Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and vibration performance study of longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system

XU Long LI Xuesong YAO Lei GONG Tao LIANG Zhaofeng

Citation:

Design and vibration performance study of longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system

XU Long, LI Xuesong, YAO Lei, GONG Tao, LIANG Zhaofeng
cstr: 32037.14.aps.74.20250294
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • To address the limitations of traditional one-dimensional longitudinal vibration transducers in terms of single-directional acoustic radiation and limited radiation area, this study proposes a novel longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system (The vibration schematic diagram of the vibration system is shown in Fig.(a)). By synergistically integrating the orthogonal longitudinal vibration of a sandwich-type piezoelectric transducer, displacement amplification via conical horns, and flexural vibration of metal disks, the system achieves two-dimensional four-directional large-area ultrasonic radiation.A combination of theoretical modeling, finite element simulation, and experimental validation is adopted to investigate the dynamic characteristics the system. First, an electromechanical equivalent circuit model is established based on coupled vibration theory and electro-mechanical analogy principles, from which resonance frequency equation and anti-resonance frequency equation are both derived. Subsequently, finite element simulations are conducted using COMSOL multiphysics to analyze the impedance responses, vibration modes, and acoustic radiation characteristics in air. Finally, prototype fabrication and performance verification are performed through impedance-analyzer measurements, laser vibrometry, and ultrasonic de-misting experiments.Compared with experimental results (22086 Hz and 22196 Hz), the theoretical predictions of anti-phase (22871 Hz) and in-phase (23016 Hz) resonance frequencies show relative errors below 3.7%. Finite element simulations combined with experimental validation confirm the excitation mechanism of 5th-order flexural vibration in the disks. Acoustic directivity patterns reveal a multi-beam radiation pattern with coexistence of main lobes and side lobes (The directional patterns under anti-phase and in-phase vibration modes is shown in Fig.(b)), while in-phase vibration mode demonstrates higher ultrasonic radiation intensity in the near-field region. Furthermore, under 200-W input power, the system reduces smoke concentration within 70 s, demonstrating its feasibility for gas treatment applications.By leveraging the synergistic effect of orthogonal longitudinal coupling and flexural vibration, this design overcomes the limitations of traditional transducers and provides theoretical and technical support for high-power multi-directional acoustic radiation. The research outcomes provide the promising solutions for applications in ultrasonic smoke removal, ultrasonic dust removal, and other gas-phase processing fields.
      Corresponding author: XU Long, xulong@cjlu.edu.cn ; YAO Lei, yaolei_am@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074354), the Open Fund of Key Laboratory of State Administration for Market Regulation (Grant No. AVL202302), and the Scientific Research Program of Zhejiang Provincial Administration for Market Regulation, China (Grant No. ZD2024007).
    [1]

    Gallego-Juárez J A 2010 Phys. Procedia 3 35Google Scholar

    [2]

    Ensminger D, Bond L J 2024 Ultrasonics: Fundamentals, Technologies, and Applications (London: CRC Press) pp1–22

    [3]

    Nie G, Kang J, Hu Y, You R, Ma J, Hu Y, Huang T 2016 Mater. Process. Fundam. 1 125Google Scholar

    [4]

    程建春, 李晓东, 杨军 2021 声学学科现状以及未来发展趋势(北京: 科学出版社) 第1—30页

    Cheng J C, Li X D, Yang J 2021 The Current State and Future Development Trends of the Acoustics Discipline (Beijing: Science Press) pp1–30

    [5]

    王莎, 林书玉 2019 物理学报 68 024303Google Scholar

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 024303Google Scholar

    [6]

    Fu Z Q, Xian X J, Lin S Y, Wang C H, Hu W X, Li G Z 2012 Ultrasonics 52 578Google Scholar

    [7]

    Liang Z F, Mo X P, Zhou G P 2017 Acta Acust. 42 7

    [8]

    Rodríguez G, Riera E, Gallego-Juárez J A, Gallego-Juárez V M A, Pinto A, Martínez I, Blanco A 2010 Phys. Procedia 3 135Google Scholar

    [9]

    梁召峰, 周光平, 莫喜平 2009 压电与声光 31 760Google Scholar

    Liang Z F, Zhou G P, Mo X P 2009 Piezoelectr. Acoustoopt. 31 760Google Scholar

    [10]

    贺西平, 张海岛 2016 中国科学: 物理学 力学 天文学 3 17

    He X P, Zhang H D 2016 Sci. Sin. Phys. Mech. Astron. 3 17

    [11]

