Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Discrete unified gas kinetic scheme and its application in multi-scale heat conduction

ZHANG Chuang GUO Zhaoli

Citation:

Discrete unified gas kinetic scheme and its application in multi-scale heat conduction

ZHANG Chuang, GUO Zhaoli
cstr: 32037.14.aps.74.20250694
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Multiscale particle transport problems are universally existent in the fields of precision manufacturing, nanomaterials, energy and power, national defense and military. Such issues involve large-scale length and time scales, posing great challenges to physical modeling and numerical simulation. In order to study multiscale particle transport problems, cross-scale numerical simulation based on the Boltzmann transport equation has become an effective method. However the nonlinear, multi-scale, and high-dimensional characteristics of the equation pose significant challenges to the stability, compatibility, computational efficiency/accuracy, and asymptotic preserving property of numerical methods. In recent years, many multiscale kinetic methods applicable to any Knudsen numbers have been developed, and one of them is the discrete unified gas kinetic scheme. Unlike the traditional direct numerical interpolation scheme, the discrete unified gas kinetic scheme reconstructs the distribution function at the cell interface through the characteristic solution of the kinetic equation in both time and position space, thereby coupling, accumulating, and calculating particle transport and collision effects on a numerical time step scale. Based on the idea of incorporating the evolution of physical equations into the construction process of numerical methods, the cell size and time step of this method are no longer limited by the mean free path and relaxation time of particles, therefore, the multiscale particle transport problems from the ballistic to diffusive limit can be adaptively and efficiently simulated. A large number of numerical results show that the present scheme has good numerical stability and low numerical dissipation, and it is not limited by the Knudsen number or Mach number. Based on the framework of the finite volume method, this method has been successfully applied to micro/nano scale fluid flow and heat transfer, hypersonic aircraft flows, solid-material thermal conduction, radiation, plasma, and turbulence. This paper mainly reviews the method and discusses its future prospects in the field of multi-scale heat conduction in solid materials, including applications in phonon transport, electron-phonon coupling, phonon hydrodynamic heat conduction, and thermal management of electronic equipment.
      Corresponding author: GUO Zhaoli, zlguo@hust.edu.cn
    • Funds: Project supported by the Interdisciplinary Research Support Program of Huazhong University of Science and Technology, China (Grant No. 2023JCYJ002).
    [1]

    Stettler M A, Cea S M, Hasan S, Jiang L, Keys P H, Landon C D, Marepalli P, Pantuso D, Weber C E 2021 IEEE T. Electron Dev. 68 5350Google Scholar

    [2]

    陈锦峰, 朱林繁 2024 物理学报 73 095201Google Scholar

    Chen J F, Zhu L F 2024 Acta Phys. Sin. 73 095201Google Scholar

    [3]

    中国科学院 2022 中国学科发展战略: 电子设备热管理 (北京: 科学出版社)

    Chinese Academy of Sciences 2022 Chinese Discipline Development Strategy: Thermal Management of Electronic Devices (Beijing: Science Press

    [4]

    Bird G A 1994 Molecular Gas Dynamics And The Direct Simulation Of Gas Flows (Oxford University Press

    [5]

    段文晖, 张刚 2017 纳米材料热传导. 21世纪理论物理及其交叉学科前沿丛书 (北京: 科学出版社)

    Duan W H, Zhang G 2017 Nanomaterial Thermal Conductivity Series on Theoretical Physics and Its Interdisciplinary Frontiers in the 21st Century (Beijing: Science Press

    [6]

    Chen G 2021 Nat. Rev. Phys. 3 555Google Scholar

    [7]

    Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002Google Scholar

    [8]

    罗天麟, 丁亚飞, 韦宝杰, 杜建迎, 沈翔瀛, 朱桂妹, 李保文 2023 物理学报 72 234401Google Scholar

    Luo T L, Ding Y F, Wei B J, Tu J Y, Zhu G M, Li B W 2023 Acta Phys. Sin. 72 234401Google Scholar

    [9]

    曹炳阳 2023 纳米结构的非傅里叶导热 (北京: 科学出版社)

    Cao B Y 2023 Non Fourier Thermal Conductivity of Nanostructured Materials (Beijing: Science Press) (Beijing: Science Press

    [10]

    Tang Z L, Shen Y, Cao B Y 2025 IEEE T. Electron Dev. 72 1907Google Scholar

    [11]

    吴志鹏, 张创, 胡世谦, 马登科, 杨诺 2023 物理学报 72 184401Google Scholar

    Wu Z P, Zhang C, Hu S Q, Ma D K, Yang N 2023 Acta Phys. Sin. 72 184401Google Scholar

    [12]

    赵瑾, 孙向春, 张俊, 唐志共, 文东升 2022 航空学报 43 89Google Scholar

    Zhao J, Sun X C, Zhang J, Tang Z G, Wen D S 2022 Acta Aeron. Aston. Sin. 43 89Google Scholar

    [13]

    沈青 2003 稀薄气体动力学 (北京: 国防工业出版社)

    Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press

    [14]

    樊菁 2013 力学进展 43 185Google Scholar

    Fan J 2013 Adv. Mech. 43 185Google Scholar

    [15]

    陈伟芳, 赵文文 2017 稀薄气体动力学矩方法及数值模拟 (上海: 科学出版社)

    Chen W F, Zhao W W 2017 Thin Gas Dynamics Moment Method and Numerical Simulation (Shanghai: Science Press

    [16]

    靳旭红, 黄飞, 张俊, 王学德, 程晓丽, 沈清 2024 航空学报 45 30254Google Scholar

    Ji X H, Huang F, ZHANG J, Wang X D, Cheng X L, Shen Q 2024 Acta Aeron. Aston. Sin. 45 30254Google Scholar

    [17]

    Jin S 1999 SIAM J Sci. Comput. 21 441Google Scholar

    [18]

    Xu K 2015 Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes (Singapore: World Scientific

    [19]

    Guo Z, Li J, Xu K 2023 Phys. Rev. E 107 025301Google Scholar

    [20]

    Adams M L, Larsen E W 2002 Prog. Nucl. Energ. 40 3Google Scholar

    [21]

    Guo W, Bai B, Sawin H H 2009 J. Vac. Sci. Technol. A 27 388Google Scholar

    [22]

    Chen G 2005 Nanoscale Energy Transport and Conversion: A Parallel Ttreatment of Electrons, Molecules, Phonons, and Photons (Oxford: Oxford University Press

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [24]

    Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys-condens. Mat. 21 395502Google Scholar

    [25]

    Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922Google Scholar

    [26]

    Kim H, Son D, Myeong I, Kang M, Jeon J, Shin H 2018 IEEE T. Electron Dev. 65 4520Google Scholar

    [27]

    Zhang C, Lou Q, Liang H 2025 Int. J. Heat Mass Transfer 236 126374Google Scholar

    [28]

    Joseph D D, Preziosi L 1989 Rev. Mod. Phys. 61 41Google Scholar

    [29]

