Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and dynamic mechanism of M-shaped low-frequency isolation structure imitating limb configuration of arthropods

LAN Chunbo JIA Jie WANG Yang WANG Shuo ZHANG Lu

Citation:

Design and dynamic mechanism of M-shaped low-frequency isolation structure imitating limb configuration of arthropods

LAN Chunbo, JIA Jie, WANG Yang, WANG Shuo, ZHANG Lu
cstr: 32037.14.aps.74.20241203
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Arthropods, including spiders and mantises, can maintain their body stability on shaking surfaces, such as spiderwebs or leaves. This impressive stability can be attributed to the specific geometric shape of their limbs, which exhibit an M-shaped structure. Inspired by this geometry, this work proposes an arthropod-limb-inspired M-shaped structure for low-frequency vibration isolation. First, the design method of the M-shaped quasi-zero-stiffness (QZS) structure is presented. A static analysis of potential energy, restoring force, and equivalent stiffness is conducted, showing that the M-shaped structure enables a horizontal linear spring to generate nonlinear stiffness in the vertical direction. More importantly, this nonlinear stiffness effectively compensates for the negative stiffness in large-displacement responses, thereby achieving a wider quasi-zero-stiffness region than the conventional three-spring-based QZS structure. Subsequently, the harmonic balance method is employed to derive approximate analytical solutions for the M-shaped QZS structure, which are well validated through numerical simulation. A comparison between the proposed M-shaped QZS structure and the conventional three-spring-based QZS structure is performed. Results show that the M-shaped QZS structure is advantageous for reducing both the cut-in isolation frequency and the resonance frequency. In particular, under large excitation or small damping conditions, the performance improvement of the M-shaped QZS structure in terms of reducing the resonance frequency and maximum response becomes more pronounced. The underlying mechanism behind this feature is primarily attributed to the expanded QZS region induced by the M-shaped structure. Finally, since the M-shaped structures vary among different arthropods, the effect of the geometry of M-shaped structures on low-frequency vibration performance is investigated. Interestingly, a trade-off between vibration isolation performance and loading mass is observed. As the M-shaped structure becomes flatter and the QZS region expands, the cut-in isolation frequency, resonance frequency/peak, and loading mass all decrease. This occurs because a flatter M-shaped structure leads to a reduction in the equivalent stiffness generated by the horizontal stiffness. Therefore, as the loading mass capacity decreases, the low-frequency vibration isolation performance is enhanced. This novel finding provides a reasonable explanation for why most arthropods possess many pairs of limbs, allowing the loading mass to be distributed while achieving excellent low-frequency vibration isolation.
      Corresponding author: LAN Chunbo, chunbolan@nuaa.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grant No. 12002152), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190379), the General Programs of China Postdoctoral Science Foundation (Grant No. 2020M681577), the Funds of National Key Laboratory of Helicopter Aeromechanics (Grant No. 2024-CXPT-GF-JJ-093-04), and the Fundamental Research Funds for the Central Universities (Grant No. NT2024002).
    [1]

    Jiao X L, Zhang J X, Li W B, Wang Y Y, Ma W L, Zhao Y 2023 Prog. Aerosp. Sci. 138 100898Google Scholar

    [2]

    Li L, Wang L, Yuan L, Zheng R, Wu Y P, Sui J, Zhong J 2021 Acta Astronaut. 180 417Google Scholar

    [3]

    Dennehy C J, Wolf A A, Swanson D K Spacecraft Line-of-Sight Jitter Management and Mitigation Lessons Learned and Engineering Best Practices https://ntrs.nasa.gov/citations/20210017871 [2025-05-07]

    [4]

    孟光, 董瑶海, 周徐斌, 申军烽, 刘兴天 2019 中国科学: 物理学 力学 天文学 49 024508Google Scholar

    Meng G, Dong Y H, Zhou X B, Shen J F, Liu X T 2019 Sci. Sin-Phys. Mech. Astron. 49 024508Google Scholar

    [5]

    McPherson K, Hrovat K, Kelly E, Keller J 2015 A Researcher’s Guide to Acceleration Environment on the International Space Station (Washington, D. C.: NASA) pp37–41

    [6]

    刘海平, 张世乘, 门玲鸰, 何振强 2022 物理学报 71 160701Google Scholar

    Liu H P, Zhang S C, Men L L, He Z Q 2022 Acta Phys. Sin. 71 160701Google Scholar

    [7]

    Luo H T, Fan C H, Li Y X, Liu G M, Yu C S 2023 Eur. J. Mech. A-Solid. 97 104833Google Scholar

    [8]