    许龙, 常燕, 郭林伟, 王月兵, 徐方迁 2016 声学学报 41 105

    Xu L, Chang Y, Guo L W, Wang Y B, Xu F Q 2016 Acta Acust. 41 105

    [12]

    许龙, 林书玉 2012 声学学报 37 408

    Xu J, Lin S Y 2012 Acta Acust. 37 408

    [13]

    Xu J, Lin S Y, Ma Y, Tang Y F 2017 Sensors-Basel 17 2850Google Scholar

    [14]

    梁召峰, 莫喜平, 周光平 2011 声学学报 36 369

    Liang Z F, Mo X P, Zhou G P 2011 Acta Acust. 36 369

    [15]

    Itoh K, Mori E 1972 J. Acoust. Soc. Jpn. 28 127Google Scholar

    [16]

    Itoh K, Mori E 1973 J. Acoust. Soc. Jpn. 29 28Google Scholar

    [17]

    Xu L, Qiu X J, Zhou J C, Li F M, Zhang H D, Wang Y B 2019 Smart Mater. Struct. 28 025017Google Scholar

    [18]

    杜耀东, 许龙, 周光平 2021 中国科学: 物理学 力学 天文学 51 10

    Du Y D, Xu L, Zhou G P 2021 Sci. Sin. Phys. Mech. Astron. 51 10

    [19]

    李凤鸣, 刘世清, 许龙, 张海岛, 曾小梅, 陈赵江 2023 中国科学: 物理学 力学 天文学 53 194

    Li F M, Liu S Q, Xu L, Zhang H D, Zeng X M, Chen Z J 2023 Sci. Sin. Phys. Mech. Astron. 53 194

    [20]

    许龙, 周锦程, 常燕, 李凤鸣, 李伟东 2018 声学学报 43 786

    Xu L, Zhou J C, Chang Y, Li F M, Li W D 2018 Acta Acust. 43 786

    [21]

    Khmelev V N, Shalunov A V, Nesterov V A 2021 Ultrasonics 114 106413Google Scholar

    [22]

    桑永杰, 蓝宇, 丁玥文 2016 物理学报 65 1Google Scholar

    Sang Y J, Lan Y, Ding Y W 2016 Acta Phys. Sin. 65 1Google Scholar

    [23]

    刘世清, 许龙, 张志良, 陈赵江, 沈建国 2014 声学学报 39 104

    Liu S Q, Xu L, Zhang Z L, Chen Z J, Shen J G 2014 Acta Acust. 39 104

    [24]

    Martin G E 1964 J. Acoust. Soc. Am. 36 1496Google Scholar

    [25]

    Kalthoff J F, Winkler S 1988 Impact Load. Dyn. Behav. Mater. 1 185

    [26]

    潘瑞, 莫喜平, 柴勇, 张秀侦, 田芝凤 2024 物理学报 73 194301Google Scholar

    Pan R, Mo X P, Chai Y, Zhang X Z, Tian Z F 2024 Acta Phys. Sin. 73 194301Google Scholar

    [27]

    Chen C, Dong Y L, Wang S, Hu L Q, Lin S Y 2022 J. Acoust. Soc. Am. 151 2712Google Scholar

    [28]

    赵福令, 冯冬菊, 郭东明, 方亚英 2002 声学学报 27 554Google Scholar

    Zhao F L, Feng D J, Guo D M, Fang Y Y 2002 Acta Acust. 27 554Google Scholar

    [29]

    Zhang X L, Liang B 2018 Appl. Acoust. 129 284Google Scholar

  • 图 1  纵弯正交耦合压电超声振动系统的结构(a)以及振动示意图(b)

    Figure 1.  Schematic diagrams of the structure (a) and vibration (b) of the longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system.

    图 2  纵弯正交耦合压电超声振动系统整体机电等效电路

    Figure 2.  Integrated electromechanical equivalent circuit of the longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system.

    图 3  纵弯正交耦合压电超声振动系统简化等效电路

    Figure 3.  Simplified equivalent circuit of the longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system.

    图 4  振动系统谐响应曲线 (a)等效电路法测得结果; (b)有限元法测得结果

    Figure 4.  Harmonic response curves of the vibration system: (a) Results obtained by the equivalent circuit method; (b) results obtained by the finite element method.

    图 5  振动系统的耦合共振模态 (a)反相共振模态; (b)同相共振模态

    Figure 5.  Coupled resonance modes of the vibration system: (a) Anti-phase resonance mode; (b) in-phase resonance mode.

    图 6  振动系统在不同振动模式下的声压分布云图 (a)反相振动; (b) 同相振动

    Figure 6.  Sound pressure distribution contour maps of the vibration system under: (a) Anti-phase vibration; (b) in-phase vibration.

