Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Computational simulation of atomic strain in body-centered cubic multi-principal element alloys

SONG Qianqian ZHANG Bozhao DING Jun

Citation:

Computational simulation of atomic strain in body-centered cubic multi-principal element alloys

SONG Qianqian, ZHANG Bozhao, DING Jun
cstr: 32037.14.aps.74.20250128
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Multi-principal element alloys (MPEAs), also known as high-entropy alloys (HEAs), are novel materials that have received significant attention due to their exceptional mechanical properties, thermal stability, and resistance to wear and corrosion. These alloys are typically composed of multiple principal elements in near-equal atomic proportions, forming solid solution phases such as face-centered cubic (FCC) or body-centered cubic (BCC) structures. Despite the promising applications, a more in-depth understanding of the atomic-level behavior, particularly, lattice distortion and atomic strain, is essential to better design and optimize these materials in extreme environments. This study focuses on systematically investigating the atomic-scale lattice distortion characteristics and their influence on atomic strain in three representative BCC-based MPEAs: TaWNbMo, TiZrNb, and CoFeNiTi. We utilize molecular dynamics (MD) simulations to explore the local atomic strain distributions in these alloys at various temperatures. Von Mises strain and volumetric strain are employed as key descriptors to quantify the atomic strain, providing a clear representation of how lattice distortion on an atomic scale influences the overall strain behavior. The study specifically addresses the effects of atomic radius differences, chemical short-range ordering, and temperature on the strain characteristics of the alloys. The results obtained indicate that an increase in lattice distortion corresponds to a broader distribution of von Mises strain and volumetric strain, with strain values significantly amplified. More precisely, alloys with larger atomic radius differences exhibit greater volumetric strain, reflecting the influence of atomic size disparity on strain distribution. Furthermore, the formation of chemical short-range order (CSRO) significantly mitigates lattice distortion and atomic strain. This finding highlights the importance of short-range atomic ordering in enhancing the stability of the alloy structures, thus potentially improving their mechanical properties. Temperature effects are also investigated, revealing that elevated temperature induces more intense atomic vibration, which in turn increases the atomic strain. The findings underscore the complex interplay between atomic-scale phenomena and macroscopic mechanical properties, offering new insights into the microscopic mechanical behavior of high-entropy alloys. This study contributes to a better understanding of the underlying mechanisms driving atomic strain and lattice distortion in MPEAs. The results provide valuable theoretical insights that can guide the design of high-performance alloys tailored for high-temperature and extreme environments. By addressing the key factors influencing atomic strain, such as atomic radius, chemical ordering, and temperature, this work lays the foundation for future research aimed at enhancing the mechanical performance of MPEAs in various industrial applications.
      Corresponding author: DING Jun, dingsn@xjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2023YFB3712002).
    [1]

    George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [2]

    George E P, Curtin W A, Tasan C C 2020 Acta Mater. 188 435Google Scholar

    [3]

    Miracle D B 2017 J. Met. 69 2130Google Scholar

    [4]

    Pickering E J, Jones N G 2016 Int. Mater. Rev. 61 183Google Scholar

    [5]

    Ma E, Ding J 2025 J. Mater. Sci. Technol. 220 233Google Scholar

    [6]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [7]

    Li Z M, Pradeep K G, Deng F, Paabe D, Tasan C C 2016 Nature 534 227Google Scholar

    [8]

    Maresca F, Curtin W A 2020 Acta Mater. 182 235Google Scholar

    [9]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie P O 2014 Science 345 1153Google Scholar

    [10]

    Shi Y Z, Yang B, Liaw P K 2017 Metals 7 18Google Scholar

    [11]

    Chen P Y, Lee C, Wang S Y, Seifi M, Lewandowski J J, Dahmen K A, Jia H L, Xie X, Chen B L, Yeh J W, Tsai C W, Yuan T, Liaw P K 2018 Sci. China-Technol. Sci. 61 168Google Scholar

    [12]

    Kozelj P, Vrtnik S, Jelen A, Jazbec S, Jaglicic Z, Maiti S, Feuerbacher M, Steurer W, Dolinsek J 2014 Phys. Rev. Lett. 113 107001Google Scholar

    [13]