    Molyneux W G 1958 Aircr. Eng. Aerosp. Tec. 30 160Google Scholar

    [9]

    Carrella A, Brennan M J, Waters T P 2007 J. Sound Vib. 301 678Google Scholar

    [10]

    张月英 2014 硕士学位论文 (湖南: 湖南大学)

    Zhang Y Y 2014 M. S. Thesis (Hunan: Hunan University

    [11]

    Kovacic I, Brennan M J, Waters T P 2008 J. Sound Vib. 315 700Google Scholar

    [12]

    Zhou J X, Wang X L, Xu D L, Bishop S 2015 J. Sound Vib. 346 53Google Scholar

    [13]

    Zhao F, Ji J C, Ye K, Luo Q T 2020 Mech. Syst. Signal Pr. 144 106975Google Scholar

    [14]

    Deng T C, Wen G L, Ding H, Lu Z Q, Chen L Q 2020 Mech. Syst. Signal Pr. 145 106967Google Scholar

    [15]

    Liu C R, Yu K P, Liao B P, Hu R P 2021 Commun. Nonlinear Sci. Numer. Simulat. 95 105654Google Scholar

    [16]

    郝志峰 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Hao Z F 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [17]

    阮子悦 2023 硕士学位论文 (石家庄: 石家庄铁道大学)

    Ran Z R 2023 M. S. Thesis (Shijiazhuang: Shijiazhuang TieDao University

    [18]

    Yan B, Yu N, Wang Z H, Wu C Y, Wang S, Zhang W M 2022 J. Sound Vib. 527 116865Google Scholar

    [19]

    Liu X T, Huang X C, Hua H X 2013 J. Sound Vib. 332 3359Google Scholar

    [20]

    Wang K, Zhou J X, Chang Y P, Ouyang H J, Xu D L, Yang Y 2020 Nonlinear Dynam. 101 755Google Scholar

    [21]

    Wu W J, Chen X D, Shan Y H 2014 J. Sound Vib. 333 2958Google Scholar

    [22]

    安隽翰 2021 硕士学位论文 (南京: 南京航空航天大学)

    An J H 2021 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics

    [23]

    Yan G, Zou H X, Wang S, Zhao L C, Wu Z Y, Zhang W M 2021 Appl. Mech. Rev. 73 020801Google Scholar

    [24]

    Wu Z J, Jing X J, Bian J, Li F M, Allen R 2015 Bioinspir. Biomim. 10 056015Google Scholar

    [25]

    Yan G, Wang S, Zou H X, Zhao L C, Gao Q H, Zhang W M 2020 Sci. China Tech. Sci. 63 2617Google Scholar

    [26]

    Shi X J, Xu J, Chen T K, Qian C, Tian W J 2023 J. Bionic Eng. 20 2194Google Scholar

    [27]

    Zeng R, Wen G L, Zhou J X, Zhao G 2021 Acta Mech. Sinica-PRC 37 1152Google Scholar

    [28]

    Yan G, Zou H X, Wang S, Zhao L C, Wu Z Y, Zhang W M 2022 Mech. Syst. Signal Pr. 162 108010Google Scholar

    [29]

    Jin G X, Wang Z H, Yang T Z 2022 Appl. Math. Mech. -Engl. Ed. 43 813Google Scholar

    [30]

    Ling P, Miao L L, Zhang W M, Wu C Y, Yan B 2022 Mech. Syst. Signal Pr. 171 108955Google Scholar

    [31]

    Long S M, Leonard A, Carey A, Jakob E M 2015 J. Arachnol. 43 111Google Scholar

  • 图 1  蜘蛛和螳螂等节肢动物腿部的几何形状与仿生M形结构

    Figure 1.  Geometries of arthropods’ limbs and the bio-inspired M-shaped structure.

    图 2  仿生M形结构模型图 (a)无负载时的静平衡状态; (b)有负载时的静平衡状态; (c)运动状态

    Figure 2.  Bio-inspired M-shaped structure: (a) Static equilibrium without mass; (b) static equilibrium with mass; (c) oscillating state.

    图 3  M形准零刚度结构的静态特性 (a)势能; (b)等效恢复力; (c)等效刚度

    Figure 3.  Static characteristics of MQZS structure: (a) Potential energy; (b) equivalent restoring force; (c) equivalent stiffness.

    图 4  M形准零刚度结构(MQZS)与三弹簧准零刚度结构(QZS)静态特性对比 (a)等效恢复力; (b)等效刚度

    Figure 4.  Static characteristics comparison between MQZS and QZS: (a) Equivalent restoring force; (b) equivalent stiffness.