    图 7  反相以及同相振动模式下的指向性图

    Figure 7.  Directional patterns under anti-phase and in-phase vibration modes.

    图 8  轴向声压随距离的变化 (a)反相振动模式; (b)同相振动模式

    Figure 8.  Variation of axial sound pressure with distance: (a) Anti-phase vibration mode; (b) in-phase vibration mode.

    图 9  实验样品

    Figure 9.  Experimental sample.

    图 10  实验法测得振动系统谐响应曲线

    Figure 10.  Harmonic response curve of the vibration system measured by the experimental method.

    图 11  有限元仿真计算所得X方向和Y方向输出圆盘的纵向振动位移分布关系 (a)反相位移振幅; (b)同相位移振幅

    Figure 11.  Longitudinal vibration displacement distribution relationship of the output disks along the X and Y axes obtained from finite element simulation calculations: (a) Anti-phase displacement amplitude; (b) in-phase displacement amplitude.

    图 13  实验法测得XY轴向输出圆盘的纵向振动位移分布关系 (a)反相位移振幅; (b)同相位移振幅

    Figure 13.  Longitudinal vibration displacement distribution relationship of the output disks along the X and Y axes measured by the experimental method: (a) Anti-phase displacement amplitude; (b) in-phase displacement amplitude.

    图 12  LV-S01激光测振仪

    Figure 12.  LV-S01 laser vibrometer.

    图 14  超声除雾实验装置

    Figure 14.  Experimental setup for ultrasonic de-misting.

    图 15  超声除雾实验结果图 (a)未开启超声烟雾变化; (b)开启超声后的烟雾变化

    Figure 15.  Results of the ultrasonic de-misting experiment: (a) Smoke variation without ultrasonic activation; (b) smoke variation after ultrasonic activation.

    表 1  反相和同相二维正交纵弯耦合振动共振频率及相对误差

    Table 1.  Resonance frequencies and relative errors of in-phase and out-of-phase two-dimensional orthogonal longitudinal-bending coupled vibrations.

    共振频率/Hz 误差/%
    ${f_{{\text{M}} - }}$ ${f_{{\text{M + }}}}$ ${f_{{\text{C}} - }}$ ${f_{{\text{C + }}}}$ ${f_{{\text{E}} - }}$ ${f_{{\text{E + }}}}$ ${\Delta _{{\text{ME}} - }}$ ${\Delta _{{\text{ME + }}}}$ ${\Delta _{{\text{CE}} - }}$ ${\Delta _{{\text{CE + }}}}$
    22871 23016 22351 22650 22086 22196 3.6 3.7 1.2 2.0
    DownLoad: CSV
  • [1]

    Gallego-Juárez J A 2010 Phys. Procedia 3 35Google Scholar

    [2]

    Ensminger D, Bond L J 2024 Ultrasonics: Fundamentals, Technologies, and Applications (London: CRC Press) pp1–22

    [3]

    Nie G, Kang J, Hu Y, You R, Ma J, Hu Y, Huang T 2016 Mater. Process. Fundam. 1 125Google Scholar

    [4]

    程建春, 李晓东, 杨军 2021 声学学科现状以及未来发展趋势(北京: 科学出版社) 第1—30页

    Cheng J C, Li X D, Yang J 2021 The Current State and Future Development Trends of the Acoustics Discipline (Beijing: Science Press) pp1–30

    [5]

    王莎, 林书玉 2019 物理学报 68 024303Google Scholar

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 024303Google Scholar

    [6]

    Fu Z Q, Xian X J, Lin S Y, Wang C H, Hu W X, Li G Z 2012 Ultrasonics 52 578Google Scholar

    [7]

    Liang Z F, Mo X P, Zhou G P 2017 Acta Acust. 42 7

    [8]

    Rodríguez G, Riera E, Gallego-Juárez J A, Gallego-Juárez V M A, Pinto A, Martínez I, Blanco A 2010 Phys. Procedia 3 135Google Scholar

    [9]

    梁召峰, 周光平, 莫喜平 2009 压电与声光 31 760Google Scholar

    Liang Z F, Zhou G P, Mo X P 2009 Piezoelectr. Acoustoopt. 31 760Google Scholar

    [10]

    贺西平, 张海岛 2016 中国科学: 物理学 力学 天文学 3 17

    He X P, Zhang H D 2016 Sci. Sin. Phys. Mech. Astron. 3 17

    [11]

    许龙, 常燕, 郭林伟, 王月兵, 徐方迁 2016 声学学报 41 105

    Xu L, Chang Y, Guo L W, Wang Y B, Xu F Q 2016 Acta Acust. 41 105

    [12]