    Kovács R 2024 Phys. Rep. 1048 1Google Scholar

    [30]

    Succi S, Karlin I V, Chen H 2002 Rev. Mod. Phys. 74 1203Google Scholar

    [31]

    Kaviany M 2008 Heat transfer physics (Cambridge University Press

    [32]

    Kubo R T M, N H 1991 Statistical Physics II Nonequilibrium Statistical Mechanics. Springer Series in Solid State Sciences (Springer, Berlin, Heidelberg

    [33]

    Sydney Chapman C C T G Cowling 1995 The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases Cambridge Mathematical Library, (3rd Ed.) (Cambridge: Cambridge University Press

    [34]

    Cheremisin F 1985 USSR Comp. Math. Math. Phys. 25 156Google Scholar

    [35]

    吴雷, 张勇豪, 李志辉 2017 中国科学: 物理学 力学 天文学 47 070004Google Scholar

    Wu L, Zhang Y H, Li Z H 2017 Sci. Sin. Phys. Mech. Astron. 47 070004Google Scholar

    [36]

    Li W, Carrete J, Katcho] N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [37]

    Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 766Google Scholar

    [38]

    Hardy R J, Albers D L 1974 Phys. Rev. B 10 3546Google Scholar

    [39]

    Murthy J Y, Narumanchi S V J, Pascual-Gutierrez J A, Wang T, Ni C, Mathur S R 2005 Int. J. Multiscale Computat. Eng. 3 5Google Scholar

    [40]

    许爱国, 张玉东 2022 复杂介质动理学 (北京: 科学出版社)

    Xu A G, Zhang Y D 2022 Complex Media Dynamics (Beijing: Science Press

    [41]

    Callaway J 1959 Phys. Rev. 113 1046Google Scholar

    [42]

    曾嘉楠, 李琪, 吴雷 2022 空气动力学学报 40 1Google Scholar

    Zeng J N, Li Q, Wu L 2022 Acta Aerodyn. Sin. 40 1Google Scholar

    [43]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511Google Scholar

    [44]

    Dimarco G, Pareschi L 2014 Acta Numer. 23 369Google Scholar

    [45]

    Mazumder S 2022 Annu. Rev. Heat Transfer 24 71Google Scholar

    [46]

    Struchtrup H 2006 Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory. Interaction of Mechanics and Mathematics (Berlin Heidelberg: Springer

    [47]

    Guo Y, Wang M 2015 Phys. Rep. 595 1Google Scholar

    [48]

    华钰超, 曹炳阳, 过增元 2015 科学通报 60 2344Google Scholar

    Hua Y C, Cao B Y, Guo Z Y 2015 Chin. Sci. Bull. 60 2344Google Scholar

    [49]

    Sendra L, Beardo A, Torres P, Bafaluy J, Alvarez F X, Camacho J 2021 Phys. Rev. B 103 L140301Google Scholar

    [50]

    Burnett D 1936 P. Lond. Math. Soc. s2-40 382Google Scholar

    [51]

    Cattaneo C 1948 Atti Sem. Mat. Fis. Univ. Modena 3 83

    [52]

    Grad H 1949 Commun. Pur. Appl. Math. 2 331Google Scholar

    [53]

    Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 778Google Scholar

    [54]

    Struchtrup H, Torrilhon M 2003 Phys. Fluids 15 2668Google Scholar

    [55]

    Wu L, Gu X J 2020 Adva. Aerodyn. 2 2Google Scholar

    [56]

    Weinan E, Han J Q, Zhang L F 2021 Phys. Today 74 36Google Scholar

    [57]

    Han J F, Ma C, Ma Z, Weinan E 2019 Proc. Natl. Acad. Sci. 116 21983Google Scholar

    [58]

    Zhao J, Zhao W, Ma Z, Yong W A, Dong B 2022 Int. J. Heat Mass Transfer 185 122396Google Scholar

    [59]

    Chen L, Zhang C, Zhao J 2024 Phys. Rev. E 110 025303Google Scholar

    [60]

    Bird G A 1963 Phys. Fluids 6 1518Google Scholar

    [61]

    Klitsner T, VanCleve J E, Fischer H E, Pohl R O 1988 Phys. Rev. B 38 7576Google Scholar

    [62]

    Peterson R B 1994 J. of Heat Transfer 116 815Google Scholar

    [63]

    Mazumder S, Majumdar A 2001 J. Heat Transfer 123 749Google Scholar

    [64]

    Peraud J P M, Landon C D, Hadjiconstantinou N G 2014 Annu. Rev. Heat Transfer 17 205Google Scholar

    [65]

    Shen Y, Yang H A, Cao B Y 2023 Int. J. Heat Mass Transfer 211 124284Google Scholar

    [66]

    Wollaber A B 2016 J. Comput. Theor. Trans. 45 1Google Scholar

    [67]

    Pareschi L, and G R 2000 Transp. Theory Stat. Phys. 29 415Google Scholar

    [68]

    Liu C, Zhu Y, Xu K 2020 J. Comput. Phys. 401 108977Google Scholar

    [69]

    Fei F, Zhang J, Li J, Liu Z 2020 J. Comput. Phys. 400 108972Google Scholar

    [70]

    Baker L L, Hadjiconstantinou N G 2005 Phys. Fluids 17 051703Google Scholar

    [71]

    Péraud J P M, Hadjiconstantinou N G 2011 Phys. Rev. B 84 205331Google Scholar

    [72]

    Carrete J, Vermeersch B, Katre A, [van Roekeghem] A, Wang T, Madsen G K, Mingo N 2017 Comput. Phys. Commun. 220 351Google Scholar

    [73]

    Pathak A, Pawnday A, Roy A P, Aref A J, Dargush G F, Bansal D 2021 Comput. Phys. Commun. 265 108003Google Scholar

    [74]

    Yang R, Chen G, Laroche M, Taur Y 2005 J. Heat Transfer 127 298Google Scholar

    [75]

    舒昌, 杨鲤铭, 王岩, 吴杰 2022 南京航空航天大学学报 54 801Google Scholar

    Shu C, Yang L M, Wang Y, Wu J 2022 J. Nanjing Univ.Aeron. Astron. 54 801Google Scholar

    [76]

    Guo Z, Xu K 2021 Adva. Aerodyn. 3 6Google Scholar

    [77]

    Romano G 2021 arXiv: 2106.02764

    [78]

    Chen S, Chen H, Martnez D, Matthaeus W 1991 Phys. Rev. Lett. 67 3776Google Scholar

    [79]

    Qian Y H, d’Humières D, Lallemand P 1992 EPL 17 479Google Scholar

    [80]

    Chen H, Chen S, Matthaeus W H 1992 Phys. Rev. A 45 R5339Google Scholar

    [81]

    Mittal A, Mazumder S 2011 J. Comput. Phys. 230 6977Google Scholar

    [82]

    Loy J M, Murthy J Y, Singh D 2012 J. Heat Transfer 135 011008Google Scholar

    [83]