    图 5  等效恢复力的解析解与多项式拟合结果对比

    Figure 5.  Comparison of analytical solution and fitted results of the restoring force.

    图 6  系统频率响应的解析解与数值解对比

    Figure 6.  Comparison between analytical solution and numerical simulation.

    图 7  M形仿生结构的激励幅值分岔图(f = 2.2 Hz)

    Figure 7.  Bifurcation diagram of MQZS induced by excitation amplitude (f = 2.2 Hz).

    图 8  不同激励幅值下系统的响应(f = 2.2 Hz) (a), (d), (g)时域图; (b), (e), (h)频域图; (c), (f), (i)相图

    Figure 8.  Dynamic responses at different excitations (f = 2.2 Hz): (a), (d), (g) Time-history response; (b), (e), (h) spectrum responses; (c), (f), (i) phase diagrams.

    图 9  激励频率变化时系统分岔图(A = 2.0 m/s2)

    Figure 9.  Bifurcation diagram as the excitation frequency changes (A = 2.0 m/s2).

    图 10  不同激励频率下系统的响应(A = 2 m/s2) (a), (d), (g)时域图; (b), (e), (h)频域图; (c), (f), (i)相图

    Figure 10.  Dynamic responses at different excitation frequencies (A = 2 m/s2): (a), (d), (g) Time-history response; (b), (e), (h) spectrum responses; (c), (f), (i) phase diagrams.

    图 11  MQZS结构与三弹簧QZS结构传递率对比(A = 1.0 m/s2, c = 0.1 N·s/m)

    Figure 11.  Transmittance comparison between MQZS and QZS (A = 1.0 m/s2, c = 0.1 N·s/m).

    图 12  不同激励幅值下MQZS和传统QZS系统传递率特性对比图(c = 0.1 N·s/m)

    Figure 12.  Transmittances comparison of MQZS and QZS under different excitations (c = 0.1 N·s/m)

    图 13  不同阻尼下MQZS和传统QZS系统传递率特性对比图(A = 1.0 m/s2)

    Figure 13.  Transmittances comparison of MQZS and QZS with different damping (A = 1.0 m/s2).

    图 14  参数s对MQZS等效刚度的影响 (a)等效刚度; (b)准零刚度范围; (c)负载质量

    Figure 14.  Effect of s on the equivalent stiffness of MQZS: (a) Equivalent stiffness; (b) quasi-zero-stiffness region; (c) mass.

    图 15  参数s对MQZS传递率特性的影响规律

    Figure 15.  Effect of s on the transmittance of MQZS.

    表 1  M形结构的参数

    Table 1.  Parameters of M-shaped structure.

    MQZS结构参数 取值 三弹簧QZS结构参数 取值
    水平间距 s/mm 120 水平间距 s1/mm 120
    杆长 l/mm 80 初始高度 h1/mm 30
    初始高度 h/mm 30 斜弹簧刚度 k11/(N·m–1) 400
    斜弹簧刚度 k1/(N·m–1) 400 垂直弹簧刚度 k12/(N·m–1) 24.62
    DownLoad: CSV
  • [1]

    Jiao X L, Zhang J X, Li W B, Wang Y Y, Ma W L, Zhao Y 2023 Prog. Aerosp. Sci. 138 100898Google Scholar

    [2]

    Li L, Wang L, Yuan L, Zheng R, Wu Y P, Sui J, Zhong J 2021 Acta Astronaut. 180 417Google Scholar

    [3]

    Dennehy C J, Wolf A A, Swanson D K Spacecraft Line-of-Sight Jitter Management and Mitigation Lessons Learned and Engineering Best Practices https://ntrs.nasa.gov/citations/20210017871 [2025-05-07]

    [4]

    孟光, 董瑶海, 周徐斌, 申军烽, 刘兴天 2019 中国科学: 物理学 力学 天文学 49 024508Google Scholar

    Meng G, Dong Y H, Zhou X B, Shen J F, Liu X T 2019 Sci. Sin-Phys. Mech. Astron. 49 024508Google Scholar

    [5]

    McPherson K, Hrovat K, Kelly E, Keller J 2015 A Researcher’s Guide to Acceleration Environment on the International Space Station (Washington, D. C.: NASA) pp37–41

    [6]

    刘海平, 张世乘, 门玲鸰, 何振强 2022 物理学报 71 160701Google Scholar

    Liu H P, Zhang S C, Men L L, He Z Q 2022 Acta Phys. Sin. 71 160701Google Scholar

    [7]

    Luo H T, Fan C H, Li Y X, Liu G M, Yu C S 2023 Eur. J. Mech. A-Solid. 97 104833Google Scholar

    [8]

