Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of water conductivity on underwater microsecond pulsed streamer discharge type

LI Xiao WEN Xiaoqiong YANG Yuantian

Citation:

Effect of water conductivity on underwater microsecond pulsed streamer discharge type

LI Xiao, WEN Xiaoqiong, YANG Yuantian
cstr: 32037.14.aps.74.20241637
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Underwater streamer discharges have various potential applications in the fields of wastewater treatment, crop seed processing, etc. The underwater streamer discharge types have an important effect on the practical applications. In this work, the underwater microsecond pulsed streamer discharges are investigated by using an ultra-high-speed frame camera system at different water conductivities and applied voltages. It is found that there exist two different types of discharge under the same experimental conditions: the fan-shaped bush type and the long-single filament type. The water conductivity of 800 µS/cm marks the boundary point for the occurrence rates of the two discharge types: when the water conductivity is less than 800 µS/cm, the occurrence rate of the long-single filament type is 100%; when the water conductivity is larger than 800 µS/cm, the occurrence rate of the long-single filament type decreases, but the occurrence rate of the fan-shaped bush type increases with water conductivity increasing. When the water conductivity is larger than 1000 µS/cm, the dominant discharge type is the fan-shaped bush type, and the voltage required to reverse the appearance rates of the two discharge types increases as the water conductivity increases. The fan-shaped bush type streamer has a propagation velocity of ~1.7 km/s, and the long-single filament streamer has a propagation velocity of ~25 km/s in the early stage and a propagation velocity of ~0.8 km/s in the later stage. Neither of water conductivity and applied voltage has significant influence on the propagation velocities of the two types of streamers. The time lag of the fan-shaped bush-type discharge is about 8% larger than that of the long-single filament-type discharge. The injection energy per pulse of the fan-shaped bush-type discharge is about 20% smaller than that of the single filament-type discharge.
      Corresponding author: WEN Xiaoqiong, wenxq@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11635004, 12375248).
    [1]

    Locke B R, Sato M, Sunka P, Hoffmann M R, Chang J S 2006 Ind. Eng. Chem. Res. 45 882Google Scholar

    [2]

    Kolb J F, Joshi R P, Xiao S, Schoenbach K H 2008 J. Phys. D: Appl. Phys. 41 234007Google Scholar

    [3]

    Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001Google Scholar

    [4]

    Sato M, Ohgiyama T, Clements J S 1996 IEEE. Trans. Ind. Appl. 32 106Google Scholar

    [5]

    Lukes P, Clupek M, Babicky V, Sunka P 2008 Plasma Sources Sci. Technol. 17 024012Google Scholar

    [6]

    Akiyama H 2000 IEEE Trans. Dielectr. Electr. Insul. 7 646Google Scholar

    [7]

    Titova Y V, Stokozenko V G, Maximov A I 2010 IEEE Trans. Plasma Sci. 38 933Google Scholar

    [8]

    Sharma A K, Locke B R, Arce P, Finney W C 1993 Hazard. Waste Hazard. Mater. 10 209Google Scholar

    [9]

    Sun B, Sato M, Clements J S 1999 J. Phys. D: Appl. Phys. 32 1908Google Scholar

    [10]

    Wang H J, Li J, Quan X 2006 J. Electrostat. 64 416Google Scholar

    [11]

    Wang D Y, Lin X F, Hirayama K, Li Z, Ohno T, Zhang W B, Namihira T, Katsuki S, Takano H, Takio S, Akiyama H 2010 IEEE Trans. Plasma Sci. 38 39Google Scholar

    [12]

    Sivachandiran L, Khacef A 2017 RSC Adv. 7 1822Google Scholar

    [13]

    An W, Baumung K, Bluhm H 2007 J. Appl. Phys. 101 053302Google Scholar

    [14]

    Ceccato P, Guaitella O, Shaper L, Graham B, Rousseau A 2009 IEEE Pulsed Power Conference Washington. D C, USA, June 28–July 2, 2009 p866

    [15]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Sato T 2013 J. Appl. Phys. 113 113304Google Scholar

    [16]

    Lesaint O 2016 J. Phys. D: Appl. Phys. 49 144001Google Scholar

    [17]

    Li J S, Wen X Q, Liu X H, Zhou Y B 2019 IEEE Trans. Plasma Sci. 47 1514Google Scholar

    [18]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Kaneko T, Sato T 2014 J. Appl. Phys. 116 213301Google Scholar

    [19]

    Katsuki S, Tanaka K, Fudamoto T, Namihira T, Akiyama H, Bluhm H 2006 Jpn. J. Appl. Phys. 45 239Google Scholar

