Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of 85Sr(n, γ) cross sections of unstable nuclei in HI-13 tandem accelerators by surrogate-reaction method

WANG Hanyu QIU Yijia LIN Chengjian WU Xiaoguang HAN Yinlu WU Hongyi FENG Jing ZHENG Yun YANG Lei LI Congbo LUO Tianpeng CAHNG Chang SUN Qi ZHU Deyu ZHAO Yixuan HUANG Dahu LI Tianxiao ZHENG Min ZHAO Zihao ZHU Yiwei ZHAO Kunling SUN Pengfei SONG Jinxing GUO Mingwei REN Sixi ZHENG Xiaohai

Citation:

Measurement of 85Sr(n, γ) cross sections of unstable nuclei in HI-13 tandem accelerators by surrogate-reaction method

WANG Hanyu, QIU Yijia, LIN Chengjian, WU Xiaoguang, HAN Yinlu, WU Hongyi, FENG Jing, ZHENG Yun, YANG Lei, LI Congbo, LUO Tianpeng, CAHNG Chang, SUN Qi, ZHU Deyu, ZHAO Yixuan, HUANG Dahu, LI Tianxiao, ZHENG Min, ZHAO Zihao, ZHU Yiwei, ZHAO Kunling, SUN Pengfei, SONG Jinxing, GUO Mingwei, REN Sixi, ZHENG Xiaohai
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Neutron capture cross sections, as important parameters for describing the probability of neutron-nucleus reactions, play a key role in multiple scientific fields. In astrophysics, neutron capture cross section data are essential elements for understanding stellar nucleosynthesis processes. In particular, in extreme environments such as supernova explosions and neutron star mergers, accurate neutron capture cross sections can reveal the secrets of heavy element formation. In the field of national security, neutron capture cross sections are crucial for the design of nuclear weapons and the security of nuclear materials. By accurately grasping the neutron capture characteristics of different nuclides, the nuclear reaction process can be optimized to ensure strategic security. In addition, in the simulation of nuclear power generation, neutron capture cross section data are the basis of reactor design and operational analysis. Through in-depth research on and precise measurements of neutron capture cross sections, the safety and efficiency of nuclear reactors can be improved, thus promoting the sustainable development of nuclear energy. At present, there is little research on the neutron capture cross sections of nuclides with half-lives of only a few years or even shorter, mainly due to the complexity of measurement techniques and the instability of the nuclides themselves. The neutron capture cross section data of these nuclides are crucial for reactor design, nuclear medicine applications, and nuclear waste treatment. Further research requires the development of more advanced detection techniques and theoretical models to accurately measure and predict their neutron capture behavior.The surrogate-reaction method, as an effective measurement means, plays an important role in studying reaction cross sections of short-lived nuclides. Its basic idea is to indirectly obtain the reaction cross section information of short-lived nuclides by measuring the specific particles emitted by stable nuclides. Specifically, when stable nuclides are bombarded by high-energy particles, nuclear reactions will occur and specific particles will be released. By accurately measuring the energies, angles, and numbers of these particles, the cross sections of short-lived nuclides in the corresponding reaction can be inferred. This method can not only overcome the technical difficulties in directly measuring short-lived nuclides, but also improve the accuracy and reliability of the measurement results, which provides important support for nuclear physics research. In addition, the surrogate-reaction method also shows broad application prospects in the fields of nuclear technology application and nuclear data assessment.The experiment is carried out on the Beijing HI-13 tandem accelerator at the China Institute of Atomic Energy. 89Y is bombarded with 22 MeV protons, and the 85Sr(n, γ) cross section is measured through the (p, αγ) reaction. The telescope array composed of silicon strip detectors can effectively identify the reaction products. By precisely measuring parameters such as the energies and angles of particles, the array can distinguish different nuclides, thus determining the outgoing particles. Combined with the γ-ray energy spectrum analysis of the HPGe detector, the (n, γ) reaction cross section data of 85Sr under the Weisskopf-Ewing (W-E) approximation are extracted. Due to the mismatch of the Jπ population between the existing alternative reactions and direct reactions, it is necessary to compensate for this mismatch and then correct the results. In order to obtain relatively reliable results, the Jπ population calculated by TALYS is used to revise the experimental data of the (n, γ) cross section.These results indicate that the cross section of 85Sr(n, γ) varies with neutron energy in a specific energy range, which is consistent with the trend of the existing international evaluation library data. This validates the effectiveness of cross section measurement as an alternative reaction method, thereby providing an important experimental basis for further exploring the nuclear reaction mechanism and nuclear data application. This method has reference significance for the cross section measurement of other nuclides.
  • 图 1  替代法原理

    Figure 1.  Schematic representation of the surrogate reaction method.