    Hao Q, Zhao H, Xiao Y 2017 J. Appl. Phys. 121 204501Google Scholar

    [84]

    Hua Y C, Shen Y, Tang Z L, Tang D S, Ran X, Cao B Y 2023 Adv. Heat Transf. 56 355Google Scholar

    [85]

    Xu K, Huang J C 2010 J. Comput. Phys. 229 7747Google Scholar

    [86]

    刘畅, 徐昆 2020 空气动力学学报 38 197Google Scholar

    Liu C, Xu K 2020 Acta Aerodyn. Sin. 38 197Google Scholar

    [87]

    Kopp H J 1963 Nucl. Sci. Eng. 17 65Google Scholar

    [88]

    Alcouffe R E 1977 Nucl. Sci. Eng. 64 344Google Scholar

    [89]

    Zhang C, Guo Z, Chen S 2017 Phys. Rev. E 96 063311Google Scholar

    [90]

    Frisch U, Hasslacher B, Pomeau Y 1986 Phys. Rev. Lett. 56 1505Google Scholar

    [91]

    Guo Z, Shu C 2013 Lattice Boltzmann Method and Its Applications in Engineering (Vol. 3) (Singapore: World Scientific

    [92]

    Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press

    [93]

    Ali S A, Kollu G, Mazumder S, Sadayappan P, Mittal A 2014 Int. J. Therm. Sci 86 341Google Scholar

    [94]

    Lathrop K D 1968 Nucl. Sci. Eng. 32 357Google Scholar

    [95]

    Chai J C, Lee H S, Patankar S V 1993 Numer. Heat Transf. Part B 24 373Google Scholar

    [96]

    Guo Z L, Xu K, Wang R J 2013 Phys. Rev. E 88 033305Google Scholar

    [97]

    Guo Z L, Wang R J, Xu K 2015 Phys. Rev. E 91 033313Google Scholar

    [98]

    Guo Z L, Xu K 2016 Int. J. Heat Mass Transfer 102 944Google Scholar

    [99]

    Lian M, Zhang C, Guo Z L, Lü J T 2024 Phys. Rev. E 109 065310Google Scholar

    [100]

    Song X L, Zhang C, Zhou X F, Guo Z L 2020 Adva. Aerodyn. 2 3Google Scholar

    [101]

    Liu H, Quan L, Chen Q, Zhou S, Cao Y 2020 Phys. Rev. E 101 043307Google Scholar

    [102]

    Yuan R F, Zhong C 2020 Comput. Phys. Commun. 247 106972Google Scholar

    [103]

    Yuan R F, Liu S, Zhong C W 2021 Commun. Nonlinear Sci. 92 105470Google Scholar

    [104]

    Zhang C, Wu L 2022 Phys. Rev. E 106 014111Google Scholar

    [105]

    Zhang C, Xin Z Y, Lou Q, Liang H 2025 Appl. Therm. Eng. 271 126293Google Scholar

    [106]

    Liu P Y, Wang P, Jv L, Guo Z L 2021 Commun. Comput. Phys. 29 265Google Scholar

    [107]

    Qi Y, Chen T, Wang L P, Guo Z L, Chen S Y 2022 Phys. Fluids 34 116101Google Scholar

    [108]

    Liu W E, Feng Y D, Li R L, Bai C H, Niu B F 2024 Comput. Phys. Commun. 299 109157Google Scholar

    [109]

    Harter J R, Hosseini S A, Palmer T S, Greaney P A 2019 Int. J. Heat Mass Transfer 144 118595Google Scholar

    [110]

    Fiveland V A, Jessee J P 1996 J. Thermophys. Heat Transfer. 10 445Google Scholar

    [111]

    Loy S R M James M, Murthy J Y 2015 J. Heat Transfer 137 012402Google Scholar

    [112]

    Randrianalisoa J, Baillis D 2008 J. Heat Transfer 130 072404Google Scholar

    [113]

    Ran X, Wang M R 2022 J. Heat Transf. 144 082502Google Scholar

    [114]

    Mieussens L 2000 Math. Models Methods Appl. Sci. 10 1121Google Scholar

    [115]

    Chacón L, Chen G, Knoll D A, Newman C, Park H, Taitano W, Willert J A, Womeldorff G 2017 J. Comput. Phys. 330 21Google Scholar

    [116]

    Zhu Y J, Zhong C W, Xu K 2016 J. Comput. Phys. 315 16Google Scholar

    [117]

    Su W, Wang P, Liu H H, Wu L 2019 J. Comput. Phys. 378 573Google Scholar

    [118]

    Zhang R, Liu S, Chen J, Zhuo C, Zhong C 2024 Phys. Fluids 36 016114Google Scholar

    [119]

    Zhang C, Guo Z, Chen S 2019 Int. J. Heat Mass Transfer 130 1366Google Scholar

    [120]

    Zhang C, Chen S Z, Guo Z L, Wu L 2021 Int. J. Heat Mass Transfer 174 121308Google Scholar

    [121]

    Zhang C, Huberman S, Song X L, Zhao J, Chen S Z, Wu L 2023 Int. J. Heat Mass Transfer 217 124715Google Scholar

    [122]

    Hu Y, Shen Y S, Bao H 2024 Fundam. Res. 4 907Google Scholar

    [123]

    Hu Y, Jia R, Xu J X, Sheng Y F, Wen M H, Lin J, Shen Y X, Bao H 2024 J. Phys-condens. Mat. 36 025901Google Scholar

    [124]

    Succi S 2015 EPL 109 50001Google Scholar

    [125]

    Jeong J, Li X, Lee S, Shi L, Wang Y G 2021 Phys. Rev. Lett. 127 085901Google Scholar

    [126]

    Huberman S C 2018 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Technology

    [127]

    Huberman S, Duncan R A, Chen K, et al. 2019 Science 364 375Google Scholar

    [128]

    Hao Q, Chen G, Jeng M S 2009 J. Appl. Phys. 106 114321Google Scholar

    [129]

    Zhang C, Guo Z L 2019 Int. J. Heat Mass Transfer 134 1127Google Scholar

    [130]

    Zhu L H, Chen S Z, Guo Z L 2017 Comput. Phys. Commun. 213 155Google Scholar

    [131]

    Zhang Q, Wang Y L, Pan D H, Chen J F, Liu S, Zhuo C S, Zhong C W 2022 Comput. Phys. Commun. 278 108410Google Scholar

    [132]

    Karzhaubayev K, Wang L P, Zhakebayev D 2024 Comput. Phys. Commun. 301 109216Google Scholar

    [133]

    Zhang F F, Wang Y L, Zhang R, Guo J, Zhao T H, Liu S, Zhuo C S, Zhong C W 2025 Adv. Eng. Softw. 201 103840Google Scholar

    [134]

    Luo X P, Yi H L 2017 Int. J. Heat Mass Transfer 114 970Google Scholar

    [135]

    Huberman S, Zhang C, Haibeh J A 2022 arXiv: 2206.02769

    [136]

