Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Citation:

Influence of Image Charges on the Transport of Low-Energy Ions in Rhombic Micropores

Sun Wen-Sheng, Yuan Hua, Liu En-Shun, Du Zhan-Hui, Pan Yu-Zhou, Fan Xu-Hong, Wang Qi-Jun, Zhao Zhan-Yan, Cheng Qian, Wan Cheng-Liang, Cui Ying, Zhu Li-Ping, Li Peng-Fei, Wang Tian-Qi, Yao Ke, Reinhold Schuch, Fang Tie-Feng, Cheng Xi-Meng, Zhang Hong-Qiang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The study of low-energy, high-charge-state ions traversing insulating nanochannels has focused on the guiding effects due to the deposition of charge, while experimental and theoretical research on the influence of image charge forces caused by the polarization of the channel walls during ion transmission is relatively scarce. We employed a combination of experimental and theoretical methods to conduct experiments on 1 keV N2+ ion beams passing through muscovite microporous membranes. Under the condition of complete discharge of the microporous membrane, we measured the two-dimensional angular distribution of ejected ions at the initial stage of ion beam incidence at a zero-degree inclination. In previous simulation calculations, to simplify the calculation process, first-order image force approximation and static approximation were used to calculate the image charge forces. We found that the results obtained from these calculations still differ from the experimental results. Therefore, we refined the calculation formula for image charge forces, taking into account the full effect of these forces.In previous studies on image charge forces, we neglected the impact of ion velocity on the polarization of the channel walls. We used the surface dielectric response theory of the image force experienced by ions within the micropores, which depends on ion velocity and the distance between the ion and the channel wall, to simulate and calculate the experimental results. We studied the influence of image charge forces caused by surface dielectric response due to ion velocity on the angular distribution of ejected ions. We found discrepancies between the simulated and experimental two-dimensional angular distributions, with the experimental results showing a wider half-height width than the simulated results.
    To explore the effects of beam divergence and the angle between the micropore axis and the beam on ion penetration and the two-dimensional angular distribution of ejected ions, we conducted simulation calculations for 1 keV N2+ under different beam conditions, considering third-order dynamic image charge forces. We analyzed several potential influences in the simulation calculations and assessed the impact of the true state of the beam and the angle between the beam and the micropore on the differences between simulation and experiment. This work provides the possibility of studying the surface dielectric response of micropores using ion beams as probes.
  • [1]

    Spohr R 1990 Ion Tracks and Microtechnology, Viehweg Verlag, Braunschweig.

    [2]

    Martin C R 1994 Science 266 1961.

    [3]

    Stolterfoht N, Yamazaki Y 2016 Physics Reports 629 pp1-107.

    [4]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201.

    [5]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202.

    [6]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl Phys. Lett. 92 023509.

    [7]

    Lemell C, Burgdörfer J, Aumayr F P 2013 Surf. Sci. 88 237.

    [8]

    Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79, 012711.

    [9]

    Stolterfoht N 2013 Phys. Rev. A 87 012902.

    [10]

    Stolterfoht N 2013 Phys. Rev. A 87 032901

    [11]

    Stolterfoht N, Hellhammer R, Juhász Z, Sulik B, Bayer V, Trautmann C, Bodewits E, de Nijs A J, Dang H M, Hoekstra R 2009 Phys. Rev. A 79, 042902.

    [12]

    Kumar R T R, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16, 1697.

    [13]

    Sahana M B, Skog P, Vikor G, Rajendra Kumar R T, Schuch R 2006 Phys. Rev. A 73, 040901(R).

    [14]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101, 223202.

    [15]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82, 052901.

    [16]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Iván I, Gáll F, Sulik B, Víkor Gy, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17, 3915.

    [17]

    Krause H F, Vane C R, Meyer F W 2007 Phys. Rev. A 75, 042901.

    [18]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 258, 145.

    [19]

    Juhász Z, sulik B, Biri S, Iván I, Tôkési K, Fekete É, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Víkor Gy, Takács E, Pálinkás J 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267, 321.

    [20]

    Li D, Wang Y, Zhao Y, Xiao G, Zhao D, Xu Z, Li F 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267, 469.

    [21]

    Stolterfoht N, Hellhammer R, Juhasz Z, Sulik B, Bayer V, Trautmann C, Bodewits E, de Nijs A J, Dang H M, Hoekstra R 2009 Phys. Rev. A 79, 042902.

    [22]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R. 2011 Phys. Rev. A 83, 062901.

    [23]

    Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902.

    [24]

    Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 258 150.