    [20]

    Wen X Q, Xue X D, Liu X H, Li J S, Zhou Y B 2019 J. Appl. Phys. 125 133302Google Scholar

    [21]

    Katsuki S, Akiyama H, Abou-Ghazala A, Schoenbach K H 2002 IEEE Trans. Dielectr. Electr. Insul. 9 498Google Scholar

    [22]

    Wen X Q, Liu G S, Ding Z F 2012 IEEE Trans. Plasma Sci. 40 438Google Scholar

    [23]

    Zhang H, Zhang Y Y, Zhu L X, Liu Y N 2024 J. Hazard. Mater. 476 135069Google Scholar

    [24]

    Takeuchi N, Ishibashi N, Sugiyama T, Kim H H 2018 Plasma Sources Sci. Technol. 27 055013Google Scholar

    [25]

    Liu S, Kang Y 2024 Environ. Pollut. 348 123891Google Scholar

    [26]

    Jose J, Philip L 2019 J. Environ. Chem. Eng. 7 103476Google Scholar

    [27]

    牛志文, 晏现峰, 李书翰, 温小琼, 刘金远 2015 光谱学与光谱分析 35 2911Google Scholar

    Niu Z W, Yan X F, Li S H, Wen X Q, Liu J Y 2015 Spectroscopy Spectral Analy. 35 2911Google Scholar

    [28]

    Sun B, Sato M, Clements J S 1997 J. Electrostat. 39 189Google Scholar

    [29]

    Šimek M, Člupek M, Babický V, Lukeš P, Šunka P 2012 Plasma Sources Sci. Technol. 21 055031Google Scholar

    [30]

    Marinov I, Starikovskaia S, Rousseau A 2014 J. Phys. D: Appl. Phys. 47 224017Google Scholar

    [31]

    Salazar J N, Bonifaci N, Denat A, Lesaint O 2005 IEEE International Conference on Dielectric Liquids Coimbra, Portugal, June 26–July 1, 2005 p91

    [32]

    Ceccato P H, Guaitella O, Gloahec Le M R, Rousseau A 2010 J. Phys. D: Appl. Phys. 43 175202Google Scholar

    [33]

    Marinov I, Guaitella O, Rousseau A, Starikovskaia S M 2013 J. Phys. D: Appl. Phys. 46 464013Google Scholar

    [34]

    王雪, 温小琼, 王丽茹, 杨元天, 薛晓东 2022 物理学报 71 015203Google Scholar

    Wang X, Wen X Q, Wang L R, Yang Y T, Xue X D 2022 Acta Phys. Sin. 71 015203Google Scholar

    [35]

    Wang L R, Wen X Q, Yang Y T, Wang X 2023 J. Appl. Phys. 134 013302Google Scholar

    [36]

    杨双越, 温小琼, 杨元天, 李霄 2024 物理学报 73 075203Google Scholar

    Yang S Y, Wen X Q, Yang Y T, Li X 2024 Acta Phys. Sin. 73 075203Google Scholar

  • 图 1  实验装置图

    Figure 1.  Experimental setup.

    图 2  水电导率1200 µS/cm、电压38 kV条件下单一放电脉冲过程中依次获得的8幅时间演化Hα发光图像, 放电脉冲I和放电脉冲II的相机设定完全相同. (a1)—(d1), (a2)—(d2)为放电早期阶段, 相邻两幅图像的时间间隔为80 ns; (e1)—(h1), (e2)—(h2)为放电后期阶段, 相邻两幅图像的时间间隔为200 ns, 所有图像的相机曝光时间为20 ns

    Figure 2.  Eight successive Hα emission images acquired during a single pulse discharge at water conductivity of 1200 µS/cm and applied voltage of 38 kV, the camera settings for Pulse I and Pulse II are identical: (a1)–(d1), (a2)–(d2) Correspond to the early stage of the streamer discharge, and the time interval between two adjacent images is 80 ns; (e1)–(h1), (e2)–(h2) correspond to the later stage of the streamer discharge, and the time interval is 200 ns, the gating time of each image is 20 ns.

    图 3  水电导率1000 µS/cm、电压38 kV条件下的单一放电脉冲过程中依次获得的8幅时间演化阴影图像, 放电脉冲I和放电脉冲II的相机设定完全相同 图中相邻两幅图像之间的时间间隔为180 ns, 每幅图像的曝光时间为20 ns

    Figure 3.  Eight successive shadow images obtained during a single pulse discharge at water conductivity of 1000 µS/cm and applied voltage of 38 kV, the camera time settings for Pulse I and Pulse II are identical: The time interval between two neighboring images in images is 180 ns, and the exposure time for each image is 20 ns.

