimagnetic domain walls can be precisely controlled, enabling fine-tuned regulation of both domain wall velocity and position. Our findings show that sinusoidal magnetic fields, even at the same intensity, offer higher driving efficiency. The underlying physical mechanisms are discussed in detail, providing valuable insights for guiding the design and experimental development of domain wall-based spintronic devices. -
Keywords:
- domain wall dynamics /
- spintronics /
- oscillating magnetic field /
- ferrimagnets
[1] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Diény B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711Google Scholar
[2] Zhang Y, Feng X Q, Zheng Z Y, Zhang Z Z, Lin K L, Sun X H, Wang G D, Wang J K, Wei J Q, Vallobra P, He Y, Wang Z X, Chen L, Zhang K, Xu Y, Zhao W S 2023 Appl. Phys. Rev. 10 011301Google Scholar
[3] Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414Google Scholar
[4] Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187Google Scholar
[5] Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403Google Scholar
[6] Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154Google Scholar
[7] Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science 370 1438Google Scholar
[8] Sun C, Yang H, Jalil M 2020 Phys. Rev. B 102 134420Google Scholar
[9] 张玉洁, 李贵江, 刘恩克, 陈京兰, 王文洪, 吴光恒, 胡俊雄 2013 物理学报 62 037501Google Scholar
Zhang Y J, Li G J, Liu E K, Chen J L, Wang W H, Wu G H, Hu J X 2013 Acta Phys. Sin. 62 037501Google Scholar
[10] Chen Z Y, Qin M H, Liu J M, 2019 Phys. Rev. B 100 020402(RGoogle Scholar
[11] Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar
[12] Jin M S, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431Google Scholar
[13] Jing K Y, Gong X, Wang X R 2022 Phys. Rev. B 106 174429Google Scholar
[14] Haltz E, Krishnia S, Berges L, Mougin A, Sampaio J 2021 Phys. Rev. B 103 014444Google Scholar
[15] Tono T, Taniguchi T, Kim K J, Moriyama T, Tsukamoto A, Ono T 2015 Appl. Phys. Express 8 073001Google Scholar
[16] Luo C, Chen K, Ukleev V, Wintz S, Weigand M, Abrudan R M, Prokeš K, Radu F 2023 Comm. Phys. 6 218Google Scholar
[17] Nishimura T, Kim D H, Hirata Y, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Shiota Y, Moriyama T, Ono T 2018 Appl. Phys. Lett. 112 172403Google Scholar
[18] Chen J, Dong S 2021 Phys. Rev. Lett. 126 117603Google Scholar
[19] Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(RGoogle Scholar
[20] Ghosh S, Komori T, Hallal A, Garcia J P, Gushi T, Hirose T, Mitarai H, Okuno H, Vogel J, Chshiev M, Attané J P, Vila L, Suemasu T, Pizzini S 2021 Nano Lett. 21 2580Google Scholar
[21] Caretta L, Avc C O 2024 APL Mater. 12 011106Google Scholar
[22] Gushi T, Klug M J, Garcia J P, Ghosh S, Attané J P, Okuno H, Fruchart O, Vogel J, Suemasu T, Pizzini S, Vila L 2019 Nano Lett. 19 8716Google Scholar
[23] Vélez S, Ruiz-Gómez S, Schaab J, Gradauskaite E, Wörnle M S, Welter P, Jacot B J, Degen C L, Trassin M, Fiebig M, Gambardella P 2022 Nat. Nanotechnol. 17 834Google Scholar