    图 2  89Y(p, α)的双微分截面的θ-ϕ分布(黑色框内代表两组探测器能够接收到的部分)

    Figure 2.  The θ-ϕ distribution of the double differential cross section for 89Y(p, α) (the black box indicates the detectable region covered by two sets of detectors).

    图 3  各个探测器能量分辨率(以60Co的1332.5 keV特征峰的FWHM表征, G代表HPGe同轴型探测器, C代表Clover探测器, 后缀代表Clover探测器的模块编号)

    Figure 3.  Energy resolutions of various detectors (characterized by the FWHM of the 1332.5 keV characteristic peak of 60Co, where G represents HPGe coaxial detectors, C represents Clover detectors, and the suffix denotes the module number of the Clover detector).

    图 4  真空靶室及实验设备布局 (a)两组ΔEE望远镜在真空靶室中的示意图; (b) 靶室放置在Gamma探测器阵列的照片

    Figure 4.  The vacuum target chamber and experimental equipment layout: (a) Schematic representation of two sets of ΔEE telescopes in vacuum target chamber; (b) physical diagram of the target chamber placed in the Gamma detector array.

    图 5  在前角处(60°)望远镜探测器中的能量损失与剩余能量关联谱达成的粒子鉴别

    Figure 5.  The identification achieved in the telescopes at 60° through the energy loss (ΔE) versus residual energy (E).

    图 6  技术路线

    Figure 6.  Technical route.

    图 7  DSSD正背面的能量关联图 (a) 能量自归一前; (b) 能量自归一后

    Figure 7.  Front-back energy correlation diagram of DSSD: (a) Before the Self-normalization; (b) after the self-normalization.

    图 8  DSSD 刻度结果 (a)前角(60°) DSSD; (b)后角(–100°) DSSD

    Figure 8.  DSSD energy calibration: (a) The DSSD at 60°; (b) the DSSD at –100°.

    图 9  DSSD探测器能量分辨率 (a)后角(–100°)探测器; (b)前角(65°)探测器

    Figure 9.  Energy resolution of the DSSD detector: (a) The detector at –100°; (b) the detector at 65°.

    图 10  等效中子能谱 (a)对应前角(65°)望远镜探测器; (b)对应后角(–100°)望远镜探测器(后续不分析)

    Figure 10.  The equivalent neutron energy: (a) The DSSD at 65°; (b) the DSSD at –100° (no further analysis).

    图 11  对p +89 Y反应计算模拟的α粒子出射能谱 (a) 以反应道划分; (b) 以反应机制划分

    Figure 11.  The calculated α emission energy spectrum of the p + 89Y reaction: (a) Classified by reaction channels; (b) classified by reaction mechanisms.

    图 12  α符合HPGe γ能谱, 红线为本底

    Figure 12.  Coincidence γ-ray spectrum, the red line is the background.

    图 13  (a) ${E_{\text{n}}}$= (0.62±0.15) MeV时对应的α粒子计数; (b) ${E_{\text{n}}}$= (0.62±0.15) MeV时的后角符合γ能谱中1.076 MeV特征峰以及本底(红线); (c) 扣除本底后1.076 MeV的特征峰, 绿线为所作的高斯拟合

    Figure 13.  (a) The α particle count corresponding to neutron energy point ${E_{\text{n}}}$= (0.62 ± 0.15) MeV; (b) the peak of 1.076 MeV gamma ray with neutron energy at ${E_{\text{n}}}$ = (0.62 ± 0.15) MeV and background obtained by using ROOT program (red line); (c) the peak of 1.076 MeV gamma ray after subtracting the background and the Gaussian fitting (green line).

    图 14  归一化后的γ衰变概率随En的变化曲线(红线代表能量为1.076 MeV特征γ; 蓝线代表能量为1.153 MeV特征γ; 黑线为对各特征γ进行统计加权得到的γ衰变概率)

    Figure 14.  Normalized γ decay probability as a function of neutron energy (red line represents characteristic γ with energy 1.076 MeV; blue line represents characteristic γ with energy 1.153 MeV; black line shows γ decay probability obtained by statistical weighting of each characteristic γ).

