-
The study of low-energy, high-charge-state ions traversing insulating nanochannels has focused on the guiding effects due to the deposition of charge, while experimental and theoretical research on the influence of image charge forces caused by the polarization of the channel walls during ion transmission is relatively scarce. We employed a combination of experimental and theoretical methods to conduct experiments on 1 keV N2+ ion beams passing through muscovite microporous membranes. Under the condition of complete discharge of the microporous membrane, we measured the two-dimensional angular distribution of ejected ions at the initial stage of ion beam incidence at a zero-degree inclination. In previous simulation calculations, to simplify the calculation process, first-order image force approximation and static approximation were used to calculate the image charge forces. We found that the results obtained from these calculations still differ from the experimental results. Therefore, we refined the calculation formula for image charge forces, taking into account the full effect of these forces.In previous studies on image charge forces, we neglected the impact of ion velocity on the polarization of the channel walls. We used the surface dielectric response theory of the image force experienced by ions within the micropores, which depends on ion velocity and the distance between the ion and the channel wall, to simulate and calculate the experimental results. We studied the influence of image charge forces caused by surface dielectric response due to ion velocity on the angular distribution of ejected ions. We found discrepancies between the simulated and experimental two-dimensional angular distributions, with the experimental results showing a wider half-height width than the simulated results.
To explore the effects of beam divergence and the angle between the micropore axis and the beam on ion penetration and the two-dimensional angular distribution of ejected ions, we conducted simulation calculations for 1 keV N2+ under different beam conditions, considering third-order dynamic image charge forces. We analyzed several potential influences in the simulation calculations and assessed the impact of the true state of the beam and the angle between the beam and the micropore on the differences between simulation and experiment. This work provides the possibility of studying the surface dielectric response of micropores using ion beams as probes.-
Keywords:
- Microporous Membrane /
- Image Force /
- low Charge State Ion /
- Dielectric Response
-
[1] Spohr R 1990 Ion Tracks and Microtechnology, Viehweg Verlag, Braunschweig.
[2] Martin C R 1994 Science 266 1961.
[3] Stolterfoht N, Yamazaki Y 2016 Physics Reports 629 pp1-107.
[4] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201.
[5] Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202.
[6] Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl Phys. Lett. 92 023509.
[7] Lemell C, Burgdörfer J, Aumayr F P 2013 Surf. Sci. 88 237.
[8] Kanai Y, Hoshino M, Kambara T, Ikeda T, Hellhammer R, Stolterfoht N, Yamazaki Y 2009 Phys. Rev. A 79, 012711.
[9] Stolterfoht N 2013 Phys. Rev. A 87 012902.
[10] Stolterfoht N 2013 Phys. Rev. A 87 032901
[11] Stolterfoht N, Hellhammer R, Juhász Z, Sulik B, Bayer V, Trautmann C, Bodewits E, de Nijs A J, Dang H M, Hoekstra R 2009 Phys. Rev. A 79, 042902.
[12] Kumar R T R, Badel X, Vikor G, Linnros J, Schuch R 2005 Nanotechnology 16, 1697.
[13] Sahana M B, Skog P, Vikor G, Rajendra Kumar R T, Schuch R 2006 Phys. Rev. A 73, 040901(R).
[14] Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101, 223202.
[15] Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82, 052901.
[16] Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Iván I, Gáll F, Sulik B, Víkor Gy, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17, 3915.
[17] Krause H F, Vane C R, Meyer F W 2007 Phys. Rev. A 75, 042901.
[18] Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 258, 145.
[19] Juhász Z, sulik B, Biri S, Iván I, Tôkési K, Fekete É, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Víkor Gy, Takács E, Pálinkás J 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267, 321.
[20] Li D, Wang Y, Zhao Y, Xiao G, Zhao D, Xu Z, Li F 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267, 469.
[21] Stolterfoht N, Hellhammer R, Juhasz Z, Sulik B, Bayer V, Trautmann C, Bodewits E, de Nijs A J, Dang H M, Hoekstra R 2009 Phys. Rev. A 79, 042902.
[22] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R. 2011 Phys. Rev. A 83, 062901.
[23] Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2005 Phys. Rev. A 72 062902.
[24] Schiessl K, Palfinger W, Tökési K, Nowotny H, Lemell C, Burgdörfer J 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 258 150.
[25] Pokhil G P, Vokhmyanina K A 2008 Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2 pp237-240
[26] Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901.
[27] Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704.
[28] Harris J, Jones R O 1974 J. Phys. C: Solid State Phys. 7, 3751.
[29] Joseph Ladislas Wiza 1979 Nucl. Instrum. and Methods. 162 pp587-601.
[30] Lampton M, Carlson C W 1979 Rev. Sci. Instrum. 50 pp1093-1097.
[31] http://faster.in2p3.fr/
[32] Ackermann J, Angert N, Neumann R, Trautmann C, Dischner M, Hagen T, Sedlacek M 1996 Nucl. Instrum. Methods Phys. Res., Sect. B 107, 181.
[33] Ward A A 2016 State of the Art Dielectric Materials for Advanced Applications, p10.
[34] Eric Giglio 2023 Phys. Rev. A. 107 012816.
[35] Petzelt J, Rychetský I 2005 Dielectric function, Encyclopedia of Condensed Matter Physics (Elsevier, Amsterdam), p426.
[36] Anton Beran 2002 Reviews in Mineralogy and Geochemistry, 46 pp351-369.
[37] Alireza Fali, Sampath Gamage, Marquez Howard, Thomas G Folland, Nadeemullah Mahadik A, Tom Tiwald, Kirill Bolotin, Joshua D Caldwell, Yohannes Abate 2021 ACS Photonics, 8 pp175-181.
[38] Agostinelli S, Allison J R, Amako K, Apostolakis J, Araujo H, Arcelli P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell'Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giania S, Giannitrapani R, Gibin D, Gomez Cadenas J J, Gonzalez I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones F W, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossow M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Leib F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatsu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O'Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia M G, Ranjard F, Rybin A, Sadilova S, Di Salvo E, Santin G, Sasakib T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaeva E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch J P, Wenaus T, Williams D C, Wright D, Yamada T, Yoshida H, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 506 pp250-303.
[39] Zhang Qi, Liu Zhonglin, Li Pengfei, Jin Bo, Song Guangyin, Jin Dingkun, Niu Ben, Wei Long, Ha Shuai, Xie Yiming, Ma Yue, Wan Chengliang, Cui Ying, Zhou Peng, Zhang Hongqiang, Chen Ximeng 2018 Phys. Rev. A 97, 042704.
Metrics
- Abstract views: 60
- PDF Downloads: 2
- Cited By: 0