    许龙, 林书玉 2012 声学学报 37 408

    Xu J, Lin S Y 2012 Acta Acust. 37 408

    [13]

    Xu J, Lin S Y, Ma Y, Tang Y F 2017 Sensors-Basel 17 2850Google Scholar

    [14]

    梁召峰, 莫喜平, 周光平 2011 声学学报 36 369

    Liang Z F, Mo X P, Zhou G P 2011 Acta Acust. 36 369

    [15]

    Itoh K, Mori E 1972 J. Acoust. Soc. Jpn. 28 127Google Scholar

    [16]

    Itoh K, Mori E 1973 J. Acoust. Soc. Jpn. 29 28Google Scholar

    [17]

    Xu L, Qiu X J, Zhou J C, Li F M, Zhang H D, Wang Y B 2019 Smart Mater. Struct. 28 025017Google Scholar

    [18]

    杜耀东, 许龙, 周光平 2021 中国科学: 物理学 力学 天文学 51 10

    Du Y D, Xu L, Zhou G P 2021 Sci. Sin. Phys. Mech. Astron. 51 10

    [19]

    李凤鸣, 刘世清, 许龙, 张海岛, 曾小梅, 陈赵江 2023 中国科学: 物理学 力学 天文学 53 194

    Li F M, Liu S Q, Xu L, Zhang H D, Zeng X M, Chen Z J 2023 Sci. Sin. Phys. Mech. Astron. 53 194

    [20]

    许龙, 周锦程, 常燕, 李凤鸣, 李伟东 2018 声学学报 43 786

    Xu L, Zhou J C, Chang Y, Li F M, Li W D 2018 Acta Acust. 43 786

    [21]

    Khmelev V N, Shalunov A V, Nesterov V A 2021 Ultrasonics 114 106413Google Scholar

    [22]

    桑永杰, 蓝宇, 丁玥文 2016 物理学报 65 1Google Scholar

    Sang Y J, Lan Y, Ding Y W 2016 Acta Phys. Sin. 65 1Google Scholar

    [23]

    刘世清, 许龙, 张志良, 陈赵江, 沈建国 2014 声学学报 39 104

    Liu S Q, Xu L, Zhang Z L, Chen Z J, Shen J G 2014 Acta Acust. 39 104

    [24]

    Martin G E 1964 J. Acoust. Soc. Am. 36 1496Google Scholar

    [25]

    Kalthoff J F, Winkler S 1988 Impact Load. Dyn. Behav. Mater. 1 185

    [26]

    潘瑞, 莫喜平, 柴勇, 张秀侦, 田芝凤 2024 物理学报 73 194301Google Scholar

    Pan R, Mo X P, Chai Y, Zhang X Z, Tian Z F 2024 Acta Phys. Sin. 73 194301Google Scholar

    [27]

    Chen C, Dong Y L, Wang S, Hu L Q, Lin S Y 2022 J. Acoust. Soc. Am. 151 2712Google Scholar

    [28]

    赵福令, 冯冬菊, 郭东明, 方亚英 2002 声学学报 27 554Google Scholar

    Zhao F L, Feng D J, Guo D M, Fang Y Y 2002 Acta Acust. 27 554Google Scholar

    [29]