    Su Z X, Ding J, Song M, Jiang L, Shi Tan, Li Z M, Wang S, Gao F, Ma E Lu C Y 2023 Acta Mater. 245 118662Google Scholar

    [14]

    Zhang Z, Su Z, Zhang B, Yu Q, Ding J, Shi T, Lu C, Ritchie R O, Ma E 2023 Proc. Natl. Acad. Sci. 120 e2218673120Google Scholar

    [15]

    Zhang Y, Zuo T, Tang T, Gao M, Dahmen K, Liaw K, Lu Z 2014 Prog. Mater. Sci. 61 1Google Scholar

    [16]

    Kozak P, Sologubenko A, Steurer W 2015 Z Kristallogr Cryst Mater 230 55Google Scholar

    [17]

    Zhang B, Zhang Z, Xun K, Asta M, Ding J, Ma E 2024 Proc. Natl. Acad. Sci. 121 e2314248121Google Scholar

    [18]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [19]

    Fan Z, Wang H, Wu Y, Liu X J, Lu Z P 2017 Mater. Res. Lett. 5 187Google Scholar

    [20]

    Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J 2007 Mater. Chem. Phys. 103 41Google Scholar

    [21]

    Tong C J, Chen Y L, Chen S K, Yeh J W, Shun T T, Tsau C H, Lin S J, Chang S Y 2005 Metall. Mater. Trans. A 36 881Google Scholar

    [22]

    Tsai C W, Tsai M H, Yeh J W, Yang C C 2010 J. Alloys Compd. 490 160Google Scholar

    [23]

    Yeh J W, Chen S K, Gan J Y, Lin S J, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Metall. Mater. Trans. A 35 2533Google Scholar

    [24]

    杨勇, 赫全锋 2021 金属学报 57 385Google Scholar

    Yang Y, He Q F 2021 Acta Metall. Sin. 57 385Google Scholar

    [25]

    Zou Y, Maiti S, Steurer W, Spolenak R 2014 Acta Mater. 65 85Google Scholar

    [26]

    Santodonato L J, Zhang Y, Feygenson M, Parish C M, Gao M C, Weber R J, Neuefeind J C, Tang Z, Liaw P K 2015 Nat. Commun. 6 5964Google Scholar

    [27]

    Toda-Caraballo I, Wr obel J S, Dudarev S L, Nguyen-Manh D, Rivera-Díaz-del-Castillo P E 2015 Acta Mater. 97 156Google Scholar

    [28]

    Tian L Y, Hu Q M, Yang R, Zhao J, Johansson B, Vitos L 2015 J. Phys. Condens. Mat. 27 315702Google Scholar

    [29]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2023 Scr. Mater. 222 115048Google Scholar

    [30]

    Tandoc C, Hu Y J, Qi L, Liaw P K 2023 npj Comput. Mater. 9 53Google Scholar

    [31]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [32]

    Yin S, Zuo Y X, Abu-Odeh A, Zhang H, Li X G, Ding J, Ong S P, Asta M, Ritchie R 2021 Nat. Commun. 12 4873Google Scholar

    [33]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2020 Proc. Natl. Acad. Sci. 117 16199Google Scholar

    [34]

    Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012Google Scholar

    [35]

    Wang J H, Li J, Yip S, Phillpot S, Wolf D 1995 Phys. Rev. B 52 12627Google Scholar

    [36]

    Li J 2003 Model. Simul. Mater. Sci. Eng. 11 173Google Scholar

    [37]

    Wang L, Ding J, Chen S S, Jin K, Zhang Q H, Cui J X, Wang B P, Chen B, Li T Y, Ren Y, Zheng S J, Ming K S, Lu W J, Hou J H, Sha G, Liang J, Wang L, Xue Y F, Ma E 2023 Nat. Mater. 22 950Google Scholar

    [38]

    Zhang M, Zhang B Z, Ding J, Ma E 2025 Scripta Mater. 259 116559Google Scholar

    [39]

    Ding J, Yu Q, Asta M, O. Ritchie R 2018 Proc. Natl. Acad. Sci. 115 8919Google Scholar

    [40]