    图 15  UNF计算n +85Sr复合核形成截面随中子能量变化曲线

    Figure 15.  n + 85Sr compound nucleus formation cross section as a function of neutron energy (calculated by the UNF program).

    图 16  W-E近似下替代反应法计算截面, 黑线为JENDL-5库数据, 蓝线为ENDF-6数据库

    Figure 16.  Neutron-capture cross section as a function of neutron energy by W-E approximation. The black line corresponds to the data of JENDL-5 and the blue line corresponds to the data of ENDF-6.

    图 17  由TALYS程序计算86Sr*各自旋宇称态的γ衰变概率

    Figure 17.  The γ-decay probabilities of each spin – parity of 86Sr* calculated by the TALYS program.

    图 18  TALYS程序计算的入射中子能量En = 0.02—1.22 MeV时中子俘获反应及本实验使用的89Y(p, α)产生的86Sr*自旋宇称态的布居概率

    Figure 18.  Spin - parity population probabilities of 86Sr* population for the 89Y(p, α) and neutron capture reactions at En = 0.02—1.22 MeV.

    图 19  修正后85Sr中子俘获截面

    Figure 19.  Revised 85Sr neutron capture cross section.

  • [1]

    Arlandini C, Käppeler F, Wisshak K, Gallino R, Lugaro M, Busso M, Straniero O 1999 Astrophys. J. Lett 525 886Google Scholar

    [2]

    Boutoux G, Jurado B, Méot V, Roig O, Mathieu L, Aïche M, Barreau G, Capellan N, Companis I, Czajkowski S, Schmidt K H, Burke J T, Bail A, Daugas J M, Faul T, More P l, Pillet N, Théroine C, Derkx X, Sérot O, Matéa I, Tassan-Got L 2010 Phys. Lett. B 692 297Google Scholar

    [3]

    Arcones A, Bardayan D, Beers T, Bernstein L, Blackmon J, Messer B, Brown B, Brown E, Brune C, Champagne A, Chieffi A, Couture A, Danielewicz P, Diehl R, El-Eid M, Escher J, Fields B, Fröhlich C, Herwig F, Hix W, Iliadis C, Lynch W, McLaughlin G, Meyer B, Mezzacappa A, Nunes F, O'Shea B, Prakash M, Pritychenko B, Reddy S, Rehm E, Rogachev G, Rutledge R 2017 Prog. Part. Nucl. Phys. 94 1Google Scholar

    [4]

    Mumpower M R, Surman R, McLaughlin G C, Aprahamian A 2015 Prog. Part. Nucl. Phys. 86 86

    [5]

    H. Schatz 2016 J. Phys. G: Nucl. Part. Phys 43 064001Google Scholar

    [6]

    Reifarth R, Litvinov Y. A 2014 Phys. Rev. ST Accel. Beams 17 014701Google Scholar

    [7]

    Ratkiewicz A, Cizewski J A, Pain S D, Adekola A S, Burke J T, Casperson R J, Fotiades N, McCleskey M, Burcher S, Shand C M, Austin R A E, Baugher T, Carpenter M P, Devlin M, Escher J, Hardy S, Hatarik R, Howard M E, Hughes R O, Jones K L, Kozub R L, Lister C J, Manning B, O'Donnell J M, Peters W A, Ross T J, Scielzo N D, Seweryniak D, Zhu S 2015 15th International Symposium on Capture Gamma Ray Spectroscopy and Related Topics Dresden, Germany, Auguest 25-29, 2015 p93

    [8]

    Cramer J D, Britt H C 1970 Nucl. Sci. Eng. 41 177Google Scholar

    [9]

    Britt H C, Wilhelmy J B 1979 Nucl. Sci. Eng. 72 222Google Scholar

    [10]

    Boyer S, Dassié D, Wilson J N, Aïche M, Barreau G, Czajkowski S, Grosjean C, Guiral A, Haas B, Osmanov B, Aerts G, Berthoumieux E, Gunsing F, Theisen Ch, Thiollière N, Perrot L 2006 Nucl. Phys. A 775 175Google Scholar

    [11]