    Luo X P, Guo Y Y, Wang M R, Yi H L 2019 Phys. Rev. B 100 155401Google Scholar

    [137]

    Zhang C, Guo R L, Lian M, Shiomi J 2024 Appl. Therm. Eng. 249 123379Google Scholar

    [138]

    Lee S, Broido D, Esfarjani K, Chen G 2015 Nat. Commun. 6 6290Google Scholar

    [139]

    Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F, Marzari N 2015 Nat. Commun. 6 6400Google Scholar

    [140]

    Machida Y, Martelli V, Jaoui A, Fauqué B, Behnia K 2024 Low Temp. Phys. 50 574Google Scholar

    [141]

    Zhang C, Chen S Z, Guo Z L 2021 Int. J. Heat Mass Transfer 176 121282Google Scholar

    [142]

    Zhang C, Wu L 2025 Appl. Phys. Lett. 126 032201Google Scholar

    [143]

    Tur-Prats J, Gutiérrez-Pérez M, Bafaluy J, Camacho J, Alvarez F X, Beardo A 2024 Int. J. Heat Mass Transfer 226 125464Google Scholar

    [144]

    Shang M Y, Zhang C, Guo Z L, Lü J T 2020 Sci. Rep. 10 8272Google Scholar

    [145]

    Guo Y, Zhang Z, Nomura M, Volz S, Wang M 2021 Int. J. Heat Mass Transfer 169 120981Google Scholar

    [146]

    Raya-Moreno M, Carrete J, Cartoixà X 2022 Phys. Rev. B 106 014308Google Scholar

    [147]

    Liu C J, Wang Y Q, Yang Y, Duan Z W 2016 Sci. China Phys. Mech. Astron. 59 684711Google Scholar

    [148]

    Sýkora M, Pavelka M, Restuccia L, Jou D 2023 Phys. Scr. 98 105234Google Scholar

    [149]

    Zhang C, Guo Z L 2021 Int. J. Heat Mass Transfer 181 121847Google Scholar

    [150]

    Qian X, Zhang C, Liu T H, Yang R 2025 Phys. Rev. B 111 035406Google Scholar

    [151]

    Shan B, Wang P, Zhang Y, Guo Z L 2020 Phys. Rev. E 101 043303Google Scholar

    [152]

    Simoncelli M, Marzari N, Mauri F 2022 Phys. Rev. X 12 041011Google Scholar

    [153]

    Zhang Y, Zhang C, Xinliang S, Zhaoli G 2025 Commun. Comput. Phys. 37 383Google Scholar

    [154]

    Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S, Yang L 2021 Nat. Rev. Phys. 3 422Google Scholar

    [155]

    Weinan E 2021 Not. Am. Math. Soc. 68 565Google Scholar

    [156]

    Liu S, Xu K, Zhong C 2022 Acta Mech. Sin. 38 122123Google Scholar

    [157]

    Liu H, Yang X, Zhang C, Ji X, Xu K 2025 arXiv: 2505.09297

    [158]

    Raissi M, Perdikaris P, Karniadakis G 2019 J. Comput. Phys. 378 686Google Scholar

    [159]

    Lin Q, Zhang C, Meng X, Guo Z L 2024 arXiv: 2505.09297

  • 图 1  DUGKS在多尺度粒子输运领域的发展[76], 涵盖气体分子[96,97]、声子[98]、电子[99]、光子[100]和等离子体[101]等 (a) 稀薄高超声速流动[102,103], 其中位置和动量空间均采用非结构网格离散; (b) 电子设备导热[104,105]: 瞬态温度与热流分布; (c) 等离子体输运: 非平衡分布函数在位置和动量空间的分布; (d) 辐射输运[100]; (e) 不可压低速渗流[106]: 温度分布与速度流线; (f) 可压缩衰减湍流[107]: 同一时刻, 涡量的模/涡量的均方根为 2的等值面

    Figure 1.  Development of DUGKS in the field of multiscale particle transport[76] covers gas molecules[96,97], phonons[98], electrons[99], photons[100] and plasma[101], etc: (a) Rarefied hypersonic flow[102,103], where both position and momentum space are discretized using unstructured meshes; (b) thermal conduction in electronic devices[104,105]: transient temperature and heat flux distribution; (c) plasma transport: distribution of nonequilibrium distribution functions in position and momentum space; (d) radiative transport[100]; (e) incompressible low-speed seepage flow[106]: temperature distribution and velocity streamlines; (f) compressible decaying turbulence[107]: isosurfaces of the vorticity modu-lus/vorticity root mean square equals 2 at the same time.

    图 2  不同介观方法因其数值建模过程的差异, 在不同的适用范围或时空尺度上展现其各自的优越性[2,18,20,30,66,76,115,121,124]

    Figure 2.  Different mesoscopic methods demonstrate their respective advantages in different scopes of application or spatiotemporal scales due to differences in their numerical modeling processes[2,18,20,30,66,76,115,121,124].

    图 3  常用的声子BTE模型或近似处理[29,41,47,123,126], 非灰与灰体模型的区别在于是否考虑声子色散关系或频率依赖特性, 动量空间: 各向异性或各向同性; 平衡态分布: 采用非线性的Bose-Einstein平衡态分布或引入比热作线性化近似处理

    Figure 3.  Commonly used phonon BTE models or approximations[29,41,47,123,126], the difference between non-gray and gray models lies in whether the phonon dispersion relation or frequency dependence is considered. Momentum space: anisotropic or isotropic; equilibrium distribution: using nonlinear Bose-Einstein equilibrium distribution or introducing specific heat for linear approximation.

    图 4  常温下硅材料中不同平均自由程的声子模式占比, 其中声子物性参数由第一性原理计算得到[123]

    Figure 4.  The proportion of phonon modes with different mean free paths in silicon materials at room temperature, where the phonon physical properties are obtained by first-principles calculations[123].

    图 5  有限体积框架下DUGKS沿着特征线方向重构网格界面处的分布函数[21,78,98,100,131]

    Figure 5.  DUGKS reconstructs the distribution function along the characteristic line direction at the cell interface in the finite volume framework[21,78,98,100,131].

    图 6  多尺度粒子输运模拟流程[102,118,130133], 即前处理-DUGKS求解器-后处理. 前处理: 动量空间和位置空间均可采用结构/非结构/自适应网格等, 输入参数—弛豫时间和色散关系等, 可以通过第一性原理计算、实验或经验公式等方式获取; DUGKS求解器: 分布函数在时间和位置空间的演化过程; 后处理: 通过分布函数求矩得到宏观量并计算相关等效参数, 不局限于经典的宏观本构关系

    Figure 6.  Multiscale particle transport simulation process[102,118,130133]: Pre-processing-DUGKS solver-post-processing. Pre-processing: Both momentum space and position space can use struc-tured/unstructured/adaptive meshes, etc. Input parameters such as relaxation time and dispersion rela-tions can be obtained through first-principles calculations, experiments, or empirical formulas; DUGKS solver: The evolution of the distribution function in time and position space; Post-processing: Macro-scopic quantities are obtained by taking the moments of the distribution function and calculating related effective parameters, not limited to classical macroscopic constitutive relations.