    Zhang F X, Zhao S J, Jin K, Xue H, Velisa G, Bei H, Huang R, Ko J Y P, Pagan D C, Neuefeind J C, Weber W J, Zhang Y W 2017 Phys. Rev. Lett. 118 205501Google Scholar

    [41]

    Zhang R P, Zhao S T, Ding J, Chong Y, Jia T, Ophus C, Asta M, O. Ritchie R, Minor M A. 2020 Nature 581 283Google Scholar

    [42]

    Xun K H, Zhang B Z, Wang Q, Zhang Z, Ding J, Ma E 2023 J. Mater. Sci. Technol. 135 221Google Scholar

    [43]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2024 Acta Mater. 272 119910Google Scholar

    [44]

    He Q F, Wang J G, Chen H A, Ding Z Y, Zhou Z Q, Xiong L H, Luan J H, Pelletier J M, Qiao J C, Wang Q, Fan L L, Zeng Q S, Liu C T, Pao C W, Srolovitz D J, Yang Y 2022 Nature 602 251Google Scholar

    [45]

    Tan Y Y, Chen Z J, Su M Y, Ding G, Jiang M Q, Xie Z C, Gong Y, Wu T, Wu Z H, Wang H Y, Dai L H 2022 J. Mater. Sci. Technol. 104 236Google Scholar

  • 图 1  多主元合金中的晶格畸变及局域原子应变 (a)晶格畸变示意图, 局部仿射变换矩阵$ {J}_{i} $ 描述了初始与当前原子构型之间的转变; (b) 0 K下TiZrNb合金中的原子应变示例, 左图为每个原子的冯·米塞斯应变, 右图为每个原子的体积应变

    Figure 1.  Lattice distortion and local atomic strain in multi-principal element alloys: (a) Schematic of lattice distortion, where the local affine transformation matrix $ {J}_{i} $ describes the transition from the initial to the current atomic configuration; (b) atomic strain distribution in the TiZrNb alloy at 0 K, the left panel displays the Von Mises strain for each atom, while the right panel shows the volumetric strain.

    图 2  不同合金体系的三维原子分布模型及其原子应变的分布 (a) TaWNbMo, TiZrNb和CoFeNiTi的三维原子分布模型; (b) 3种合金体系的冯·米塞斯应变和体积应变的分布

    Figure 2.  Three-dimensional atomic distribution models and atomic strain distributions in different alloy systems: (a) Three-dimensional atomic distribution models of TaWNbMo, TiZrNb, and CoFeNiTi; (b) distribution of Von Mises strain and volumetric strain for the three alloy systems.

    图 3  三种合金体系中不同组元的冯·米塞斯应变和体积应变的分布, 展示了TaWNbMo, TiZrNb和CoFeNiTi三种合金体系中不同组元的冯·米塞斯应变和体积应变的分布, 每种合金中的不同组元(Ta, W, Nb, Mo, Ti, Zr, Nb, 和Co, Fe, Ni, Ti)分别绘制了应变分布图, 上半部分为冯·米塞斯应变的分布, 下半部分为体积应变的分布, 不同颜色的曲线对应于不同的元素, 反映了各组元在合金中的应变特性差异

    Figure 3.  Distribution of von Mises strain and volumetric strain for different elements in the TaWNbMo, TiZrNb, and CoFeNiTi alloy systems. The strain distributions for different elements (Ta, W, Nb, Mo, Ti, Zr, Nb, Co, Fe, Ni, Ti) in each alloy are shown. The upper part of the figure shows the distribution of von Mises strain, while the lower part shows the distribution of volumetric strain. The different colored curves represent different elements, reflecting the strain characteristics of each element in the alloy.

    图 4  TiZrNb合金在800 K下的化学短程有序信息及其原子应变分布特征 (a)化学短程有序构型的三维原子分布模型; (b)不同原子对的Warren-Cowley参数, 展示了合金中各原子对之间的短程有序程度; (c)冯·米塞斯应变的频率分布, 分别为CSRO和RSS两种不同的化学短程有序状态下的应变分布; (d)体积应变的频率分布, 展示了不同原子对间的体积应变分布特征

    Figure 4.  Chemical short-range order information and atomic strain distribution characteristics of TiZrNb alloy at 800 K: (a) Three-dimensional atomic distribution model of the chemical short-range ordered configuration; (b) Warren-Cowley parameters for different atomic pairs, showing the degree of short-range order between atomic pairs in the alloy; (c) distribution of von Mises strain, showing the strain distributions under CS0 and RSS short-range order configurations; (d) frequency distribution of volumetric strain, illustrating the volumetric strain characteristics between different atomic pairs.