    Allmond J, Bernstein L, Beausang C, Phair L, Bleuel D, Burke J, Escher J, Evans K, Goldblum B, Hatarik R, Jeppesen H, Lesher S, Mcmahan M, Rasmussen J, Scielzo N, Wiedeking M 2009 Phys. Rev. C 79 054610Google Scholar

    [12]

    马南茹, 林承键, 贾会明, 徐新星, 杨峰, 杨磊, 孙立杰, 王东玺, 刘祖华, 张焕乔 2017 原子核物理评论 34 351Google Scholar

    Ma N R, Lin C J, Jia H M, Xu X X, Yamg F, Yang L, Sun L J, Wang D X, Liu Z H, Zhang H Q 2017 Nucl. Phys. Rev. 34 351Google Scholar

    [13]

    Yan S Q, Li Z H, Wang Y B, Nishio K, Lugaro M, Karakas A I, Makii H, Mohr P, Su J, Li Y J, Nishinaka I, Hirose K, Han Y L, Orlandi R, Shen Y P, Guo B, Zeng S, Lian G, Chen Y S, Liu W P 2017 Astrophys. J. 848 98Google Scholar

    [14]

    Yan S, Li Z H, Wang Y B, Nishio K, Makii H, Su J, Li Y J, Nishinaka I, Hirose K, Han Y L, Orlandi R, Shen Y P, Guo B, Zeng S, Lian G, Chen Y S, Bai X X, Qiao L H, Liu W 2016 Phys. Rev. C 94 015804Google Scholar

    [15]

    Yan S Q, Li X Y, Nishio K, Lugaro M, Li Z H, Makii H, Pignatari M, Wang Y B, Orlandi R, Hirose K, Tsukada K, Mohr P, Li G S, Wang J G, Gao B S, Han Y L, Guo B, Li Y J, Shen Y P, Sato T K, Ito Y, Suzaki F, Su J, Yang Y Y, Wang J S, Ma J B, Ma P, Bai Z, Xu S W, Ren J, Fan Q W, Zeng S, Han Z Y, Nan W, Nan W K, Chen C, Lian G, Hu Q, Duan F F, Jin S Y, Tang X D, Liu W P 2021 Astrophys. J. 919 84Google Scholar

    [16]

    Escher J, Harke J T, Hughes R O, Scielzo N D, Casperson R J, Ota S, Park H I, Saastamoinen A, Ross T J 2018 Phys. Rev. Lett. 121 052501Google Scholar

    [17]

    Hauser W, Feshbach H 1952 Phys. Rev. 87 366Google Scholar

    [18]

    Weisskopf V F, Ewing D H 1940 Phys. Rev. 57 472Google Scholar

    [19]

    Escher J, Dietrich F. S 2006 Phys. Rev. C 74 054601Google Scholar

    [20]

    Chiba S, Iwamoto O 2010 Phys. Rev. C 81 044604Google Scholar

    [21]

    Escher J, Harke J T, Dietrich F S, Scielzo N D, Thompson I J, Younes W 2012 Rev. Mod. Phys. 84 353Google Scholar

    [22]

    Lesher S R, Phair L, Bernstein L A, Bleuel D L, Harke J T, Church J A, Fallon P, Gibelin J, Scielzo N D, Wiedeking M 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 621 286Google Scholar

    [23]

    洪锐, 李聪博, 李会东, 郑云, 吴晓光, 李天晓, 李韵秋, 吴鸿毅, 郑敏, 赵子豪, 贺子阳, 李金泽, 李广顺, 郭成宇, 倪磊, 周振翔, 贺创业, 刘伏龙, 周小红, 柳敏良, 张玉虎, 王守宇, 王硕, 竺礼华 2024 原子核物理评论 41 244Google Scholar

    Hong R, Li C B, Li H D, Zheng Y, Wu X G, Li T X, Li Y Q, Wu H Y, Zheng M, Zhao Z H, He Z Y, Li J Z, Li G S, Guo C Y, Ni L, Zhou Z X, He C Y, Liu F L, Zhou X H, Liu M L, Zhang Y H, Wang S Y, Wang S, Zhu L H 2024 Nucl. Phys. Rev 41 244Google Scholar

    [24]

    Reese M, Gerl J, Golubev P, Pietralla N 2015 Nucl. Instrum. Methods Phys. Res. Sect. A 779 63Google Scholar