    [25]

    Pokhil G P, Vokhmyanina K A 2008 Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2 pp237-240

    [26]

    Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901.

    [27]

    Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704.

    [28]

    Harris J, Jones R O 1974 J. Phys. C: Solid State Phys. 7, 3751.

    [29]

    Joseph Ladislas Wiza 1979 Nucl. Instrum. and Methods. 162 pp587-601.

    [30]

    Lampton M, Carlson C W 1979 Rev. Sci. Instrum. 50 pp1093-1097.

    [31]

    http://faster.in2p3.fr/

    [32]

    Ackermann J, Angert N, Neumann R, Trautmann C, Dischner M, Hagen T, Sedlacek M 1996 Nucl. Instrum. Methods Phys. Res., Sect. B 107, 181.

    [33]

    Ward A A 2016 State of the Art Dielectric Materials for Advanced Applications, p10.

    [34]

    Eric Giglio 2023 Phys. Rev. A. 107 012816.

    [35]

    Petzelt J, Rychetský I 2005 Dielectric function, Encyclopedia of Condensed Matter Physics (Elsevier, Amsterdam), p426.

    [36]

    Anton Beran 2002 Reviews in Mineralogy and Geochemistry, 46 pp351-369.

    [37]

    Alireza Fali, Sampath Gamage, Marquez Howard, Thomas G Folland, Nadeemullah Mahadik A, Tom Tiwald, Kirill Bolotin, Joshua D Caldwell, Yohannes Abate 2021 ACS Photonics, 8 pp175-181.

    [38]

    Agostinelli S, Allison J R, Amako K, Apostolakis J, Araujo H, Arcelli P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell'Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giania S, Giannitrapani R, Gibin D, Gomez Cadenas J J, Gonzalez I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones F W, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossow M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Leib F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatsu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O'Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia M G, Ranjard F, Rybin A, Sadilova S, Di Salvo E, Santin G, Sasakib T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaeva E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch J P, Wenaus T, Williams D C, Wright D, Yamada T, Yoshida H, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 pp250-303.

    [39]

    Zhang Qi, Liu Zhonglin, Li Pengfei, Jin Bo, Song Guangyin, Jin Dingkun, Niu Ben, Wei Long, Ha Shuai, Xie Yiming, Ma Yue, Wan Chengliang, Cui Ying, Zhou Peng, Zhang Hongqiang, Chen Ximeng 2018 Phys. Rev. A 97, 042704.