    图 5  不同温度下TiZrNb合金的冯·米塞斯应变和体积应变频率分布图, 图中展示的温度范围从0—1200 K, 分别以不同颜色表示不同的温度状态 (a)冯·米塞斯应变的分布; (b)体积应变的分布

    Figure 5.  Frequency distribution of von Mises strain and volumetric strain of TiZrNb alloy at various temperatures, ranging from 0 K to 1200 K: (a) Distribution of von Mises strain; (b) distribution of volumetric strain.

  • [1]

    George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [2]

    George E P, Curtin W A, Tasan C C 2020 Acta Mater. 188 435Google Scholar

    [3]

    Miracle D B 2017 J. Met. 69 2130Google Scholar

    [4]

    Pickering E J, Jones N G 2016 Int. Mater. Rev. 61 183Google Scholar

    [5]

    Ma E, Ding J 2025 J. Mater. Sci. Technol. 220 233Google Scholar

    [6]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [7]

    Li Z M, Pradeep K G, Deng F, Paabe D, Tasan C C 2016 Nature 534 227Google Scholar

    [8]

    Maresca F, Curtin W A 2020 Acta Mater. 182 235Google Scholar

    [9]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie P O 2014 Science 345 1153Google Scholar

    [10]

    Shi Y Z, Yang B, Liaw P K 2017 Metals 7 18Google Scholar

    [11]

    Chen P Y, Lee C, Wang S Y, Seifi M, Lewandowski J J, Dahmen K A, Jia H L, Xie X, Chen B L, Yeh J W, Tsai C W, Yuan T, Liaw P K 2018 Sci. China-Technol. Sci. 61 168Google Scholar

    [12]

    Kozelj P, Vrtnik S, Jelen A, Jazbec S, Jaglicic Z, Maiti S, Feuerbacher M, Steurer W, Dolinsek J 2014 Phys. Rev. Lett. 113 107001Google Scholar

    [13]

    Su Z X, Ding J, Song M, Jiang L, Shi Tan, Li Z M, Wang S, Gao F, Ma E Lu C Y 2023 Acta Mater. 245 118662Google Scholar

    [14]

    Zhang Z, Su Z, Zhang B, Yu Q, Ding J, Shi T, Lu C, Ritchie R O, Ma E 2023 Proc. Natl. Acad. Sci. 120 e2218673120Google Scholar

    [15]

    Zhang Y, Zuo T, Tang T, Gao M, Dahmen K, Liaw K, Lu Z 2014 Prog. Mater. Sci. 61 1Google Scholar

    [16]

    Kozak P, Sologubenko A, Steurer W 2015 Z Kristallogr Cryst Mater 230 55Google Scholar

    [17]

    Zhang B, Zhang Z, Xun K, Asta M, Ding J, Ma E 2024 Proc. Natl. Acad. Sci. 121 e2314248121Google Scholar

    [18]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [19]

    Fan Z, Wang H, Wu Y, Liu X J, Lu Z P 2017 Mater. Res. Lett. 5 187Google Scholar

    [20]

    Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J 2007 Mater. Chem. Phys. 103 41Google Scholar

    [21]

    Tong C J, Chen Y L, Chen S K, Yeh J W, Shun T T, Tsau C H, Lin S J, Chang S Y 2005 Metall. Mater. Trans. A 36 881Google Scholar

    [22]

    Tsai C W, Tsai M H, Yeh J W, Yang C C 2010 J. Alloys Compd. 490 160Google Scholar

    [23]

    Yeh J W, Chen S K, Gan J Y, Lin S J, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Metall. Mater. Trans. A 35 2533Google Scholar

    [24]

    杨勇, 赫全锋 2021 金属学报 57 385Google Scholar

    Yang Y, He Q F 2021 Acta Metall. Sin. 57 385Google Scholar

    [25]

    Zou Y, Maiti S, Steurer W, Spolenak R 2014 Acta Mater. 65 85Google Scholar

    [26]