    [25]

    Tarasov O, Bazin D 2004 Nucl. Phys. A 746 411Google Scholar

    [26]

    Koning A J, Hilaire S, Duijvestijn M C 2023 Eur. Phys. J. A 59 131Google Scholar

    [27]

    Boutoux G 2011 Ph. D. Dissertation (Bordeaux: University of Bordeaux

    [28]

    Brun R, Rademakers F, 1997 Nucl. Instrum. Methods Phys. Res. Sect. A 389 81Google Scholar

    [29]

    Zhang J S 2002 Nucl. Sci. Eng. 142 207Google Scholar

    [30]

    Forssén C, Dietrich F S, Escher J, Hoffman R D, Kelley K 2007 Phys. Rev. C 75 055807Google Scholar

    [31]

    Younes W, Britt H. C 2003 Phys. Rev. C 67 024610Google Scholar

    [32]

    Galés S, Hourani E, Fortier S, Laurent H, Maison J M, Schapira J P 1977 Nucl. Phys. A 288 221Google Scholar

    [33]

    Hisamochi K, Iwamoto O, Kisanuki A, Budihardjo S, Widodo S, Nohtomi A, Uozumi Y, Sakae T, Matoba M 1993 Nucl. Phys. A 564 227Google Scholar

    [34]

    Duhamel-Chretien G, Perrin G, Perrin C, Comparat V V, Gerlic E, Galès S, Massolo C P 1991 Phys. Rev. C 43 1115

    [35]

    Duhamel G, Perrin G, Didelez J P, Gerlic E, Langevin-Joliot H, Guillot J, Van de Wiele J 1981 J. Phys. G: Nucl. Phys. 7 1415Google Scholar

    [36]

