Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A damage detection method of plate structure using fan-shaped sensor clusters

HAN Yue MA Chenning LIU Jinxia ZHOU Zixian YAN Shouguo CUI Zhiwen

Citation:

A damage detection method of plate structure using fan-shaped sensor clusters

HAN Yue, MA Chenning, LIU Jinxia, ZHOU Zixian, YAN Shouguo, CUI Zhiwen
cstr: 32037.14.aps.74.20250382
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Plate structures are widely used in large-scale engineering fields such as aerospace, hull manufacturing, and construction. However, the plate structure is easily damaged during long-term service or when it is impacted by foreign objects. Such a damage may lead to serious safety accidents.Beamforming and L-shaped sensor cluster (LSSC) localization method can be used to locate the damage on the plate. However, when using beamforming method or LSSC localization method to locate the damages on plate-like structures, there exists blind area.In this paper, by combining the beamforming method and LSSC localization method, a fan-shaped sensor cluster localization method is proposed through arranging five sensors in a fan shape, which can effectively reduce the blind areas. The positions of damages in the plate can be accurately detected by using two groups of fan-shaped sensor clusters and one sensor for transmitting the excitation signal. The feasibility of the fan-shaped sensor cluster localization method is verified through numerical simulations and experiments, and the results are compared with those obtained by using the T-shaped sensor cluster. The results show that the fan-shaped sensor cluster localization method can more accurately identify the damages at different positions. Both simulation and experimental results indicate that the fan-shaped sensor cluster localization method can reduce the blind area and improve the accuracy of damage location.
      Corresponding author: LIU Jinxia, jinxia@jlu.edu.cn ; CUI Zhiwen, cuizw@jlu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Chongqing, China (Grant No. CSTB2022NSCQ-MSX1109), the State Key Laboratory of Acoustics and Marine Information, Chinese Academy of Sciences (Grant No. SKLA202512), the Research and Innovation Ability Improvement Program for Postgraduate of Education Department of Jilin Province, China (Grant No. JJKH20250050BS), and the Research and Innovation Ability Improvement Program for Postgraduate of Jilin University, China (Grant No. 2024KC040).
    [1]

    胡海峰 2011 博士学位论文 (长沙: 国防科学技术大学)

    Hu H F 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [2]

    冉启芳 1999 无损检测 21 75

    Ran Q F 1999 Nondestr. Test 21 75

    [3]

    邬冠华, 熊鸿建 2016 仪器仪表学报 37 1683Google Scholar

    Wu G H, Xiong H J 2016 Chin. J. Sci. Instrum. 37 1683Google Scholar

    [4]

    马国, 贾华东, 卢长煜, 陈理想, 张贵芝, 张立平, 杨超 2019 无损检测 41 62Google Scholar

    Ma G, Jia H D, Lu C Y, Chen L X, Zhang G Z, Zhang L P, Yang C 2019 Nondestr. Test 41 62Google Scholar

    [5]

    赵金玲 2017 博士学位论文 (南京: 南京航空航天大学)

    Zhao J L 2017 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics

    [6]

    孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章 2016 物理学报 65 167802Google Scholar

    Sun M J, Liu T, Cheng X Z, Chen D Y, Yan F G, Feng N Z 2016 Acta Phys. Sin. 65 167802Google Scholar

    [7]

    Humeida Y, Wilcox P D, Todd M D 2014 NDT E Int. 68 43Google Scholar

    [8]

    Luo K, Liu Y J, Liang W 2024 NDT & E Int. 143 103047Google Scholar

    [9]

    Chen S J, Zhou S P, Li Y, Xiang Y X, Qi M X 2017 Chin. Phys. Lett. 34 044301Google Scholar

    [10]

    王强, 袁慎芳 2008 航空学报 29 1061Google Scholar

    Wang Q, Yuan S F 2008 Acta Aeronaut. Astronaut. Sin. 29 1061Google Scholar

    [11]

    刘增华, 徐营赞, 何存富, 吴斌 2014 工程力学 31 232Google Scholar

    Liu Z H, Xu Y Z, He C F, Wu B 2014 Eng. Mech. 31 232Google Scholar

    [12]

    张海燕, 孙修立, 曹亚萍, 陈先华, 于建波 2010 物理学报 59 7111Google Scholar

    Zhang H Y, Sun X L, Cao Y P, Chen X H, Yu J B 2010 Acta Phys. Sin. 59 7111Google Scholar