    Santodonato L J, Zhang Y, Feygenson M, Parish C M, Gao M C, Weber R J, Neuefeind J C, Tang Z, Liaw P K 2015 Nat. Commun. 6 5964Google Scholar

    [27]

    Toda-Caraballo I, Wr obel J S, Dudarev S L, Nguyen-Manh D, Rivera-Díaz-del-Castillo P E 2015 Acta Mater. 97 156Google Scholar

    [28]

    Tian L Y, Hu Q M, Yang R, Zhao J, Johansson B, Vitos L 2015 J. Phys. Condens. Mat. 27 315702Google Scholar

    [29]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2023 Scr. Mater. 222 115048Google Scholar

    [30]

    Tandoc C, Hu Y J, Qi L, Liaw P K 2023 npj Comput. Mater. 9 53Google Scholar

    [31]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [32]

    Yin S, Zuo Y X, Abu-Odeh A, Zhang H, Li X G, Ding J, Ong S P, Asta M, Ritchie R 2021 Nat. Commun. 12 4873Google Scholar

    [33]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2020 Proc. Natl. Acad. Sci. 117 16199Google Scholar

    [34]

    Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012Google Scholar

    [35]

    Wang J H, Li J, Yip S, Phillpot S, Wolf D 1995 Phys. Rev. B 52 12627Google Scholar

    [36]

    Li J 2003 Model. Simul. Mater. Sci. Eng. 11 173Google Scholar

    [37]

    Wang L, Ding J, Chen S S, Jin K, Zhang Q H, Cui J X, Wang B P, Chen B, Li T Y, Ren Y, Zheng S J, Ming K S, Lu W J, Hou J H, Sha G, Liang J, Wang L, Xue Y F, Ma E 2023 Nat. Mater. 22 950Google Scholar

    [38]

    Zhang M, Zhang B Z, Ding J, Ma E 2025 Scripta Mater. 259 116559Google Scholar

    [39]

    Ding J, Yu Q, Asta M, O. Ritchie R 2018 Proc. Natl. Acad. Sci. 115 8919Google Scholar

    [40]

    Zhang F X, Zhao S J, Jin K, Xue H, Velisa G, Bei H, Huang R, Ko J Y P, Pagan D C, Neuefeind J C, Weber W J, Zhang Y W 2017 Phys. Rev. Lett. 118 205501Google Scholar

    [41]

    Zhang R P, Zhao S T, Ding J, Chong Y, Jia T, Ophus C, Asta M, O. Ritchie R, Minor M A. 2020 Nature 581 283Google Scholar

    [42]

    Xun K H, Zhang B Z, Wang Q, Zhang Z, Ding J, Ma E 2023 J. Mater. Sci. Technol. 135 221Google Scholar

    [43]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2024 Acta Mater. 272 119910Google Scholar

    [44]

    He Q F, Wang J G, Chen H A, Ding Z Y, Zhou Z Q, Xiong L H, Luan J H, Pelletier J M, Qiao J C, Wang Q, Fan L L, Zeng Q S, Liu C T, Pao C W, Srolovitz D J, Yang Y 2022 Nature 602 251Google Scholar

    [45]

    Tan Y Y, Chen Z J, Su M Y, Ding G, Jiang M Q, Xie Z C, Gong Y, Wu T, Wu Z H, Wang H Y, Dai L H 2022 J. Mater. Sci. Technol. 104 236Google Scholar