    图 7  (a), (c) 声子流体动力学导热: 热涡[141,144]与热波涟漪[125,149,150]; (b), (d) Fourier导热

    Figure 7.  (a), (c) Phonon hydrodynamic heat conduction: thermal vortices[141,144] and thermal wave ripples[125,149,150]; (b), (d) Fourier heat conduction.

  • [1]

    Stettler M A, Cea S M, Hasan S, Jiang L, Keys P H, Landon C D, Marepalli P, Pantuso D, Weber C E 2021 IEEE T. Electron Dev. 68 5350Google Scholar

    [2]

    陈锦峰, 朱林繁 2024 物理学报 73 095201Google Scholar

    Chen J F, Zhu L F 2024 Acta Phys. Sin. 73 095201Google Scholar

    [3]

    中国科学院 2022 中国学科发展战略: 电子设备热管理 (北京: 科学出版社)

    Chinese Academy of Sciences 2022 Chinese Discipline Development Strategy: Thermal Management of Electronic Devices (Beijing: Science Press

    [4]

    Bird G A 1994 Molecular Gas Dynamics And The Direct Simulation Of Gas Flows (Oxford University Press

    [5]

    段文晖, 张刚 2017 纳米材料热传导. 21世纪理论物理及其交叉学科前沿丛书 (北京: 科学出版社)

    Duan W H, Zhang G 2017 Nanomaterial Thermal Conductivity Series on Theoretical Physics and Its Interdisciplinary Frontiers in the 21st Century (Beijing: Science Press

    [6]

    Chen G 2021 Nat. Rev. Phys. 3 555Google Scholar

    [7]

    Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002Google Scholar

    [8]

    罗天麟, 丁亚飞, 韦宝杰, 杜建迎, 沈翔瀛, 朱桂妹, 李保文 2023 物理学报 72 234401Google Scholar

    Luo T L, Ding Y F, Wei B J, Tu J Y, Zhu G M, Li B W 2023 Acta Phys. Sin. 72 234401Google Scholar

    [9]

    曹炳阳 2023 纳米结构的非傅里叶导热 (北京: 科学出版社)

    Cao B Y 2023 Non Fourier Thermal Conductivity of Nanostructured Materials (Beijing: Science Press) (Beijing: Science Press

    [10]

    Tang Z L, Shen Y, Cao B Y 2025 IEEE T. Electron Dev. 72 1907Google Scholar

    [11]

    吴志鹏, 张创, 胡世谦, 马登科, 杨诺 2023 物理学报 72 184401Google Scholar

    Wu Z P, Zhang C, Hu S Q, Ma D K, Yang N 2023 Acta Phys. Sin. 72 184401Google Scholar

    [12]

    赵瑾, 孙向春, 张俊, 唐志共, 文东升 2022 航空学报 43 89Google Scholar

    Zhao J, Sun X C, Zhang J, Tang Z G, Wen D S 2022 Acta Aeron. Aston. Sin. 43 89Google Scholar

    [13]

    沈青 2003 稀薄气体动力学 (北京: 国防工业出版社)

    Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press

    [14]

    樊菁 2013 力学进展 43 185Google Scholar

    Fan J 2013 Adv. Mech. 43 185Google Scholar

    [15]

    陈伟芳, 赵文文 2017 稀薄气体动力学矩方法及数值模拟 (上海: 科学出版社)

    Chen W F, Zhao W W 2017 Thin Gas Dynamics Moment Method and Numerical Simulation (Shanghai: Science Press

    [16]

    靳旭红, 黄飞, 张俊, 王学德, 程晓丽, 沈清 2024 航空学报 45 30254Google Scholar

    Ji X H, Huang F, ZHANG J, Wang X D, Cheng X L, Shen Q 2024 Acta Aeron. Aston. Sin. 45 30254Google Scholar

    [17]

    Jin S 1999 SIAM J Sci. Comput. 21 441Google Scholar

    [18]

    Xu K 2015 Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes (Singapore: World Scientific

    [19]

    Guo Z, Li J, Xu K 2023 Phys. Rev. E 107 025301Google Scholar

    [20]

    Adams M L, Larsen E W 2002 Prog. Nucl. Energ. 40 3Google Scholar

    [21]

    Guo W, Bai B, Sawin H H 2009 J. Vac. Sci. Technol. A 27 388Google Scholar

    [22]

    Chen G 2005 Nanoscale Energy Transport and Conversion: A Parallel Ttreatment of Electrons, Molecules, Phonons, and Photons (Oxford: Oxford University Press

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [24]

    Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys-condens. Mat. 21 395502Google Scholar

    [25]

    Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922Google Scholar

    [26]

    Kim H, Son D, Myeong I, Kang M, Jeon J, Shin H 2018 IEEE T. Electron Dev. 65 4520Google Scholar

    [27]

    Zhang C, Lou Q, Liang H 2025 Int. J. Heat Mass Transfer 236 126374Google Scholar

    [28]

    Joseph D D, Preziosi L 1989 Rev. Mod. Phys. 61 41Google Scholar

    [29]

    Kovács R 2024 Phys. Rep. 1048 1Google Scholar

    [30]

    Succi S, Karlin I V, Chen H 2002 Rev. Mod. Phys. 74 1203Google Scholar

    [31]

    Kaviany M 2008 Heat transfer physics (Cambridge University Press

    [32]

    Kubo R T M, N H 1991 Statistical Physics II Nonequilibrium Statistical Mechanics. Springer Series in Solid State Sciences (Springer, Berlin, Heidelberg

    [33]

    Sydney Chapman C C T G Cowling 1995 The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases Cambridge Mathematical Library, (3rd Ed.) (Cambridge: Cambridge University Press

    [34]

    Cheremisin F 1985 USSR Comp. Math. Math. Phys. 25 156Google Scholar

    [35]

    吴雷, 张勇豪, 李志辉 2017 中国科学: 物理学 力学 天文学 47 070004Google Scholar

    Wu L, Zhang Y H, Li Z H 2017 Sci. Sin. Phys. Mech. Astron. 47 070004Google Scholar

    [36]

    Li W, Carrete J, Katcho] N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [37]

    Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 766Google Scholar

    [38]

    Hardy R J, Albers D L 1974 Phys. Rev. B 10 3546Google Scholar

    [39]

    Murthy J Y, Narumanchi S V J, Pascual-Gutierrez J A, Wang T, Ni C, Mathur S R 2005 Int. J. Multiscale Computat. Eng. 3 5Google Scholar

    [40]

    许爱国, 张玉东 2022 复杂介质动理学 (北京: 科学出版社)

    Xu A G, Zhang Y D 2022 Complex Media Dynamics (Beijing: Science Press

    [41]

    Callaway J 1959 Phys. Rev. 113 1046Google Scholar

    [42]