    [13]

    Zhang G D, Kundu T, Deymier P A, Runge K 2025 Ultrasonics 145 107492Google Scholar

    [14]

    Xu C B, Wang Q, Gao Q J, Deng M X 2025 Mech. Syst. Signal Proc. 223 11926Google Scholar

    [15]

    张海燕, 杨杰, 范国鹏, 朱文发, 柴晓冬 2017 物理学报 66 214301Google Scholar

    Zhang H Y, Yang J, Fan G P, Zhu W F, Chai X D 2017 Acta Phys. Sin. 66 214301Google Scholar

    [16]

    Ambrozinski L, Stepinski T, Uhl T, Ochonski J, Klepka A 2012 Key Eng. Mater. 518 87Google Scholar

    [17]

    杨益新, 孙超, 鄢社锋, 马远良, 肖国有 2003 声学学报 28 504Google Scholar

    Yang Y X, Sun C, Yan S F, Ma Y L, Xiao G Y 2003 Acta Acust. 28 504Google Scholar

    [18]

    McLaskey G C, Glaser S D, Grosse C U 2010 J. Sound Vib. 329 2384Google Scholar

    [19]

    Wang W Q, Shao H Z 2014 IEEE J. Sel. Top. Signal Process. 8 106Google Scholar

    [20]

    Cantero C S, Aranguren G, Malik M K, Etxaniz J, Martín de la Escalera F 2020 Sensors 20 1445Google Scholar

    [21]

    He T, Pan Q, Liu Y G, Liu X D, Hu D Y 2012 Ultrasonics 52 587Google Scholar

    [22]

    Li L, Yang K, Bian X Y, Liu Q H, Yang Y Z, Ma F Y 2019 Sensors 19 3152Google Scholar

    [23]

    Zhang Z H, Zhong Y T, Xiang J W, Jiang Y Y, Wang Z L 2020 IEEE Sens J. 20 14932Google Scholar

    [24]

    Jung H K, Zhou S J, Park G 2019 J. Intell. Mater. Syst. Struct. 30 351Google Scholar

    [25]

    Wang Z L, Yuan S F, Qiu L, Liu B 2015 J. Vibroeng. 17 2338

    [26]

    Zhong Y T, Xiang J W 2019 Smart. Struct. Syst. 24 173Google Scholar

    [27]

    Yu L, Giurgiutiu V 2008 Ultrasonics 48 117Google Scholar

    [28]

    Kundu T 2012 European Workshop on Structural Health Monitoring Dresden, Germany, July 3–6, 2012 p2

    [29]

    Kundu T, Nakatani H, Takeda N 2012 Ultrasonics 52 740Google Scholar

    [30]

    Ma C N, Zhou Z X, Liu J X, Cui Z W, Kundu T 2023 Ultrasonics 132 107020Google Scholar

    [31]

    Yin S X, Cui Z W, Kundu T 2018 Ultrasonics 84 34Google Scholar

    [32]

    Yin S X, Xiao H P, Xu C B, Wang J S, Deng M X, Kundu T 2022 Ultrasonics 124 106770Google Scholar

    [33]

    Sen N, Gawroński M, Packo P, Uhl T, Kundu T 2021 Mech. Syst. Signal Proc. 153 107489Google Scholar

    [34]

    Zhou Z X, Cui Z W, Liu J X, Kundu T 2023 Eng. Fract. Mech. 277 108995Google Scholar

    [35]

    Gao Q, Jeon J Y, Park G, Kong Y, Shen Y D, Xiang J W 2021 J. Intell. Mater. Syst. Struct. 33 1028Google Scholar

    [36]

    Gao Q, Jeon J Y, Park G, Shen Y D, Xiang J W 2021 Struct. Health. Monit. 21 451Google Scholar

    [37]

    Gao Q, Jeon J Y, Xiang J W, Park G 2023 IEEE Sens. J. 23 2970Google Scholar

    [38]

    Xue C R, Xu G, Wang X K, Gao J C, Gao D J 2021 Ultrasonics 115 106438Google Scholar

  • 图 1  扇形传感器簇示意图

    Figure 1.  Schematic diagram of a fan-shaped sensor cluster.

    图 2  初步预测结果图 (a)实际角度为80°的预测结果; (b)实际角度为5°时的预测结果

    Figure 2.  Schematic diagram of initial forecast results: (a) Prediction of an actual DOA of 80°; (b) the prediction of an actual DOA of 5°.