[24] Haltz E, Sampaio J, Krishnia S, Berges L, Weil R, Mougin A 2020 Sci. Rep. 10 16292Google Scholar
[25] Kim D H, Kim D H, Kim K J, Moon K W, Yang S M, Lee K J, Kim S K 2020 J. Magn. Magn. Mater. 514 167237Google Scholar
[26] Sala G, Gambardella P 2022 Adv. Mater. Interfaces 9 2201622Google Scholar
[27] Li Z L, Su J, Lin S Z, Liu D, Gao Y, Wang S G, Wei H X, Zhao T Y, Zhang Y, Cai J W, Shen B G 2021 Nat. Commun. 12 5604Google Scholar
[28] Donges A, Grimm N, Jakobs F, Selzer S, Ritzmann U, Atxitia U, Nowak U 2020 Phys. Rev. Res. 2 013293Google Scholar
[29] Yan Z R, Chen Z Y, Qin M H, Lu X B, Gao X S, Liu J M, 2018 Phys. Rev. B 97 054308Google Scholar
[30] Yurlov V V, Zvezdin K A, Skirdkov P N, Zvezdin A K 2021 Phys. Rev. B 103 134442Google Scholar
[31] Lepadatu S, Saarikoski H, Beacham R, Benitez M J, Moore T A, Burnell G, Sugimoto S, Yesudas, Wheeler M C, Miguel J, Dhesi S S, McGrouther D, McVitie S, Tatara G, Marrows C H 2017 Sci. Rep. 7 1640Google Scholar
[32] Balan C, Garcia J P, Fassatoui A, Vogel J, Chaves D D S, Bonfim M, Rueff J P, Ranno L, Pizzini S 2022 Phys. Rev. Appl. 18 034065Google Scholar
[33] Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M, 2020 Phys. Rev. Res. 2 013166Google Scholar
[34] Liu T T, Liu Y, Liu, Y H, Tian G, Qin M H 2024 J. Phys. D Appl. Phys. 57 335002Google Scholar
[35] Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Metals 41 3815Google Scholar
[36] 赵晨蕊, 魏云昕, 刘婷婷, 秦明辉 2023 物理学报 72 208502Google Scholar
Zhao C R, Wei Y X, Liu T T, Qin M H 2023 Acta Phys. Sin. 72 208502Google Scholar
[37] Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M, 2018 New J. Phys. 20 063003Google Scholar
[38] Bassirian P, Hesjedal T, Parkin S S P, Litzius K 2022 APL Mater. 10 101107Google Scholar
[39] Zhang X C, Xia J, Tretiakov O A, Zhao G P, Zhou Y, Mochizuki M, Liu X X, Ezawa M 2023 Phys. Rev. B 108 064410Google Scholar
[40] Consolo G, Lopez-Diaz L, Torres L, Azzerboni B 2007 IEEE T. Magn. 43 2974Google Scholar
-
图 2 不同净自旋角动量δs下, (a)正弦波磁场和(b)方波磁场驱动亚铁磁畴壁速度v与振荡磁场频率ω的关系图, 其中, z轴各向异性dz = 0.1J, 磁场振幅h0 = 0.005J, 阻尼系数α = 0.01
Figure 2. Domain wall velocity v as functions of ω for various δs driven by the (a) sine-wave and (b) square-wave magnetic fields for dz = 0.1J, h0 = 0.005J, and the damping coefficient α = 0.01.
图 4 ω = 0.05γJ/μs时, 正弦波磁场驱动下(a)畴壁位置和(b)畴壁面角随时间的演化, 以及方波磁场驱动下(c)畴壁位置和(d)畴壁面角随时间的演化. 在图(a)和(b)中, δs = –1.24×10–7 J·s·m–3, 在图(c)和(d)中, δs = 1.24×10–7 J·s·m–3. 场强度图用红色虚线标注
Figure 4. Evolutions of the domain wall (DW) (a) position and (b) angle over time under the sine-wave magnetic field, and the DW (c) position and (d) angle evolutions under the square-wave magnetic field for ω = 0.05γJ/μs. In panels (a) and (b), δs = –1.24×10–7 J·s·m–3, while in panels (c) and (d), the opposite value is taken. The evolution of field magnitude is also depicted with red dashed lines.