    曾嘉楠, 李琪, 吴雷 2022 空气动力学学报 40 1Google Scholar

    Zeng J N, Li Q, Wu L 2022 Acta Aerodyn. Sin. 40 1Google Scholar

    [43]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511Google Scholar

    [44]

    Dimarco G, Pareschi L 2014 Acta Numer. 23 369Google Scholar

    [45]

    Mazumder S 2022 Annu. Rev. Heat Transfer 24 71Google Scholar

    [46]

    Struchtrup H 2006 Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory. Interaction of Mechanics and Mathematics (Berlin Heidelberg: Springer

    [47]

    Guo Y, Wang M 2015 Phys. Rep. 595 1Google Scholar

    [48]

    华钰超, 曹炳阳, 过增元 2015 科学通报 60 2344Google Scholar

    Hua Y C, Cao B Y, Guo Z Y 2015 Chin. Sci. Bull. 60 2344Google Scholar

    [49]

    Sendra L, Beardo A, Torres P, Bafaluy J, Alvarez F X, Camacho J 2021 Phys. Rev. B 103 L140301Google Scholar

    [50]

    Burnett D 1936 P. Lond. Math. Soc. s2-40 382Google Scholar

    [51]

    Cattaneo C 1948 Atti Sem. Mat. Fis. Univ. Modena 3 83

    [52]

    Grad H 1949 Commun. Pur. Appl. Math. 2 331Google Scholar

    [53]

    Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 778Google Scholar

    [54]

    Struchtrup H, Torrilhon M 2003 Phys. Fluids 15 2668Google Scholar

    [55]

    Wu L, Gu X J 2020 Adva. Aerodyn. 2 2Google Scholar

    [56]

    Weinan E, Han J Q, Zhang L F 2021 Phys. Today 74 36Google Scholar

    [57]

    Han J F, Ma C, Ma Z, Weinan E 2019 Proc. Natl. Acad. Sci. 116 21983Google Scholar

    [58]

    Zhao J, Zhao W, Ma Z, Yong W A, Dong B 2022 Int. J. Heat Mass Transfer 185 122396Google Scholar

    [59]

    Chen L, Zhang C, Zhao J 2024 Phys. Rev. E 110 025303Google Scholar

    [60]

    Bird G A 1963 Phys. Fluids 6 1518Google Scholar

    [61]

    Klitsner T, VanCleve J E, Fischer H E, Pohl R O 1988 Phys. Rev. B 38 7576Google Scholar

    [62]

    Peterson R B 1994 J. of Heat Transfer 116 815Google Scholar

    [63]

    Mazumder S, Majumdar A 2001 J. Heat Transfer 123 749Google Scholar

    [64]

    Peraud J P M, Landon C D, Hadjiconstantinou N G 2014 Annu. Rev. Heat Transfer 17 205Google Scholar

    [65]

    Shen Y, Yang H A, Cao B Y 2023 Int. J. Heat Mass Transfer 211 124284Google Scholar

    [66]

    Wollaber A B 2016 J. Comput. Theor. Trans. 45 1Google Scholar

    [67]

    Pareschi L, and G R 2000 Transp. Theory Stat. Phys. 29 415Google Scholar

    [68]

    Liu C, Zhu Y, Xu K 2020 J. Comput. Phys. 401 108977Google Scholar

    [69]

    Fei F, Zhang J, Li J, Liu Z 2020 J. Comput. Phys. 400 108972Google Scholar

    [70]

    Baker L L, Hadjiconstantinou N G 2005 Phys. Fluids 17 051703Google Scholar

    [71]

    Péraud J P M, Hadjiconstantinou N G 2011 Phys. Rev. B 84 205331Google Scholar

    [72]

    Carrete J, Vermeersch B, Katre A, [van Roekeghem] A, Wang T, Madsen G K, Mingo N 2017 Comput. Phys. Commun. 220 351Google Scholar

    [73]

    Pathak A, Pawnday A, Roy A P, Aref A J, Dargush G F, Bansal D 2021 Comput. Phys. Commun. 265 108003Google Scholar

    [74]

    Yang R, Chen G, Laroche M, Taur Y 2005 J. Heat Transfer 127 298Google Scholar

    [75]

    舒昌, 杨鲤铭, 王岩, 吴杰 2022 南京航空航天大学学报 54 801Google Scholar

    Shu C, Yang L M, Wang Y, Wu J 2022 J. Nanjing Univ.Aeron. Astron. 54 801Google Scholar

    [76]

    Guo Z, Xu K 2021 Adva. Aerodyn. 3 6Google Scholar

    [77]

    Romano G 2021 arXiv: 2106.02764

    [78]

    Chen S, Chen H, Martnez D, Matthaeus W 1991 Phys. Rev. Lett. 67 3776Google Scholar

    [79]

    Qian Y H, d’Humières D, Lallemand P 1992 EPL 17 479Google Scholar

    [80]

    Chen H, Chen S, Matthaeus W H 1992 Phys. Rev. A 45 R5339Google Scholar

    [81]

    Mittal A, Mazumder S 2011 J. Comput. Phys. 230 6977Google Scholar

    [82]

    Loy J M, Murthy J Y, Singh D 2012 J. Heat Transfer 135 011008Google Scholar

    [83]

    Hao Q, Zhao H, Xiao Y 2017 J. Appl. Phys. 121 204501Google Scholar

    [84]

    Hua Y C, Shen Y, Tang Z L, Tang D S, Ran X, Cao B Y 2023 Adv. Heat Transf. 56 355Google Scholar

    [85]

    Xu K, Huang J C 2010 J. Comput. Phys. 229 7747Google Scholar

    [86]

    刘畅, 徐昆 2020 空气动力学学报 38 197Google Scholar

    Liu C, Xu K 2020 Acta Aerodyn. Sin. 38 197Google Scholar

    [87]

    Kopp H J 1963 Nucl. Sci. Eng. 17 65Google Scholar

    [88]

    Alcouffe R E 1977 Nucl. Sci. Eng. 64 344Google Scholar

    [89]

    Zhang C, Guo Z, Chen S 2017 Phys. Rev. E 96 063311Google Scholar

    [90]

    Frisch U, Hasslacher B, Pomeau Y 1986 Phys. Rev. Lett. 56 1505Google Scholar

    [91]

    Guo Z, Shu C 2013 Lattice Boltzmann Method and Its Applications in Engineering (Vol. 3) (Singapore: World Scientific

    [92]

    Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press

    [93]

    Ali S A, Kollu G, Mazumder S, Sadayappan P, Mittal A 2014 Int. J. Therm. Sci 86 341Google Scholar

    [94]

    Lathrop K D 1968 Nucl. Sci. Eng. 32 357Google Scholar

    [95]

    Chai J C, Lee H S, Patankar S V 1993 Numer. Heat Transf. Part B 24 373Google Scholar

    [96]

    Guo Z L, Xu K, Wang R J 2013 Phys. Rev. E 88 033305Google Scholar

    [97]

    Guo Z L, Wang R J, Xu K 2015 Phys. Rev. E 91 033313Google Scholar

    [98]