    Hilaire S, Lagrange C, Koning A J 2003 Ann. Phys. 306 209Google Scholar

  • [1] XIE Jinchen, TAO Xi, XU Ruirui, TIAN Yuan, XING Kang, GE Zhigang, NIU Yifei. Outliers identification of experimental (γ, n) reaction cross section via variational autoencoder. Acta Physica Sinica, doi: 10.7498/aps.74.20241775
    [2] Yang Zhi-Gang, Liu Ying-Chao, Zhang Shi-Qing, Luo Rui-Jian, Zhao Xu-Qian, Lian Jia-Rong, Qu Jun-Le. Fluorescence lifetime imaging of dynamics of mitochondrial and nucleolar microenvironment during stimuli response in living cells. Acta Physica Sinica, doi: 10.7498/aps.73.20231990
    [3] Zhu Chuan-Xin, Qin Jian-Guo, Zheng Pu, Jiang Li, Zhu Tong-Hua, Lu Xin-Xin. Measurement of 191Ir(n,2n)190Ir cross section near 14 MeV. Acta Physica Sinica, doi: 10.7498/aps.71.20220776
    [4] Wang De-Xin, Zhang Su-Ya-La-Tu, Jiang Wei, Ren Jie, Wang Jin-Cheng, Tang Jing-Yu, Ruan Xi-Chao, Wang Hong-Wei, Chen Zhi-Qiang, Huang Mei-Rong, Tang Xin, Hu Xin-Rong, Li Xin-Xiang, Liu Long-Xiang, Liu Bing-Yan, Sun Hui, Zhang Yue, Hao Zi-Rui, Song Na, Li Xue, Niu Dan-Dan, Li Guo, Meng Gu-Fu. Neutron capture cross section measurements for natLu with different thickness. Acta Physica Sinica, doi: 10.7498/aps.71.20212051
    [5] Zhang Qi-Wei, Luan Guang-Yuan, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Cross section measurement of neutron capture reaction based on back-streaming white neutron source at China spallation neutron source. Acta Physica Sinica, doi: 10.7498/aps.70.20210742
    [6] Feng Song, Liu Rong, Lu Xin-Xin, Yang Yi-Wei, Wang Mei, Jiang Li, Qin Jian-Guo. Determination of thorium fission rate by off-line method. Acta Physica Sinica, doi: 10.7498/aps.63.162501
    [7] Chen Ze, Zhang Xiao-Ping, Yang Hong-Ying, Zheng Qiang, Chen Na-Na, Zhi Qi-Jun. β--decay half-lives for waiting point nucleiaround N=82. Acta Physica Sinica, doi: 10.7498/aps.63.162301
    [8] Xu Guo-Liang, Liu Pei, Liu Yan-Lei, Zhang Lin, Liu Yu-Fang. A study of dynamic properties of exchange reaction H(D)+SH/SD by quasi-classical trajectory method. Acta Physica Sinica, doi: 10.7498/aps.62.223402
    [9] Yang Yi-Wei, Liu Rong, Yan Xiao-Song. Thorium capture ratio determination through γ-ray off-line method. Acta Physica Sinica, doi: 10.7498/aps.62.032801
    [10] Chen Guo-Yun, Xin Yong, Huang Fu-Cheng, Wei Zhi-Yong, Lei Sheng-Jie, Huang San-Bo, Zhu Li, Zhao Jing-Wu, Ma Jia-Yi. Performances of a boron-lined ionization chamber used in neutron/-ray mixed field of reactors. Acta Physica Sinica, doi: 10.7498/aps.61.082901
    [11] Chen Xue-Wen, Fang Zhen-Yun, Zhang Jia-Wei, Zhong Tao, Tu Wei-Xing. Renormalization of two neutral mixing-loop chain propagators in standard model and its e+e-→μ+μ- cross section. Acta Physica Sinica, doi: 10.7498/aps.60.021101
    [12] Pan Yu, Wang Kai-Jun, Fang Zhen-Yun, Wang Xian-You, Peng Qing-Jun. Accurately calculate cross section of the n+n→2π0 reaction in the n-n renormalization chain diagram. Acta Physica Sinica, doi: 10.7498/aps.57.4817
    [13] Huang Ming-Hui, Gan Zai-Guo, Fan Hong-Mei, Su Peng-Yuan, Ma Long, Zhou Xiao-Hong, Li Jun-Qing. The driving potential and cross sections for synthesizing super heavy nuclei with hot fusion. Acta Physica Sinica, doi: 10.7498/aps.57.1569
    [14] Luo Yu-Feng, Zhong Cheng, Zhang Li, Yan Xue-Jian, Li Jin, Jiang Yi-Ming. An in situ method for characterizing the kinetics of the oxidation process of copper thin films via sheet resistance. Acta Physica Sinica, doi: 10.7498/aps.56.6722
    [15] Liu Jian-Ye, Zuo Wei, Lee Xi-Guo, Xing Yong-Zhong. Isospin effect in the nuclear reaction induced by neutron-halo nuclei. Acta Physica Sinica, doi: 10.7498/aps.56.1339
    [16] Sun Gui-Hua, Yang Xiang-Dong. . Acta Physica Sinica, doi: 10.7498/aps.51.506
    [17] BAI HAI-YANG, CHEN HONG, ZHANG YUN, WANG WEN-KUI. STUDY ON SOLID STATE REACTION INTERDIFFUSION OF Fe-Ti MULTILAYER MODULATED FILMS WITH DYNAMIC IN SITU X-RAY DIFFRACTION. Acta Physica Sinica, doi: 10.7498/aps.42.1134
    [18] YAO LI-SHAN, JIN YU-LING, CAI DUN-JIU. A STUDY OF THE SYSTEMATICS FOR (n,T) AND (n, 3He) REACTION CROSS SECTIONS AT 14 MeV. Acta Physica Sinica, doi: 10.7498/aps.42.17
    [19] PAN ZHENG-YING, ZHOU PENG. THE MONTE-CARLO SIMULATION OF THE EFFECT OF THE SURFACE OXIDE LAYER ON THE LIFETIME MEASUREMENTS IN RESONANCE REACTIONS. Acta Physica Sinica, doi: 10.7498/aps.37.776
    [20] JIN WEI-GUO, ZHAO GUO-QING, SHAO QI-YUN, REN YUE-HUA, WU XIANG-JIAN, ZHOU ZHU-YING. THE LIFETIME MEASUREMENT OF THE 27Al(p,a)24Mg RESONANT REACTION AT ∑p = 1565 keV BY THE PLANAR BLOCKING EFFECT. Acta Physica Sinica, doi: 10.7498/aps.36.1564
Metrics
  • Abstract views:  244
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  21 February 2025
  • Accepted Date:  11 April 2025
  • Available Online:  10 May 2025

/

返回文章
返回