    图 3  2 mm厚铝板相速度频散曲线

    Figure 3.  Phase velocity dispersion curves of an aluminum plate with a thickness of 2 mm.

    图 4  2 mm厚铝板的群速度频散曲线

    Figure 4.  Group velocity dispersion curves of an aluminum plate with a thickness of 2 mm.

    图 5  仿真中传感器布局示意图

    Figure 5.  Schematic diagram of sensors layout in the simulation.

    图 6  t = 70 μs的波场快照(损伤位于(100, –45))

    Figure 6.  Wavefield snapshot at t = 70 μs (the damage is located at (100, –45)).

    图 7  (a)损伤位于(100, –45)时, 传感器S1接收到的损伤信号与无损时的基线信号对比; (b)利用传感器S1接收到的有损信号减去基线信号得到的差值信号

    Figure 7.  (a) Damaged signal and the healthy signal received by the S1 when the damage is located at (100, –45); (b) the differential signal obtained by subtracting the healthy signal from the damaged signal received by the sensor S1.

    图 8  仿真定位结果示意图 (a) T形传感器簇定位结果; (b)扇形传感器簇定位结果

    Figure 8.  Schematic diagram of simulation localization results: (a) Localization results of T-shaped sensor cluster; (b) localization results of fan-shaped sensor cluster.

    图 9  (a)实验装置示意图; (b) OLYMPUS 5800脉冲信号发射器; (c)实验中使用示波器接收到的信号; (d) AE144S传感器

    Figure 9.  (a) Photo of the experimental setup; (b) OLYMPUS 5800 pulse signal transmitter; (c) the signal received by the oscilloscope in the experiment; (d) AE144S sensor.

    图 10  (a)损伤位于(105, –10)时, 下方扇形传感器簇中的S3接收到的损伤信号与无损时的基线信号对比; (b)经过滤波后, 利用传感器S3接收到的有损信号减去基线信号得到的差值信号

    Figure 10.  (a) Damaged aluminum signal and the healthy aluminum signal received by the S3 of the fan-shaped sensor cluster on the lower side when the damage is located at (105, –10); (b) the differential signal obtained by subtracting the healthy signal from the damaged signal received by the sensor S3 after filtering.

    图 11  实验定位结果示意图 (a) T形传感器簇定位结果; (b)扇形传感器簇定位结果

    Figure 11.  Schematic diagram of experimental localization results: (a) Localization results of T-shaped sensor cluster; (b) localization results of fan-shaped sensor cluster.

    表 1  铝板材料属性

    Table 1.  Material parameters of aluminum plate.

    材料属性 数值
    密度$\rho $/(kg·m–3) 2700
    泊松比$\sigma $ 0.33
    杨氏模量 E/GPa 70
    DownLoad: CSV

    表 2  传感器的位置坐标

    Table 2.  Coordinates of sensors.

    传感器标记 坐标/mm 传感器标记 坐标/mm
    S1 (–10.00, –50.00) S6 (–10.00, 50.00)
    S2 (0.00, –50.00) S7 (0.00, 50.00)
    S3 (10.00, –50.00) S8 (10.00, 50.00)
    S4 (7.07, –42.93) S9 (–7.07, 57.07)
    S5 (7.07, –57.07) S10 (–7.07, 42.93)
    DownLoad: CSV

    表 3  仿真定位结果与误差

    Table 3.  Simulation localization results and errors.

    编号 实际损伤坐标/mm T形传感器簇 扇形传感器簇
    预测损伤坐标/mm 误差/mm 预测损伤坐标/mm 误差/mm
    D1 (46.00, 123.00) (45.93, 125.16) 2.16 (46.29, 125.73) 2.75
    D2 (–90.00, 20.00) (–75.34, 11.45) 16.97 (–94.02, 24.28) 5.87
    D3 (130.00, 60.00) (133.83, 70.07) 10.77 (133.48, 64.39) 5.61
    D4 (30.00, –100.00) (34.30, –107.32) 8.49 (32.96, –105.08) 5.88
    D5 (–60.00, –60.00) (–54.31, –63.35) 9.27 (–54.58, –56.65) 6.37
    D6 (105.00, –10.00) (93.94, –6.28) 11.67 (105.19, –6.87) 3.14
    D7 (–35.00, 115.00) (–35.72, 118.03) 3.11 (–33.22, 113.27) 2.48
    D8 (100.00, –45.00) (84.55, –33.09) 19.51 (97.29, –44.28) 2.80
    DownLoad: CSV

    表 4  实验定位结果与误差

    Table 4.  Experimental localization results and errors.