    Guo Z L, Xu K 2016 Int. J. Heat Mass Transfer 102 944Google Scholar

    [99]

    Lian M, Zhang C, Guo Z L, Lü J T 2024 Phys. Rev. E 109 065310Google Scholar

    [100]

    Song X L, Zhang C, Zhou X F, Guo Z L 2020 Adva. Aerodyn. 2 3Google Scholar

    [101]

    Liu H, Quan L, Chen Q, Zhou S, Cao Y 2020 Phys. Rev. E 101 043307Google Scholar

    [102]

    Yuan R F, Zhong C 2020 Comput. Phys. Commun. 247 106972Google Scholar

    [103]

    Yuan R F, Liu S, Zhong C W 2021 Commun. Nonlinear Sci. 92 105470Google Scholar

    [104]

    Zhang C, Wu L 2022 Phys. Rev. E 106 014111Google Scholar

    [105]

    Zhang C, Xin Z Y, Lou Q, Liang H 2025 Appl. Therm. Eng. 271 126293Google Scholar

    [106]

    Liu P Y, Wang P, Jv L, Guo Z L 2021 Commun. Comput. Phys. 29 265Google Scholar

    [107]

    Qi Y, Chen T, Wang L P, Guo Z L, Chen S Y 2022 Phys. Fluids 34 116101Google Scholar

    [108]

    Liu W E, Feng Y D, Li R L, Bai C H, Niu B F 2024 Comput. Phys. Commun. 299 109157Google Scholar

    [109]

    Harter J R, Hosseini S A, Palmer T S, Greaney P A 2019 Int. J. Heat Mass Transfer 144 118595Google Scholar

    [110]

    Fiveland V A, Jessee J P 1996 J. Thermophys. Heat Transfer. 10 445Google Scholar

    [111]

    Loy S R M James M, Murthy J Y 2015 J. Heat Transfer 137 012402Google Scholar

    [112]

    Randrianalisoa J, Baillis D 2008 J. Heat Transfer 130 072404Google Scholar

    [113]

    Ran X, Wang M R 2022 J. Heat Transf. 144 082502Google Scholar

    [114]

    Mieussens L 2000 Math. Models Methods Appl. Sci. 10 1121Google Scholar

    [115]

    Chacón L, Chen G, Knoll D A, Newman C, Park H, Taitano W, Willert J A, Womeldorff G 2017 J. Comput. Phys. 330 21Google Scholar

    [116]

    Zhu Y J, Zhong C W, Xu K 2016 J. Comput. Phys. 315 16Google Scholar

    [117]

    Su W, Wang P, Liu H H, Wu L 2019 J. Comput. Phys. 378 573Google Scholar

    [118]

    Zhang R, Liu S, Chen J, Zhuo C, Zhong C 2024 Phys. Fluids 36 016114Google Scholar

    [119]

    Zhang C, Guo Z, Chen S 2019 Int. J. Heat Mass Transfer 130 1366Google Scholar

    [120]

    Zhang C, Chen S Z, Guo Z L, Wu L 2021 Int. J. Heat Mass Transfer 174 121308Google Scholar

    [121]

    Zhang C, Huberman S, Song X L, Zhao J, Chen S Z, Wu L 2023 Int. J. Heat Mass Transfer 217 124715Google Scholar

    [122]

    Hu Y, Shen Y S, Bao H 2024 Fundam. Res. 4 907Google Scholar

    [123]

    Hu Y, Jia R, Xu J X, Sheng Y F, Wen M H, Lin J, Shen Y X, Bao H 2024 J. Phys-condens. Mat. 36 025901Google Scholar

    [124]

    Succi S 2015 EPL 109 50001Google Scholar

    [125]

    Jeong J, Li X, Lee S, Shi L, Wang Y G 2021 Phys. Rev. Lett. 127 085901Google Scholar

    [126]

    Huberman S C 2018 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Technology

    [127]

    Huberman S, Duncan R A, Chen K, et al. 2019 Science 364 375Google Scholar

    [128]

    Hao Q, Chen G, Jeng M S 2009 J. Appl. Phys. 106 114321Google Scholar

    [129]

    Zhang C, Guo Z L 2019 Int. J. Heat Mass Transfer 134 1127Google Scholar

    [130]

    Zhu L H, Chen S Z, Guo Z L 2017 Comput. Phys. Commun. 213 155Google Scholar

    [131]

    Zhang Q, Wang Y L, Pan D H, Chen J F, Liu S, Zhuo C S, Zhong C W 2022 Comput. Phys. Commun. 278 108410Google Scholar

    [132]

    Karzhaubayev K, Wang L P, Zhakebayev D 2024 Comput. Phys. Commun. 301 109216Google Scholar

    [133]

    Zhang F F, Wang Y L, Zhang R, Guo J, Zhao T H, Liu S, Zhuo C S, Zhong C W 2025 Adv. Eng. Softw. 201 103840Google Scholar

    [134]

    Luo X P, Yi H L 2017 Int. J. Heat Mass Transfer 114 970Google Scholar

    [135]

    Huberman S, Zhang C, Haibeh J A 2022 arXiv: 2206.02769

    [136]

    Luo X P, Guo Y Y, Wang M R, Yi H L 2019 Phys. Rev. B 100 155401Google Scholar

    [137]

    Zhang C, Guo R L, Lian M, Shiomi J 2024 Appl. Therm. Eng. 249 123379Google Scholar

    [138]

    Lee S, Broido D, Esfarjani K, Chen G 2015 Nat. Commun. 6 6290Google Scholar

    [139]

    Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F, Marzari N 2015 Nat. Commun. 6 6400Google Scholar

    [140]

    Machida Y, Martelli V, Jaoui A, Fauqué B, Behnia K 2024 Low Temp. Phys. 50 574Google Scholar

    [141]

    Zhang C, Chen S Z, Guo Z L 2021 Int. J. Heat Mass Transfer 176 121282Google Scholar

    [142]

    Zhang C, Wu L 2025 Appl. Phys. Lett. 126 032201Google Scholar

    [143]

    Tur-Prats J, Gutiérrez-Pérez M, Bafaluy J, Camacho J, Alvarez F X, Beardo A 2024 Int. J. Heat Mass Transfer 226 125464Google Scholar

    [144]

    Shang M Y, Zhang C, Guo Z L, Lü J T 2020 Sci. Rep. 10 8272Google Scholar

    [145]

    Guo Y, Zhang Z, Nomura M, Volz S, Wang M 2021 Int. J. Heat Mass Transfer 169 120981Google Scholar

    [146]

    Raya-Moreno M, Carrete J, Cartoixà X 2022 Phys. Rev. B 106 014308Google Scholar

    [147]

    Liu C J, Wang Y Q, Yang Y, Duan Z W 2016 Sci. China Phys. Mech. Astron. 59 684711Google Scholar

    [148]

    Sýkora M, Pavelka M, Restuccia L, Jou D 2023 Phys. Scr. 98 105234Google Scholar

    [149]