    Zhang X L, Liang B 2018 Appl. Acoust. 129 284Google Scholar

  • [1] LIN Jiyan, LI Yao, CHEN Cheng, LIU Weidong, LIN Shuyu, GUO Linwei, XU Jie. Surface and defect controlled high power piezoelectric ultrasonic transducers. Acta Physica Sinica, 2025, 74(9): 094301. doi: 10.7498/aps.74.20250047
    [2] WANG Yi, CHEN Cheng, LIN Shuyu. An ultrasonic transducer for vibration mode conversion of wedge-shaped structure of acoustic black hole. Acta Physica Sinica, 2025, 74(4): 044303. doi: 10.7498/aps.74.20241326
    [3] Lin Ji-Yan, Sun Jiao-Xia, Lin Shu-Yu. Intelligent optimization design of large-scale three-dimensional ultrasonic vibration system. Acta Physica Sinica, 2024, 73(8): 084304. doi: 10.7498/aps.73.20240006
    [4] Lin Ji-Yan, Chen Cheng, Guo Lin-Wei, Li Yao, Lin Shu-Yu, Sun Jiao-Xia, Xu Jie. Research on acoustic control of coupled vibration system of transducers using acoustic surface and topological defect structures. Acta Physica Sinica, 2024, 73(22): 224301. doi: 10.7498/aps.73.20241199
    [5] Zhang Yi-Shuang, Sang Yong-Jie, Chen Yong-Yao, Wu Shuai. Theoretical study on resonance frequencies of vibration modes of Janus-Helmholtz transducer. Acta Physica Sinica, 2024, 73(3): 034303. doi: 10.7498/aps.73.20231251
    [6] Ye Xin, Shan Yan-Guang. Numerical simulation of modal evolution and flow field structure of vibrating droplets on hydrophobic surface. Acta Physica Sinica, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [7] Chen Cheng, Lin Shu-Yu. A new broadband radial vibration ultrasonic transducer based on 2-2 piezoelectric composite material. Acta Physica Sinica, 2021, 70(1): 017701. doi: 10.7498/aps.70.20201352
    [8] Sun Wei-Bin, Wang Ting, Sun Xiao-Wei, Kang Tai-Feng, Tan Zi-Hao, Liu Zi-Jiang. Defect states and vibration energy recovery of novel two-dimensional piezoelectric phononic crystal plate. Acta Physica Sinica, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [9] Lou Guo-Feng, Yu Xin-Jie, Lu Shi-Hua. Equivalent circuit model for plate-type magnetoelectric laminate composite considering an interface coupling factor. Acta Physica Sinica, 2018, 67(2): 027501. doi: 10.7498/aps.67.20172080
    [10] Niu Xiao-Na, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Dong Yuan-Xiang. Vibrational density of states and boson peak in two-dimensional frictional granular assemblies. Acta Physica Sinica, 2016, 65(3): 036301. doi: 10.7498/aps.65.036301
    [11] Sun Run-Zhi, Wang Zhi-Zhong, Wang Mao-Sheng, Zhang Ji-Qian. Vibrational resonance and nonlinear vibrational resonance in square-lattice neural system. Acta Physica Sinica, 2015, 64(11): 110501. doi: 10.7498/aps.64.110501
    [12] Zhang Xiao-Li, Lin Shu-Yu, Fu Zhi-Qiang, Wang Yong. Study on resonance frequency and equivalent circuit parameters of a thin disk in flexural vibration. Acta Physica Sinica, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [13] Bai Chun-Jiang, Li Jian-Qing, Hu Yu-Lu, Yang Zhong-Hai, Li Bin. Calculation of beam-wave interaction of coupled-cavity TWT using equivalent circuit model. Acta Physica Sinica, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [14] Dai Xian-Zhi, Wen Yu-Mei, Li Ping, Yang Jin, Jiang Xiao-Fang. Vibration energy harvester based on magnetoelectric transducer. Acta Physica Sinica, 2010, 59(3): 2137-2146. doi: 10.7498/aps.59.2137
    [15] Hu Hui-Yong, Zhang He-Ming, Lü Yi, Dai Xian-Ying, Hou Hui, Ou Jian-Feng, Wang Wei, Wang Xi-Yuan. SiGe HBT large signal equivalent circuit model. Acta Physica Sinica, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
    [16] Eerdunchaolu, Li Shu-Shen, Xiao Jing-Lin. Effects of lattice vibration on the effective mass of quasi-two-dimensional strong-coupling polaron. Acta Physica Sinica, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [17] Li Hong-Qi. Quantization of mesoscopic quartz piezoelectric crystal equivalent circuit. Acta Physica Sinica, 2005, 54(3): 1361-1365. doi: 10.7498/aps.54.1361
    [18] WANG JUN-HONG. ANALYSIS OF THE PROPAGATING PROPERTIES OF PULSE VOLTAGE AND CURRENT ON DIPOLE AN TENNAS BY EQUIVALENT CIRCUIT METHOD. Acta Physica Sinica, 2000, 49(9): 1696-1701. doi: 10.7498/aps.49.1696
    [19] XIE ZUN, AN ZHONG, LI YOU-CHENG. TWO-DIMENSIONAL LOCALIZED VIBRATIONAL MODES OF POLYTHIOPHENE AROUND AN ELECTRONIC BIPOLARON. Acta Physica Sinica, 1999, 48(10): 1938-1943. doi: 10.7498/aps.48.1938
    [20] YAO KAI-LUN, LI ZHAN-JIE, XING BIAO. BOND-BENDING EFFECT ON LOCALIZED VIBRATIONS OF SOLITON FOR TRANS-(CH)x. Acta Physica Sinica, 1992, 41(1): 87-96. doi: 10.7498/aps.41.87
Metrics
  • Abstract views:  413
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2025
  • Accepted Date:  21 April 2025
  • Available Online:  27 April 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回