    编号 实际损伤坐标/mm T形传感器簇 扇形传感器簇
    预测损伤坐标/mm 误差/mm 预测损伤坐标/mm 误差/mm
    D1 (46.00, 123.00) (42.39, 115.11) 8.68 (43.22, 114.82) 8.64
    D2 (–90.00, 20.00) (–106.88, 22.25) 17.03 (–96.76, 20.04) 6.76
    D3 (130.00, 60.00) (141.36, 66.56) 13.12 (124.69, 56.48) 6.37
    D4 (30.00, –100.00) (29.52, –97.61) 2.44 (31.51, –103.49) 3.80
    D5 (–60.00, –60.00) (–65.45, –60.33) 5.46 (–65.40, –60.12) 5.40
    D6 (105.00, –10.00) (94.63, –12.02) 10.56 (111.13, –14.78) 7.77
    D7 (–35.00, 115.00) (–36.40, 121.49) 6.64 (–40.94, 119.23) 7.29
    D8 (100.00, –45.00) (90.54, –33.69) 14.74 (106.07, –47.88) 6.72
    DownLoad: CSV
  • [1]

    胡海峰 2011 博士学位论文 (长沙: 国防科学技术大学)

    Hu H F 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [2]

    冉启芳 1999 无损检测 21 75

    Ran Q F 1999 Nondestr. Test 21 75

    [3]

    邬冠华, 熊鸿建 2016 仪器仪表学报 37 1683Google Scholar

    Wu G H, Xiong H J 2016 Chin. J. Sci. Instrum. 37 1683Google Scholar

    [4]

    马国, 贾华东, 卢长煜, 陈理想, 张贵芝, 张立平, 杨超 2019 无损检测 41 62Google Scholar

    Ma G, Jia H D, Lu C Y, Chen L X, Zhang G Z, Zhang L P, Yang C 2019 Nondestr. Test 41 62Google Scholar

    [5]

    赵金玲 2017 博士学位论文 (南京: 南京航空航天大学)

    Zhao J L 2017 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics

    [6]

    孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章 2016 物理学报 65 167802Google Scholar

    Sun M J, Liu T, Cheng X Z, Chen D Y, Yan F G, Feng N Z 2016 Acta Phys. Sin. 65 167802Google Scholar

    [7]

    Humeida Y, Wilcox P D, Todd M D 2014 NDT E Int. 68 43Google Scholar

    [8]

    Luo K, Liu Y J, Liang W 2024 NDT & E Int. 143 103047Google Scholar

    [9]

    Chen S J, Zhou S P, Li Y, Xiang Y X, Qi M X 2017 Chin. Phys. Lett. 34 044301Google Scholar

    [10]

    王强, 袁慎芳 2008 航空学报 29 1061Google Scholar

    Wang Q, Yuan S F 2008 Acta Aeronaut. Astronaut. Sin. 29 1061Google Scholar

    [11]

    刘增华, 徐营赞, 何存富, 吴斌 2014 工程力学 31 232Google Scholar

    Liu Z H, Xu Y Z, He C F, Wu B 2014 Eng. Mech. 31 232Google Scholar

    [12]

    张海燕, 孙修立, 曹亚萍, 陈先华, 于建波 2010 物理学报 59 7111Google Scholar

    Zhang H Y, Sun X L, Cao Y P, Chen X H, Yu J B 2010 Acta Phys. Sin. 59 7111Google Scholar

    [13]

    Zhang G D, Kundu T, Deymier P A, Runge K 2025 Ultrasonics 145 107492Google Scholar

    [14]

    Xu C B, Wang Q, Gao Q J, Deng M X 2025 Mech. Syst. Signal Proc. 223 11926Google Scholar

    [15]

    张海燕, 杨杰, 范国鹏, 朱文发, 柴晓冬 2017 物理学报 66 214301Google Scholar

    Zhang H Y, Yang J, Fan G P, Zhu W F, Chai X D 2017 Acta Phys. Sin. 66 214301Google Scholar

    [16]

    Ambrozinski L, Stepinski T, Uhl T, Ochonski J, Klepka A 2012 Key Eng. Mater. 518 87Google Scholar