    Zhang C, Guo Z L 2021 Int. J. Heat Mass Transfer 181 121847Google Scholar

    [150]

    Qian X, Zhang C, Liu T H, Yang R 2025 Phys. Rev. B 111 035406Google Scholar

    [151]

    Shan B, Wang P, Zhang Y, Guo Z L 2020 Phys. Rev. E 101 043303Google Scholar

    [152]

    Simoncelli M, Marzari N, Mauri F 2022 Phys. Rev. X 12 041011Google Scholar

    [153]

    Zhang Y, Zhang C, Xinliang S, Zhaoli G 2025 Commun. Comput. Phys. 37 383Google Scholar

    [154]

    Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S, Yang L 2021 Nat. Rev. Phys. 3 422Google Scholar

    [155]

    Weinan E 2021 Not. Am. Math. Soc. 68 565Google Scholar

    [156]

    Liu S, Xu K, Zhong C 2022 Acta Mech. Sin. 38 122123Google Scholar

    [157]

    Liu H, Yang X, Zhang C, Ji X, Xu K 2025 arXiv: 2505.09297

    [158]

    Raissi M, Perdikaris P, Karniadakis G 2019 J. Comput. Phys. 378 686Google Scholar

    [159]

    Lin Q, Zhang C, Meng X, Guo Z L 2024 arXiv: 2505.09297

  • [1] LIU Zanqi, LUO Yuan, WENG Wanliang, HE Qing, TAO Shi. Discrete unified gas kinetic simulation of characteristics of variable temperature wall driven thermal creep flow in cavity. Acta Physica Sinica, 2025, 74(4): 044702. doi: 10.7498/aps.74.20241334
    [2] Li Ji, Chen Liang, Feng Mang. Research progress of heat transport in trapped-ion crystals. Acta Physica Sinica, 2024, 73(3): 033701. doi: 10.7498/aps.73.20231719
    [3] Zhao Gang, Liang Han-Pu, Duan Yi-Feng. Visible light modulation and anomalous thermal transport in two-dimensional X-AlN (X = C, Si, TC) semiconductor. Acta Physica Sinica, 2023, 72(9): 096301. doi: 10.7498/aps.72.20230116
    [4] Su Rui-Xia, Huang Xia, Zheng Zhi-Gang. Lattice wave solution and its dispersion relation of two coupled Frenkel-Kontorova chains. Acta Physica Sinica, 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [5] Qin Cheng-Long, Luo Xiang-Yan, Xie Quan, Wu Qiao-Dan. Molecular dynamics study of thermal conductivity of carbon nanotubes and silicon carbide nanotubes. Acta Physica Sinica, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [6] Cao Yi-Gang, Fu Meng-Meng, Yang Xi-Chang, Li Deng-Feng, Wang Xiao-Xia. Effect of thermal conduction on Kelvin-Helmholtz instability in straight pipe with different cross-sections. Acta Physica Sinica, 2022, 71(9): 094701. doi: 10.7498/aps.71.20211155
    [7] Jiang Tao, Chen Zhen-Chao, Ren Jin-Lian, Li Gang. Simulation of three-dimensional transient heat conduction problem with variable coefficients based on the improved parallel smoothed particle hydrodynamics method. Acta Physica Sinica, 2017, 66(13): 130201. doi: 10.7498/aps.66.130201
    [8] Hu Jin-Xiu, Gao Xiao-Wei. Reduced order model analysis method via proper orthogonal decomposition for variable coefficient of transient heat conduction based on boundary element method. Acta Physica Sinica, 2016, 65(1): 014701. doi: 10.7498/aps.65.014701
    [9] Wu Wen-Zhi, Gao Lai-Xu, Kong De-Gui, Gao Yang, Ran Ling-Ling, Chai Zhi-Jun. Thermal effect of translucent gold nanofilm based on transient reflection/transmission technique. Acta Physica Sinica, 2016, 65(4): 046801. doi: 10.7498/aps.65.046801
    [10] Chen Fu-Zhen, Qiang Hong-Fu, Gao Wei-Ran. Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [11] Ao Hong-Rui, Chen Yi, Dong Ming, Jiang Hong-Yuan. Multiphysics-based simulation on heat conduction mechanism of TFC head and its influencing factors. Acta Physica Sinica, 2014, 63(3): 034401. doi: 10.7498/aps.63.034401
    [12] Yuan Zong-Qiang, Chu Min, Zheng Zhi-Gang. Energy carriers investigation in the Fermi-Pasta-Ulam β lattice. Acta Physica Sinica, 2013, 62(8): 080504. doi: 10.7498/aps.62.080504
    [13] Ma Yan-Hong, Tong Xiao-Long, Zhu Bin, Zhang Da-Yi, Hong Jie. Theoretical and experimental investigation on thermophysical properties of metal rubber. Acta Physica Sinica, 2013, 62(4): 048101. doi: 10.7498/aps.62.048101
    [14] Li Wei-Zhi, Wang Jun. Numerical simulation of direct current method of measuring thermal conductivities of thin films. Acta Physica Sinica, 2012, 61(11): 114401. doi: 10.7498/aps.61.114401
    [15] Jiang Tao, Ouyang Jie, Li Xue-Juan, Zhang Lin, Ren Jin-Lian. The first order symmetric SPH method for transient heat conduction problems. Acta Physica Sinica, 2011, 60(9): 090206. doi: 10.7498/aps.60.090206
    [16] Gao Xiu-Yun, Zheng Zhi-Gang. Ratcheting thermal conduction in one-dimensional homogeneous Morse lattice systems. Acta Physica Sinica, 2011, 60(4): 044401. doi: 10.7498/aps.60.044401
    [17] Zhang Shi-Lai, Liu Fu-Sheng, Peng Xiao-Juan, Zhang Ming-Jian, Li Yong-Hong, Ma Xiao-Juan, Xue Xue-Dong. Transformation kinetics of metal and experimental measurement at nanosecond order. Acta Physica Sinica, 2011, 60(1): 014401. doi: 10.7498/aps.60.014401
    [18] Wang Jun, Li Jing-Ying, Zheng Zhi-Gang. Elimination of thermal rectification effect and the reversed thermal diode. Acta Physica Sinica, 2010, 59(1): 476-481. doi: 10.7498/aps.59.476
    [19] Zhou Gui-Yao, Hou Zhi-Yun, Pan Pu-Feng, Hou Lan-Tian, Li Shu-Guang, Han Ying. Temperature distribution of microstructure fiber preform during fiber drawing. Acta Physica Sinica, 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [20] Qin Ying, Wang Xiao-Gang, Dong Chuang, Hao Sheng-Zhi, Liu Yue, Zou Jian-Xin, Wu Ai-Min, Guan Qing-Feng. Temperature field and formation of crater on the surface induced by high curren t pulsed electron beam bombardment. Acta Physica Sinica, 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
Metrics
  • Abstract views:  766
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2025
  • Accepted Date:  09 June 2025
  • Available Online:  18 June 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回