  • [1] HUANG Houke, WEN Weiqiang, HUANG Zhongkui, WANG Shuxing, TANG Meitang, LI Jie, MAO Lijun, YUAN Yang, WAN Mengyu, LIU Chang, WANG Hanbing, ZHOU Xiaopeng, ZHAO Dongmei, YAN Kaiming, ZHOU Yunbin, YUAN Youjin, YANG Jiancheng, ZHANG Shaofeng, ZHU Linfan, MA Xinwen. Simulation study of precision spectroscopy of dielectronic recombination for highly charged heavy ions at HIAF. Acta Physica Sinica, doi: 10.7498/aps.74.20241589
    [2] Fan Jin-Ze, Fang Zhan-Bo, Luo Chao-Jie, Zhang Hui. Charge density waves in low-dimensional material. Acta Physica Sinica, doi: 10.7498/aps.71.20220052
    [3] Niu Shu-Tong, Zhou Wang, Pan Peng, Zhu Bing-Hui, Song Han-Yu, Shao Jian-Xiong, Chen Xi-Meng. Transmission of 30-keV He2+ ions through polycarbonate nanocapillaries: Dependence on the incident angle. Acta Physica Sinica, doi: 10.7498/aps.67.20172484
    [4] Bai Xiong-Fei, Niu Shu-Tong, Zhou Wang, Wang Guang-Yi, Pan Peng, Fang Xing, Chen Xi-Meng, Shao Jian-Xiong. Dynamic evolution of 20-keV H+ transmitted through polycarbonate nanocapillaries. Acta Physica Sinica, doi: 10.7498/aps.66.093401
    [5] Zhou Wang, Niu Shu-Tong, Yan Xue-Wen, Bai Xiong-Fei, Han Cheng-Zhi, Zhang Mei-Xiao, Zhou Li-Hua, Yang Ai-Xiang, Pan Peng, Shao Jian-Xiong, Chen Xi-Meng. Dynamic evolution of 100-keV H+ through polycarbonate nanocapillaries. Acta Physica Sinica, doi: 10.7498/aps.65.103401
    [6] Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng. Shock response and evolution mechanism of brittle material containing micro-voids. Acta Physica Sinica, doi: 10.7498/aps.63.246102
    [7] Chen Yi-Feng, Chen Xi-Meng, Lou Feng-Jun, Xu Jin-Zhang, Shao Jian-Xiong, Sun Guang-Zhi, Wang Jun, Xi Fa-Yuan, Yin Yong-Zhi, Wang Xing-An, Xu Jun-Kui, Cui Ying, Ding Bao-Wei. Guiding of 60 keV O+ ions through Al2O3 nanocapillaries with two different diameters. Acta Physica Sinica, doi: 10.7498/aps.59.222
    [8] Zhang Li-Qing, Zhang Chong-Hong, Yang Yi-Tao, Yao Cun-Feng, Sun You-Mei, Li Bing-Sheng, Zhao Zhi-Ming, Song Shu-Jian. Surface morphology of GaN bombarded by highly charged 126Xeq+ ions. Acta Physica Sinica, doi: 10.7498/aps.58.5578
    [9] Xu Zhong-Feng, Liu Li-Li, Zhao Yong-Tao, Chen Liang, Zhu Jian, Wang Yu-Yu, Xiao Guo-Qing. Highly charged ion beam-induced size modification of Au nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.58.3833
    [10] Peng Hai-Bo, Wang Tie-Shan, Han Yun-Cheng, Ding Da-Jie, Xu He, Cheng Rui, Zhao Yong-Tao, Wang Yu-Yu. Study of channeling effect by impact of highly charged ions on crystal surface of Si(110). Acta Physica Sinica, doi: 10.7498/aps.57.2161
    [11] Liu Yu-Wen, Chen Xi-Meng, Shao Jian-Xiong, Ding Bao-Wei, Fu Hong-Bin, Cui Ying, Zhang Hong-Qiang, Lu Yan-Xia, Gao Zhi-Min, Du Juan, Chen Lin, Sun Guang-Zhi, Yin Yong-Zhi, Yu De-Yang, Cai Xiao-Hong. The transfer ionization mechanism in the low charge state ion-atom collisions. Acta Physica Sinica, doi: 10.7498/aps.57.2913
    [12] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, doi: 10.7498/aps.56.5734
    [13] Wang Fei-Peng, Xia Zhong-Fu, Zhang Xiao-Qing, Huang Jin-Feng, Shen Jun. Influence of macroscopic dipoles on the charge storage and charge dynamics of polypropylene ferroelectret films. Acta Physica Sinica, doi: 10.7498/aps.56.6061
    [14] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, doi: 10.7498/aps.55.2221
    [15] Wang Fei-Peng, Xia Zhong-Fu, Qiu Xun-Lin, Shen Jun. Electrical polarization and charge dynamics of cellular polypropylene ferroelectret films. Acta Physica Sinica, doi: 10.7498/aps.55.3705
    [16] GU YONG-JIAN. QUANTUM FLUCTUATIONS OF CHARGE AND CURRENT IN MESOSCOPIC RLC CIRCUIT IN SQUEEZED VACUUM STATE. Acta Physica Sinica, doi: 10.7498/aps.49.965
    [17] CHEN ZHI-JUN, MA HONG-LIANG, CHEN MIAO-HUA, LI MAO-SHENG, SHI WEI, LU FU-QUAN, TANG JIA-YONG. THE HYPERFINE STRUCTURE OF BaⅡ. Acta Physica Sinica, doi: 10.7498/aps.48.2038
    [18] CHEN BIN, LI YOU-QUAN, SHA JIAN, ZHANG QI-RUI. QUANTUM EFFECTS OF CHARGE IN-THE MESOSCOPIC CIRCUIT. Acta Physica Sinica, doi: 10.7498/aps.46.129
    [19] LI JING-DE, DENG RE-ZHONG, CHEN MIN, ZHENG FENG. DIFFUSION AND DIELECTRIC SPECTROSCOPY OF SPACE CHARGES IN INSULATING LIQUIDS. Acta Physica Sinica, doi: 10.7498/aps.46.155
    [20] KONG XIANG-GUI, LIU YI-CHUN, E SHU-LIN. EFFECTS OF THE HIGH DENSITY CHARGED DEFECT STATES AT THE CuPc/InP INTERFACE ON RAMAN SCATTERING OF CuPc LB FILM. Acta Physica Sinica, doi: 10.7498/aps.43.809
Metrics
  • Abstract views:  60
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  17 February 2025

/

返回文章
返回