    [17]

    杨益新, 孙超, 鄢社锋, 马远良, 肖国有 2003 声学学报 28 504Google Scholar

    Yang Y X, Sun C, Yan S F, Ma Y L, Xiao G Y 2003 Acta Acust. 28 504Google Scholar

    [18]

    McLaskey G C, Glaser S D, Grosse C U 2010 J. Sound Vib. 329 2384Google Scholar

    [19]

    Wang W Q, Shao H Z 2014 IEEE J. Sel. Top. Signal Process. 8 106Google Scholar

    [20]

    Cantero C S, Aranguren G, Malik M K, Etxaniz J, Martín de la Escalera F 2020 Sensors 20 1445Google Scholar

    [21]

    He T, Pan Q, Liu Y G, Liu X D, Hu D Y 2012 Ultrasonics 52 587Google Scholar

    [22]

    Li L, Yang K, Bian X Y, Liu Q H, Yang Y Z, Ma F Y 2019 Sensors 19 3152Google Scholar

    [23]

    Zhang Z H, Zhong Y T, Xiang J W, Jiang Y Y, Wang Z L 2020 IEEE Sens J. 20 14932Google Scholar

    [24]

    Jung H K, Zhou S J, Park G 2019 J. Intell. Mater. Syst. Struct. 30 351Google Scholar

    [25]

    Wang Z L, Yuan S F, Qiu L, Liu B 2015 J. Vibroeng. 17 2338

    [26]

    Zhong Y T, Xiang J W 2019 Smart. Struct. Syst. 24 173Google Scholar

    [27]

    Yu L, Giurgiutiu V 2008 Ultrasonics 48 117Google Scholar

    [28]

    Kundu T 2012 European Workshop on Structural Health Monitoring Dresden, Germany, July 3–6, 2012 p2

    [29]

    Kundu T, Nakatani H, Takeda N 2012 Ultrasonics 52 740Google Scholar

    [30]

    Ma C N, Zhou Z X, Liu J X, Cui Z W, Kundu T 2023 Ultrasonics 132 107020Google Scholar

    [31]

    Yin S X, Cui Z W, Kundu T 2018 Ultrasonics 84 34Google Scholar

    [32]

    Yin S X, Xiao H P, Xu C B, Wang J S, Deng M X, Kundu T 2022 Ultrasonics 124 106770Google Scholar

    [33]

    Sen N, Gawroński M, Packo P, Uhl T, Kundu T 2021 Mech. Syst. Signal Proc. 153 107489Google Scholar

    [34]

    Zhou Z X, Cui Z W, Liu J X, Kundu T 2023 Eng. Fract. Mech. 277 108995Google Scholar

    [35]

    Gao Q, Jeon J Y, Park G, Kong Y, Shen Y D, Xiang J W 2021 J. Intell. Mater. Syst. Struct. 33 1028Google Scholar

    [36]

    Gao Q, Jeon J Y, Park G, Shen Y D, Xiang J W 2021 Struct. Health. Monit. 21 451Google Scholar

    [37]

    Gao Q, Jeon J Y, Xiang J W, Park G 2023 IEEE Sens. J. 23 2970Google Scholar

    [38]

    Xue C R, Xu G, Wang X K, Gao J C, Gao D J 2021 Ultrasonics 115 106438Google Scholar