图 5 ω = 0.25γJ/μs, δs = 1.24×10–7 J·s·m–3时, 正弦波磁场驱动下(a)畴壁位置和(b)畴壁面角随时间的演化, 以及方波磁场驱动下(c)畴壁位置和(d)畴壁面角随时间的演化
Figure 5. The DW (a) position and (b) angle evolution over time under the triangular form magnetic field, and (c) position and (d) angle evolution under the square form magnetic field for ω = 0.25γJ/μs and δs = 1.24×10–7 J·s·m–3. The evolution of field magnitude is also depicted with red dashed lines.
图 6 h0 = 0.005J正弦波磁场作用下, δs = (a) 0, (b) 0.62 × 10–7 J·s·m–3时不同各向异性系数dz对应的v(ω)图(α = 0.01); 以及 δs = (c) 0, (d) –0.62 × 10–7 J·s·m–3时不同阻尼系数α对应的v(ω)图(dz = 0.1J )
Figure 6. Simulated v(ω) curves driven by the sine-wave field for h0 = 0.005J for various dz for δs = (a) 0, (b) 0.62 × 10–7 J·s·m–3 and α = 0.01; and the curves for various α for δs = (c) 0, (d) –0.62×10–7 J·s·m–3 and dz = 0.1J.
表 1 模拟过程中采用的磁性过渡金属磁矩(MTM)、稀土磁矩(MRE)以及净自旋角动量(δs)
Table 1. Magnetic transition metal moments (MTM), rare earth moments (MRE), and net angular momentum (δs) used in the simulations.
参数 1 2 3 4 5 6 7 8 9 MTM/(kA·m–1) 1120 1115 1110 1105 1100 1095 1090 1085 1080 MRE/(kA·m–1) 1040 1030 1020 1010 1000 990 980 970 960 δs/(10–7 J·s·m–3) –1.24 –0.93 –0.62 –0.31 0 0.31 0.62 0.93 1.24 -
[1] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Diény B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711Google Scholar
[2] Zhang Y, Feng X Q, Zheng Z Y, Zhang Z Z, Lin K L, Sun X H, Wang G D, Wang J K, Wei J Q, Vallobra P, He Y, Wang Z X, Chen L, Zhang K, Xu Y, Zhao W S 2023 Appl. Phys. Rev. 10 011301Google Scholar
[3] Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414Google Scholar
[4] Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187Google Scholar
[5] Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403Google Scholar
[6] Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154Google Scholar
[7] Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science 370 1438Google Scholar
[8] Sun C, Yang H, Jalil M 2020 Phys. Rev. B 102 134420Google Scholar
[9] 张玉洁, 李贵江, 刘恩克, 陈京兰, 王文洪, 吴光恒, 胡俊雄 2013 物理学报 62 037501Google Scholar
Zhang Y J, Li G J, Liu E K, Chen J L, Wang W H, Wu G H, Hu J X 2013 Acta Phys. Sin. 62 037501Google Scholar
[10] Chen Z Y, Qin M H, Liu J M, 2019 Phys. Rev. B 100 020402(RGoogle Scholar
[11] Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar
[12] Jin M S, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431Google Scholar
[13] Jing K Y, Gong X, Wang X R 2022 Phys. Rev. B 106 174429Google Scholar
[14] Haltz E, Krishnia S, Berges L, Mougin A, Sampaio J 2021 Phys. Rev. B 103 014444Google Scholar
[15] Tono T, Taniguchi T, Kim K J, Moriyama T, Tsukamoto A, Ono T 2015 Appl. Phys. Express 8 073001Google Scholar
[16] Luo C, Chen K, Ukleev V, Wintz S, Weigand M, Abrudan R M, Prokeš K, Radu F 2023 Comm. Phys. 6 218Google Scholar