    Molyneux W G 1958 Aircr. Eng. Aerosp. Tec. 30 160Google Scholar

    [9]

    Carrella A, Brennan M J, Waters T P 2007 J. Sound Vib. 301 678Google Scholar

    [10]

    张月英 2014 硕士学位论文 (湖南: 湖南大学)

    Zhang Y Y 2014 M. S. Thesis (Hunan: Hunan University

    [11]

    Kovacic I, Brennan M J, Waters T P 2008 J. Sound Vib. 315 700Google Scholar

    [12]

    Zhou J X, Wang X L, Xu D L, Bishop S 2015 J. Sound Vib. 346 53Google Scholar

    [13]

    Zhao F, Ji J C, Ye K, Luo Q T 2020 Mech. Syst. Signal Pr. 144 106975Google Scholar

    [14]

    Deng T C, Wen G L, Ding H, Lu Z Q, Chen L Q 2020 Mech. Syst. Signal Pr. 145 106967Google Scholar

    [15]

    Liu C R, Yu K P, Liao B P, Hu R P 2021 Commun. Nonlinear Sci. Numer. Simulat. 95 105654Google Scholar

    [16]

    郝志峰 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Hao Z F 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [17]

    阮子悦 2023 硕士学位论文 (石家庄: 石家庄铁道大学)

    Ran Z R 2023 M. S. Thesis (Shijiazhuang: Shijiazhuang TieDao University

    [18]

    Yan B, Yu N, Wang Z H, Wu C Y, Wang S, Zhang W M 2022 J. Sound Vib. 527 116865Google Scholar

    [19]

    Liu X T, Huang X C, Hua H X 2013 J. Sound Vib. 332 3359Google Scholar

    [20]

    Wang K, Zhou J X, Chang Y P, Ouyang H J, Xu D L, Yang Y 2020 Nonlinear Dynam. 101 755Google Scholar

    [21]

    Wu W J, Chen X D, Shan Y H 2014 J. Sound Vib. 333 2958Google Scholar

    [22]

    安隽翰 2021 硕士学位论文 (南京: 南京航空航天大学)

    An J H 2021 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics

    [23]

    Yan G, Zou H X, Wang S, Zhao L C, Wu Z Y, Zhang W M 2021 Appl. Mech. Rev. 73 020801Google Scholar

    [24]

    Wu Z J, Jing X J, Bian J, Li F M, Allen R 2015 Bioinspir. Biomim. 10 056015Google Scholar

    [25]

    Yan G, Wang S, Zou H X, Zhao L C, Gao Q H, Zhang W M 2020 Sci. China Tech. Sci. 63 2617Google Scholar

    [26]

    Shi X J, Xu J, Chen T K, Qian C, Tian W J 2023 J. Bionic Eng. 20 2194Google Scholar

    [27]

    Zeng R, Wen G L, Zhou J X, Zhao G 2021 Acta Mech. Sinica-PRC 37 1152Google Scholar

    [28]

    Yan G, Zou H X, Wang S, Zhao L C, Wu Z Y, Zhang W M 2022 Mech. Syst. Signal Pr. 162 108010Google Scholar

    [29]

    Jin G X, Wang Z H, Yang T Z 2022 Appl. Math. Mech. -Engl. Ed. 43 813Google Scholar

    [30]

    Ling P, Miao L L, Zhang W M, Wu C Y, Yan B 2022 Mech. Syst. Signal Pr. 171 108955Google Scholar

    [31]