  • [1] Yang Wei-Tao, Wu Yi-Chen, Xu Rui-Ming, Shi Guang, Ning Ti, Wang Bin, Liu Huan, Guo Zhong-Jie, Yu Song-Lin, Wu Long-Sheng. Geant4 simulation of Hg1–xCdxTe infrared focal plane array image sensor space proton displacement damage and total ionizing dose effects. Acta Physica Sinica, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] Xiao Sheng-Jie, Lin Min, Zhao Bai, Lin Zhi, Cheng Ming. Robust secure beamforming algorithm for intelligent reflecting surface-assisted satellite-terrestrial integrated networks. Acta Physica Sinica, 2022, 71(7): 078401. doi: 10.7498/aps.71.20212032
    [3] Zhou Zi-Tong, Yan Shao-Hua, Zhao Wei-Sheng, Leng Qun-Wen. Research progress of tunneling magnetoresistance sensor. Acta Physica Sinica, 2022, 71(5): 058504. doi: 10.7498/aps.71.20211883
    [4] Feng Jie, Cui Yi-Hao, Li Yu-Dong, Wen Lin, Guo Qi. Influence mechanism and recognition algorithm of CMOS active pixel sensor radiation damage on star sensor star map recognition. Acta Physica Sinica, 2022, 71(18): 184208. doi: 10.7498/aps.71.20220894
    [5] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [6] Sun Jia-Cheng, Wang Ting-Ting, Dai Yang, Chang Jian-Hua, Ke Wei. Multi-parameter measurement sensor based on no-core fiber. Acta Physica Sinica, 2021, 70(6): 064202. doi: 10.7498/aps.70.20201474
    [7] Hou Xing-Yu, Guo Chuan-Fei. Sensing mechanisms and applications of flexible pressure sensors. Acta Physica Sinica, 2020, 69(17): 178102. doi: 10.7498/aps.69.20200987
    [8] Li Sheng-You, Liu Jia-Rong, Wen Hao, Liu Xiang-Yang, Guo Wen-Xi. Recent advances in silk-based wearable sensors. Acta Physica Sinica, 2020, 69(17): 178703. doi: 10.7498/aps.69.20200818
    [9] Zhou Da-Fang, Zhang Shu-Lin, Jiang Shi-Qin. The method of suppressing spatial filter output noise-power gain for cardiac electrical activity imaging. Acta Physica Sinica, 2018, 67(15): 158702. doi: 10.7498/aps.67.20180294
    [10] Huang Le, Zhang Zhi-Yong, Peng Lian-Mao. High performance graphene Hall sensors. Acta Physica Sinica, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [11] Jiang Rui, Yang Zhen. An improved centroid localization algorithm based on iterative computation for wireless sensor network. Acta Physica Sinica, 2016, 65(3): 030101. doi: 10.7498/aps.65.030101
    [12] Zhang Hai-Yang, Huang Yong-Ming, Yang Lü-Xi. Beamforming design based on energy harvesting proportional fairness in a simultaneous wireless information and power transfer system. Acta Physica Sinica, 2015, 64(2): 028402. doi: 10.7498/aps.64.028402
    [13] Li Xin, Wang Lu-Na, Guo Shi-Liang, Li Zhi-Quan, Yang Ming. Doubled temperature measurement range for a single micro-ring sensor. Acta Physica Sinica, 2014, 63(15): 154209. doi: 10.7498/aps.63.154209
    [14] Hao Ben-Jian, Li Zan, Wan Peng-Wu, Si Jiang-Bo. Passive source localization using RROA based on eigenvalue decomposition algorithm in WSNs. Acta Physica Sinica, 2014, 63(5): 054304. doi: 10.7498/aps.63.054304
    [15] Feng Li-Hang, Zeng Jie, Liang Da-Kai, Zhang Wei-Gong. Development of fiber-optic surface plasmon resonance sensor based on tapered structure probe. Acta Physica Sinica, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [16] Zhao Long, Yan Ting-Jun. Positioning performance evaluation of magnetic contour matching under different accuracy of sensor. Acta Physica Sinica, 2013, 62(6): 067702. doi: 10.7498/aps.62.067702
    [17] Wang Ya-Qi, Yang Xiao-Yuan. Study on a model of topology evolution of wireless sensor networks among cluster heads and its immunization. Acta Physica Sinica, 2012, 61(9): 090202. doi: 10.7498/aps.61.090202
    [18] Kong Yan-Mei, Gao Chao-Qun, Jing Yu-Peng, Chen Da-Peng. The research of the air-sensitive sensor based on thephotonic crystal beam splitter. Acta Physica Sinica, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [19] Li Zheng-Ying, Wang Hong-Hai, Jiang Ning, Cheng Song-Lin, Zhao Lei, Yu Xin. Demodulation method for second harmonic signal in optical fiber gas sensor. Acta Physica Sinica, 2009, 58(6): 3821-3826. doi: 10.7498/aps.58.3821
    [20] Guo Wen-Gang, Yang Xiu-Feng, Luo Shao-Jun, Li Yong-Nan, Tu Cheng-Hou, Lü Fu-Yun, Wang Hong-Jie, Li En-Bang, Lü Chao. A fiber sensor for measuring gas concentration based on laser’s transient regime. Acta Physica Sinica, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
Metrics
  • Abstract views:  273
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  24 March 2025
  • Accepted Date:  13 April 2025
  • Available Online:  24 April 2025
  • Published Online:  20 June 2025

/

返回文章
返回