  • [1] WEI Zhaozhao. Molecular dynamics simulation of bending behavior of B2-FeAl alloy nanowires with different crystallographic orientations. Acta Physica Sinica, 2025, 74(3): 036201. doi: 10.7498/aps.74.20241030
    [2] XIONG Haozhi, WANG Yunjiang. Kinetic simulation of phase diagram and phase transitions in NiCoCr multi-principal element alloy at high temperature and high pressure. Acta Physica Sinica, 2025, 74(8): 086101. doi: 10.7498/aps.74.20250097
    [3] Zhou Han, Geng Yi-Zhao, Yan Shi-Wei. Full-atomistic molecular dynamics analysis of p53 active tetramer. Acta Physica Sinica, 2024, 73(4): 048701. doi: 10.7498/aps.73.20231515
    [4] Yuan Yong-Kai, Chen Qian, Gao Ting-Hong, Liang Yong-Chao, Xie Quan, Tian Ze-An, Zheng Quan, Lu Fei. Molecular dynamics simulations of GaAs crystal growth under different strains. Acta Physica Sinica, 2023, 72(13): 136801. doi: 10.7498/aps.72.20221860
    [5] An Min-Rong, Li Si-Lan, Su Meng-Jia, Deng Qiong, Song Hai-Yang. Molecular dynamics simulation of size dependent plastic deformation mechanism of CoCrFeNiMn crystalline/amorphous dual-phase high-entropy alloys. Acta Physica Sinica, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [6] Shen Tian-Zhan, Song Hai-Yang, An Min-Rong. Effect of twin boundary on mechanical behavior of Cr26Mn20Fe20Co20Ni14 high-entropy alloy by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [7] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [8] Wei Zhao-Zhao, Ma Xiao, Ke Chang-Bo, Zhang Xin-Ping. Molecular dynamics simulation of migration behavior of FCC-BCC atomic terrace-step phase boundary in iron-based alloy. Acta Physica Sinica, 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [9] Qi Yu, Qu Chang-Rong, Wang Li, Fang Teng. Liquid-liquid phase segregation process of Fe50Cu50 melt by molecular dynamics simulation. Acta Physica Sinica, 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [10] Yan Chao, Duan Jun-Hong, He Xing-Dao. Molecular dynamics simulation of low-energy sputtering of Pt (111) surface by oblique Ni atom bombardment. Acta Physica Sinica, 2011, 60(8): 088301. doi: 10.7498/aps.60.088301
    [11] He Ping-Ni, Ning Jian-Ping, Qin You-Min, Zhao Cheng-Li, Gou Fu-Jun. Molecular dynamics simulations of low-energy Clatoms etching Si(100) surface. Acta Physica Sinica, 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [12] Yan Chao, Duan Jun-Hong, He Xing-Dao. Molecular dynamics simulation of low-energy bombardment on Pt(111) surface. Acta Physica Sinica, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [13] Meng Li-Juan, Li Rong-Wu, Liu Shao-Jun, Sun Jun-Dong. Molecular dynamics simulation of heterogeneous adatom diffusion on Cu(001) surface. Acta Physica Sinica, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [14] Jin Nian-Qing, Teng Yu-Yong, Gu Bin, Zeng Xiang-Hua. Study of rare-gas atom injection into defective carbon nanotube by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [15] Wang Yong-Liang, Zhang Chao, Tang Xin, Zhang Qing-Yu. Influence of interaction between Cu adatoms on the hopping diffusion on Cu(001) surface. Acta Physica Sinica, 2006, 55(8): 4214-4220. doi: 10.7498/aps.55.4214
    [16] He Lan, Shen Yun-Wen, K. L. Yung, Xu Yan. A new molecular model for main-chain liquid crystalline polymers based on molecular dynamics simulations. Acta Physica Sinica, 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [17] Yang Hong, Chen Min. A molecular dynamics simulation of thermodynamic properties of undercooled liquid Ni2TiAl alloy. Acta Physica Sinica, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [18] Zhang Duan-Ming, Yan Wen-Sheng, Zhong Zhi-Cheng, Yang Feng-Xia, Zheng Ke-Yu, Li Zhi-Hua. Study on the relation between the dielectric properties and lattice distortions in PZT ferroelectric tetragonal phase region. Acta Physica Sinica, 2004, 53(5): 1316-1320. doi: 10.7498/aps.53.1316
    [19] Wen Yu-Hua, Zhu Tao, Cao Li-Xia, Wang Chong-Yu. Ni/Ni3Al grain boundary of Ni-based single superalloys: molecular dyn amics simulation. Acta Physica Sinica, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
    [20] Ye Zi-Yan, Zhang Qing-Yu. Moleculardynamicssimulationsoflow energyPtclusterdeposition. Acta Physica Sinica, 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
Metrics
  • Abstract views:  352
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2025
  • Accepted Date:  19 February 2025
  • Available Online:  06 March 2025
  • Published Online:  20 April 2025

/

返回文章
返回