    图 4  水电导率对两种放电形态出现率的影响

    Figure 4.  Influence of the water conductivity on the appearance rate of the two discharge types.

    图 5  外加电压对两种放电形态出现率的影响

    Figure 5.  Influence of the applied voltage on the appearance rate of the two discharge types.

    图 6  扇形丝丛形态流光的传播速度与水电导率、外加电压的关系

    Figure 6.  The dependence of the propagation velocity of fan-shaped bush type streamer on the water conductivity and the applied voltage.

    图 7  一个放电脉冲下单根长丝形态流光丝长度随时间的变化

    Figure 7.  Time dependence of the length of long-single filament type streamer during a single discharge pulse.

    图 8  单根长丝形态流光的传播速度 (a)早期传播速度; (b)后期传播速度

    Figure 8.  Propagation velocity of the long-single filament type streamer: (a) Early stage; (b) later stage.

    图 9  水电导率1200 µS/cm、外加电压30 kV时放电电压、电流波形示例 (a) 扇形丝丛形态放电; (b) 单根长丝形态放电

    Figure 9.  Waveforms of the discharge voltage and current at 1200 µS/cm and 30 kV: (a) Fan-shaped bush type discharge; (b) long-single filament type discharge.

    图 10  两种放电形态的放电延迟时间与水电导率的关系

    Figure 10.  The effect of water conductivity on the time lag of the two discharge types.

    图 11  水电导率和外加电压对两种放电形态的单脉冲注入能量的影响

    Figure 11.  Effect of water conductivity and applied voltage on single pulse injection energy of the two discharge types.

    图 12  流光阴影图像 (a)第一模式放电(220 µS/cm, 19 kV); (b) 本研究观测到的扇形丝丛形态(1000 µS/cm, 38 kV)

    Figure 12.  Shadow images of streamer: (a) The primary streamer (220 µS/cm, 19 kV); (b) the fan-shaped bush type streamer (1000 µS/cm, 38 kV).

  • [1]

    Locke B R, Sato M, Sunka P, Hoffmann M R, Chang J S 2006 Ind. Eng. Chem. Res. 45 882Google Scholar

    [2]

    Kolb J F, Joshi R P, Xiao S, Schoenbach K H 2008 J. Phys. D: Appl. Phys. 41 234007Google Scholar

    [3]

    Bruggeman P, Leys C 2009 J. Phys. D: Appl. Phys. 42 053001Google Scholar

    [4]

    Sato M, Ohgiyama T, Clements J S 1996 IEEE. Trans. Ind. Appl. 32 106Google Scholar

    [5]

    Lukes P, Clupek M, Babicky V, Sunka P 2008 Plasma Sources Sci. Technol. 17 024012Google Scholar

    [6]

    Akiyama H 2000 IEEE Trans. Dielectr. Electr. Insul. 7 646Google Scholar

    [7]

    Titova Y V, Stokozenko V G, Maximov A I 2010 IEEE Trans. Plasma Sci. 38 933Google Scholar

    [8]

    Sharma A K, Locke B R, Arce P, Finney W C 1993 Hazard. Waste Hazard. Mater. 10 209Google Scholar

    [9]

    Sun B, Sato M, Clements J S 1999 J. Phys. D: Appl. Phys. 32 1908Google Scholar

    [10]

    Wang H J, Li J, Quan X 2006 J. Electrostat. 64 416Google Scholar

    [11]

    Wang D Y, Lin X F, Hirayama K, Li Z, Ohno T, Zhang W B, Namihira T, Katsuki S, Takano H, Takio S, Akiyama H 2010 IEEE Trans. Plasma Sci. 38 39Google Scholar

    [12]

    Sivachandiran L, Khacef A 2017 RSC Adv. 7 1822Google Scholar

    [13]

    An W, Baumung K, Bluhm H 2007 J. Appl. Phys. 101 053302Google Scholar

    [14]

    Ceccato P, Guaitella O, Shaper L, Graham B, Rousseau A 2009 IEEE Pulsed Power Conference Washington. D C, USA, June 28–July 2, 2009 p866

    [15]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Sato T 2013 J. Appl. Phys. 113 113304Google Scholar

    [16]

    Lesaint O 2016 J. Phys. D: Appl. Phys. 49 144001Google Scholar

    [17]