    Long S M, Leonard A, Carey A, Jakob E M 2015 J. Arachnol. 43 111Google Scholar

  • [1] Zhao Li-Xia, Wang Cheng-Hui, Mo Run-Yang. Nonlinear acoustic characteristics of multilayer magnetic microbubbles. Acta Physica Sinica, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [2] Liu En-Cai, Fang Xin, Wen Ji-Hong, Yu Dian-Long. 1/2 sub-harmonic resonance in bistable structure and its effect on vibration isolation characteristics. Acta Physica Sinica, 2020, 69(6): 064301. doi: 10.7498/aps.69.20191082
    [3] Luo Dong-Yun, Cheng Bing, Zhou Yin, Wu Bin, Wang Xiao-Long, Lin Qiang. Ultra-low frequency active vibration control for cold atom gravimeter based on sliding-mode robust algorithm. Acta Physica Sinica, 2018, 67(2): 020702. doi: 10.7498/aps.67.20171884
    [4] Gao Dong-Bao, Liu Xuan-Jun, Tian Zhang-Fu, Zhou Ze-Min, Zeng Xin-Wu, Han Kai-Feng. A broadband low-frequency sound insulation structure based on two-dimensionally inbuilt Helmholtz resonator. Acta Physica Sinica, 2017, 66(1): 014307. doi: 10.7498/aps.66.014307
    [5] Wang Guan, Hu Hua, Wu Kang, Li Gang, Wang Li-Jun. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure. Acta Physica Sinica, 2016, 65(20): 200702. doi: 10.7498/aps.65.200702
    [6] Sun Run-Zhi, Wang Zhi-Zhong, Wang Mao-Sheng, Zhang Ji-Qian. Vibrational resonance and nonlinear vibrational resonance in square-lattice neural system. Acta Physica Sinica, 2015, 64(11): 110501. doi: 10.7498/aps.64.110501
    [7] Wang Cheng-Hui, Cheng Jian-Chun. Nonlinear forced oscillations of gaseous bubbles in elastic microtubules. Acta Physica Sinica, 2013, 62(11): 114301. doi: 10.7498/aps.62.114301
    [8] Wang Cheng-Hui, Cheng Jian-Chun. Forced oscillations of gaseous bubbles in microtubules. Acta Physica Sinica, 2012, 61(19): 194303. doi: 10.7498/aps.61.194303
    [9] Chen Zhong-Sheng, Yang Yong-Min. Stochastic resonance mechanism for wideband and low frequency vibration energy harvesting based on piezoelectric cantilever beams. Acta Physica Sinica, 2011, 60(7): 074301. doi: 10.7498/aps.60.074301
    [10] Wu Qin-Kuan. Approximate solution of homotopic mapping for nonlinear vibration problem of transmission line. Acta Physica Sinica, 2011, 60(6): 068802. doi: 10.7498/aps.60.068802
    [11] Yan Hui, Jiang Hong-Yuan, Liu Wen-Jian, Hao Zhen-Dong, Ulannov A. M.. Analysis of acceleration response of metal rubber isolator under random vibration. Acta Physica Sinica, 2010, 59(6): 4065-4070. doi: 10.7498/aps.59.4065
    [12] Chen Zhao-Jiang, Zhang Shu-Yi, Zheng Kai. Nonlinear vibration in metal plate excited by high-power ultrasonic pulses. Acta Physica Sinica, 2010, 59(6): 4071-4083. doi: 10.7498/aps.59.4071
    [13] Wang Hai-Min, Ma Jian-Min, Zhang Wen. Vibration of two equal-radius protein bubbles in Bingham fluid. Acta Physica Sinica, 2010, 59(1): 401-410. doi: 10.7498/aps.59.401
    [14] Dai Xian-Zhi, Wen Yu-Mei, Li Ping, Yang Jin, Jiang Xiao-Fang. Vibration energy harvester based on magnetoelectric transducer. Acta Physica Sinica, 2010, 59(3): 2137-2146. doi: 10.7498/aps.59.2137
    [15] Yan Hui, Jiang Hong-Yuan, Liu Wen-Jian, Ulannov A. M.. Identification of parameters for metal rubber isolator with hysteretic nonlinearity characteristics. Acta Physica Sinica, 2009, 58(8): 5238-5243. doi: 10.7498/aps.58.5238
    [16] Zhang Qi-Chang, Wang Wei, He Xue-Jun. Homoclinic bifurcation of the strongly nonlinear oscillation system by the normal form method. Acta Physica Sinica, 2008, 57(9): 5384-5389. doi: 10.7498/aps.57.5384
    [17] Qin Wei-Yang, Yang Yong-Feng, Wang Hong-Jin, Ren Xing-Min. Anticipated synchronization for a class of nonlinear vibration systems. Acta Physica Sinica, 2008, 57(4): 2068-2072. doi: 10.7498/aps.57.2068
    [18] Qin Wei-Yang, Wang Hong-Jin, Zhang Jin-Fu. Synchronization of a class of time-varied nonlinear vibration system. Acta Physica Sinica, 2007, 56(8): 4361-4365. doi: 10.7498/aps.56.4361
    [19] Du Xue-Neng, Hu Lin, Kong Wei-Shu, Wang Wei-Ming, Wu Yu. On the nonlinear oscillation of internal sliding friction in particulate matter. Acta Physica Sinica, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [20] PANG XIAO-FENG. CALCULATION FOR QUANTUM ENERGY LEVELS OF NONLINEAR VIBRATION OF WATER MOLECULES BY SELF TRAPPING THEORY. Acta Physica Sinica, 1994, 43(12): 1987-1996. doi: 10.7498/aps.43.1987
Metrics
  • Abstract views:  257
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  28 August 2024
  • Accepted Date:  20 April 2025
  • Available Online:  10 May 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回