[17] Nishimura T, Kim D H, Hirata Y, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Shiota Y, Moriyama T, Ono T 2018 Appl. Phys. Lett. 112 172403Google Scholar
[18] Chen J, Dong S 2021 Phys. Rev. Lett. 126 117603Google Scholar
[19] Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(RGoogle Scholar
[20] Ghosh S, Komori T, Hallal A, Garcia J P, Gushi T, Hirose T, Mitarai H, Okuno H, Vogel J, Chshiev M, Attané J P, Vila L, Suemasu T, Pizzini S 2021 Nano Lett. 21 2580Google Scholar
[21] Caretta L, Avc C O 2024 APL Mater. 12 011106Google Scholar
[22] Gushi T, Klug M J, Garcia J P, Ghosh S, Attané J P, Okuno H, Fruchart O, Vogel J, Suemasu T, Pizzini S, Vila L 2019 Nano Lett. 19 8716Google Scholar
[23] Vélez S, Ruiz-Gómez S, Schaab J, Gradauskaite E, Wörnle M S, Welter P, Jacot B J, Degen C L, Trassin M, Fiebig M, Gambardella P 2022 Nat. Nanotechnol. 17 834Google Scholar
[24] Haltz E, Sampaio J, Krishnia S, Berges L, Weil R, Mougin A 2020 Sci. Rep. 10 16292Google Scholar
[25] Kim D H, Kim D H, Kim K J, Moon K W, Yang S M, Lee K J, Kim S K 2020 J. Magn. Magn. Mater. 514 167237Google Scholar
[26] Sala G, Gambardella P 2022 Adv. Mater. Interfaces 9 2201622Google Scholar
[27] Li Z L, Su J, Lin S Z, Liu D, Gao Y, Wang S G, Wei H X, Zhao T Y, Zhang Y, Cai J W, Shen B G 2021 Nat. Commun. 12 5604Google Scholar
[28] Donges A, Grimm N, Jakobs F, Selzer S, Ritzmann U, Atxitia U, Nowak U 2020 Phys. Rev. Res. 2 013293Google Scholar
[29] Yan Z R, Chen Z Y, Qin M H, Lu X B, Gao X S, Liu J M, 2018 Phys. Rev. B 97 054308Google Scholar
[30] Yurlov V V, Zvezdin K A, Skirdkov P N, Zvezdin A K 2021 Phys. Rev. B 103 134442Google Scholar
[31] Lepadatu S, Saarikoski H, Beacham R, Benitez M J, Moore T A, Burnell G, Sugimoto S, Yesudas, Wheeler M C, Miguel J, Dhesi S S, McGrouther D, McVitie S, Tatara G, Marrows C H 2017 Sci. Rep. 7 1640Google Scholar
[32] Balan C, Garcia J P, Fassatoui A, Vogel J, Chaves D D S, Bonfim M, Rueff J P, Ranno L, Pizzini S 2022 Phys. Rev. Appl. 18 034065Google Scholar
[33] Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M, 2020 Phys. Rev. Res. 2 013166Google Scholar
[34] Liu T T, Liu Y, Liu, Y H, Tian G, Qin M H 2024 J. Phys. D Appl. Phys. 57 335002Google Scholar
[35] Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Metals 41 3815Google Scholar
[36] 赵晨蕊, 魏云昕, 刘婷婷, 秦明辉 2023 物理学报 72 208502Google Scholar
Zhao C R, Wei Y X, Liu T T, Qin M H 2023 Acta Phys. Sin. 72 208502Google Scholar
[37] Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M, 2018 New J. Phys. 20 063003Google Scholar
[38] Bassirian P, Hesjedal T, Parkin S S P, Litzius K 2022 APL Mater. 10 101107Google Scholar
[39] Zhang X C, Xia J, Tretiakov O A, Zhao G P, Zhou Y, Mochizuki M, Liu X X, Ezawa M 2023 Phys. Rev. B 108 064410Google Scholar
[40] Consolo G, Lopez-Diaz L, Torres L, Azzerboni B 2007 IEEE T. Magn. 43 2974Google Scholar
Catalog
Metrics
- Abstract views: 238
- PDF Downloads: 6
- Cited By: 0