    Li J S, Wen X Q, Liu X H, Zhou Y B 2019 IEEE Trans. Plasma Sci. 47 1514Google Scholar

    [18]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Kaneko T, Sato T 2014 J. Appl. Phys. 116 213301Google Scholar

    [19]

    Katsuki S, Tanaka K, Fudamoto T, Namihira T, Akiyama H, Bluhm H 2006 Jpn. J. Appl. Phys. 45 239Google Scholar

    [20]

    Wen X Q, Xue X D, Liu X H, Li J S, Zhou Y B 2019 J. Appl. Phys. 125 133302Google Scholar

    [21]

    Katsuki S, Akiyama H, Abou-Ghazala A, Schoenbach K H 2002 IEEE Trans. Dielectr. Electr. Insul. 9 498Google Scholar

    [22]

    Wen X Q, Liu G S, Ding Z F 2012 IEEE Trans. Plasma Sci. 40 438Google Scholar

    [23]

    Zhang H, Zhang Y Y, Zhu L X, Liu Y N 2024 J. Hazard. Mater. 476 135069Google Scholar

    [24]

    Takeuchi N, Ishibashi N, Sugiyama T, Kim H H 2018 Plasma Sources Sci. Technol. 27 055013Google Scholar

    [25]

    Liu S, Kang Y 2024 Environ. Pollut. 348 123891Google Scholar

    [26]

    Jose J, Philip L 2019 J. Environ. Chem. Eng. 7 103476Google Scholar

    [27]

    牛志文, 晏现峰, 李书翰, 温小琼, 刘金远 2015 光谱学与光谱分析 35 2911Google Scholar

    Niu Z W, Yan X F, Li S H, Wen X Q, Liu J Y 2015 Spectroscopy Spectral Analy. 35 2911Google Scholar

    [28]

    Sun B, Sato M, Clements J S 1997 J. Electrostat. 39 189Google Scholar

    [29]

    Šimek M, Člupek M, Babický V, Lukeš P, Šunka P 2012 Plasma Sources Sci. Technol. 21 055031Google Scholar

    [30]

    Marinov I, Starikovskaia S, Rousseau A 2014 J. Phys. D: Appl. Phys. 47 224017Google Scholar

    [31]

    Salazar J N, Bonifaci N, Denat A, Lesaint O 2005 IEEE International Conference on Dielectric Liquids Coimbra, Portugal, June 26–July 1, 2005 p91

    [32]

    Ceccato P H, Guaitella O, Gloahec Le M R, Rousseau A 2010 J. Phys. D: Appl. Phys. 43 175202Google Scholar

    [33]

    Marinov I, Guaitella O, Rousseau A, Starikovskaia S M 2013 J. Phys. D: Appl. Phys. 46 464013Google Scholar

    [34]

    王雪, 温小琼, 王丽茹, 杨元天, 薛晓东 2022 物理学报 71 015203Google Scholar

    Wang X, Wen X Q, Wang L R, Yang Y T, Xue X D 2022 Acta Phys. Sin. 71 015203Google Scholar

    [35]

    Wang L R, Wen X Q, Yang Y T, Wang X 2023 J. Appl. Phys. 134 013302Google Scholar

    [36]

    杨双越, 温小琼, 杨元天, 李霄 2024 物理学报 73 075203Google Scholar

    Yang S Y, Wen X Q, Yang Y T, Li X 2024 Acta Phys. Sin. 73 075203Google Scholar

  • [1] Xiao Fan, Wang Xiao-Wei, Wang Li, Wang Jia-Can, Sun Xu, Zheng Zhi-Gang, Fan Xiao-Hui, Zhang Dong-wen, Zhao Zeng-Xiu. Temporal Accuracy Improvement and Analysis of the Single-shot Measurement System for ac Conductivity of Warm dense Matter. Acta Physica Sinica, 2025, 74(9): . doi: 10.7498/aps.74.20250135
    [2] Yang Shuang-Yue, Wen Xiao-Qiong, Yang Yuan-Tian, Li Xiao. Discharge characteristics of a microsecond pulsed underwater streamer discharge in multi-needle electrode configuration. Acta Physica Sinica, 2024, 73(7): 075203. doi: 10.7498/aps.73.20231881
    [3] Zhuang Jie, Han Rui, Ji Zhen-Yu, Shi Fu-Kun. Uncertainty in prediction of pulsed field ablation caused by parameter diversity in quantifying conductivity models. Acta Physica Sinica, 2023, 72(14): 147701. doi: 10.7498/aps.72.20230203
    [4] Zhu Jia-Xue, Zhang Xu-Meng, Wang Rui, Liu Qi. Flexible memristive spiking neuron for neuromorphic sensing and computing. Acta Physica Sinica, 2022, 71(14): 148503. doi: 10.7498/aps.71.20212323
    [5] Wang Xue, Wen Xiao-Qiong, Wang Li-Ru, Yang Yuan-Tian, Xue Xiao-Dong. Re-illumination and pause behavior of streamer filament of streamer discharge in water. Acta Physica Sinica, 2022, 71(1): 015203. doi: 10.7498/aps.71.20211162
    [6] Fu Zhi-Jian, Jia Li-Jun, Xia Ji-Hong, Tang Ke, Li Zhao-Hong, Quan Wei-Long, Chen Qi-Feng. A simple and effective simulation for electrical conductivity of warm dense titanium. Acta Physica Sinica, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [7] Niu Zong-Tao, Zhang Cheng, Ma Yun-Fei, Wang Rui-Xue, Chen Gen-Yong, Yan Ping, Shao Tao. Effect of flow rate on the characteristics of repetitive microsecond-pulse gliding discharges. Acta Physica Sinica, 2015, 64(19): 195204. doi: 10.7498/aps.64.195204
    [8] Gao Shao-Hua, Wang Yu-Xia, Wang Hong-Wei, Yuan Shuai. Research on the conductivity of KAg4 I5-AgI composite. Acta Physica Sinica, 2011, 60(8): 086601. doi: 10.7498/aps.60.086601
    [9] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [10] Luo Tao, Zhu Wei, Shi Qin-Wei, Wang Xiao-Ping. Effect of the spectral function of quasiparticle on minimal conductivity of graphene. Acta Physica Sinica, 2008, 57(6): 3775-3779. doi: 10.7498/aps.57.3775
    [11] Jiang Ji-Hao, Wang Gui-Ji, Yang Yu. A new method to measure the electrical conductivity of metals in electric exploding. Acta Physica Sinica, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [12] Quan Rong-Hui, Han Jian-Wei, Huang Jian-Guo, Zhang Zhen-Long. Modeling analysis of radiation induced conductivity in electrical insulator. Acta Physica Sinica, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [13] Qiu Sheng-De, Hu Cheng-Zheng, Wang Ai-Jun, Zhou Xiang. Optical conductivity of decagonal quasicrystals. Acta Physica Sinica, 2006, 55(2): 743-747. doi: 10.7498/aps.55.743
    [14] Shi Yan-Xiang, Ge De-Biao, Wu Jian. Influence of charge and discharge processes of dust particles on the dust plasma conductivity. Acta Physica Sinica, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [15] Wei Bing, Ge De-Biao. Reconstruction of transverse permittivity and conductivity for a lossy anisotropic plate. Acta Physica Sinica, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [16] GUO HONG-XIA, MAI ZHEN-HONG. INFLUENCE OF ELECTRICAL CONDUCTIVITY ON ELECTRORHEOLOGY EFFECT. Acta Physica Sinica, 1996, 45(1): 65-72. doi: 10.7498/aps.45.65
    [17] JIANG QI, GONG CHANG-DE. A SELF-CONSISTENT STUDY OF THE CONDUCTIVITIES OF THE DISORDERED LAYER SYSTEM. Acta Physica Sinica, 1989, 38(4): 593-599. doi: 10.7498/aps.38.593
    [18] JIANG QI, GONG CHANG-DE. CONDUCTIVITY IN THE DISORDERED LAYER SYSTEM. Acta Physica Sinica, 1988, 37(6): 941-949. doi: 10.7498/aps.37.941
    [19] CHEN LI-QUAN, LIU JUN, WANG CHAO-YING, HE YUAN-KANG, CHEN ZHU-SHENG, LIU YONG-PING. EFFECT OF SOME FACTORS ON CONDUCTIVITIES OF POLYMER IONIC CONDUCTORS. Acta Physica Sinica, 1987, 36(1): 60-66. doi: 10.7498/aps.36.60
    [20] ZHANG ZHAO-QING. ELECTRICAL CONDUCTIVITY OF LIQUID METALS AND AMORPHOUS SOLIDS-COHERENT-POTENTIAL APPROXIMATION. Acta Physica Sinica, 1982, 31(3): 294-310. doi: 10.7498/aps.31.294
Metrics
  • Abstract views:  554
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  26 November 2024
  • Accepted Date:  25 December 2024
  • Available Online:  08 January 2025
  • Published Online:  05 March 2025

/

返回文章
返回