-
Multiscale particle transport problems are universally existent in the fields of precision manufacturing, nanomaterials, energy and power, national defense and military. Such issues involve large-scale length and time scales, posing great challenges to physical modeling and numerical simulation. In order to study multiscale particle transport problems, cross-scale numerical simulation based on the Boltzmann transport equation has become an effective method. However the nonlinear, multi-scale, and high-dimensional characteristics of the equation pose significant challenges to the stability, compatibility, computational efficiency/accuracy, and asymptotic preserving property of numerical methods. In recent years, many multiscale kinetic methods applicable to any Knudsen numbers have been developed, and one of them is the discrete unified gas kinetic scheme. Unlike the traditional direct numerical interpolation scheme, the discrete unified gas kinetic scheme reconstructs the distribution function at the cell interface through the characteristic solution of the kinetic equation in both time and position space, thereby coupling, accumulating, and calculating particle transport and collision effects on a numerical time step scale. Based on the idea of incorporating the evolution of physical equations into the construction process of numerical methods, the cell size and time step of this method are no longer limited by the mean free path and relaxation time of particles, therefore, the multiscale particle transport problems from the ballistic to diffusive limit can be adaptively and efficiently simulated. A large number of numerical results show that the present scheme has good numerical stability and low numerical dissipation, and it is not limited by the Knudsen number or Mach number. Based on the framework of the finite volume method, this method has been successfully applied to micro/nano scale fluid flow and heat transfer, hypersonic aircraft flows, solid-material thermal conduction, radiation, plasma, and turbulence. This paper mainly reviews the method and discusses its future prospects in the field of multi-scale heat conduction in solid materials, including applications in phonon transport, electron-phonon coupling, phonon hydrodynamic heat conduction, and thermal management of electronic equipment.
-
Keywords:
- multiscale particle transport /
- Boltzmann transport equation /
- mesoscopic numerical methods /
- discrete unified gas kinetic scheme /
- heat conduction
[1] Stettler M A, Cea S M, Hasan S, Jiang L, Keys P H, Landon C D, Marepalli P, Pantuso D, Weber C E 2021 IEEE T. Electron Dev. 68 5350
Google Scholar
[2] 陈锦峰, 朱林繁 2024 物理学报 73 095201
Google Scholar
Chen J F, Zhu L F 2024 Acta Phys. Sin. 73 095201
Google Scholar
[3] 中国科学院 2022 中国学科发展战略: 电子设备热管理 (北京: 科学出版社)
Chinese Academy of Sciences 2022 Chinese Discipline Development Strategy: Thermal Management of Electronic Devices (Beijing: Science Press
[4] Bird G A 1994 Molecular Gas Dynamics And The Direct Simulation Of Gas Flows (Oxford University Press
[5] 段文晖, 张刚 2017 纳米材料热传导. 21世纪理论物理及其交叉学科前沿丛书 (北京: 科学出版社)
Duan W H, Zhang G 2017 Nanomaterial Thermal Conductivity Series on Theoretical Physics and Its Interdisciplinary Frontiers in the 21st Century (Beijing: Science Press
[6] Chen G 2021 Nat. Rev. Phys. 3 555
Google Scholar
[7] Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002
Google Scholar
[8] 罗天麟, 丁亚飞, 韦宝杰, 杜建迎, 沈翔瀛, 朱桂妹, 李保文 2023 物理学报 72 234401
Google Scholar
Luo T L, Ding Y F, Wei B J, Tu J Y, Zhu G M, Li B W 2023 Acta Phys. Sin. 72 234401
Google Scholar
[9] 曹炳阳 2023 纳米结构的非傅里叶导热 (北京: 科学出版社)
Cao B Y 2023 Non Fourier Thermal Conductivity of Nanostructured Materials (Beijing: Science Press) (Beijing: Science Press
[10] Tang Z L, Shen Y, Cao B Y 2025 IEEE T. Electron Dev. 72 1907
Google Scholar
[11] 吴志鹏, 张创, 胡世谦, 马登科, 杨诺 2023 物理学报 72 184401
Google Scholar
Wu Z P, Zhang C, Hu S Q, Ma D K, Yang N 2023 Acta Phys. Sin. 72 184401
Google Scholar
[12] 赵瑾, 孙向春, 张俊, 唐志共, 文东升 2022 航空学报 43 89
Google Scholar
Zhao J, Sun X C, Zhang J, Tang Z G, Wen D S 2022 Acta Aeron. Aston. Sin. 43 89
Google Scholar
[13] 沈青 2003 稀薄气体动力学 (北京: 国防工业出版社)
Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press
[14] 樊菁 2013 力学进展 43 185
Google Scholar
Fan J 2013 Adv. Mech. 43 185
Google Scholar
[15] 陈伟芳, 赵文文 2017 稀薄气体动力学矩方法及数值模拟 (上海: 科学出版社)
Chen W F, Zhao W W 2017 Thin Gas Dynamics Moment Method and Numerical Simulation (Shanghai: Science Press
[16] 靳旭红, 黄飞, 张俊, 王学德, 程晓丽, 沈清 2024 航空学报 45 30254
Google Scholar
Ji X H, Huang F, ZHANG J, Wang X D, Cheng X L, Shen Q 2024 Acta Aeron. Aston. Sin. 45 30254
Google Scholar
[17] Jin S 1999 SIAM J Sci. Comput. 21 441
Google Scholar
[18] Xu K 2015 Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes (Singapore: World Scientific
[19] Guo Z, Li J, Xu K 2023 Phys. Rev. E 107 025301
Google Scholar
[20] Adams M L, Larsen E W 2002 Prog. Nucl. Energ. 40 3
Google Scholar
[21] Guo W, Bai B, Sawin H H 2009 J. Vac. Sci. Technol. A 27 388
Google Scholar
[22] Chen G 2005 Nanoscale Energy Transport and Conversion: A Parallel Ttreatment of Electrons, Molecules, Phonons, and Photons (Oxford: Oxford University Press
[23] Plimpton S 1995 J. Comput. Phys. 117 1
Google Scholar
[24] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys-condens. Mat. 21 395502
Google Scholar
[25] Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922
Google Scholar
[26] Kim H, Son D, Myeong I, Kang M, Jeon J, Shin H 2018 IEEE T. Electron Dev. 65 4520
Google Scholar
[27] Zhang C, Lou Q, Liang H 2025 Int. J. Heat Mass Transfer 236 126374
Google Scholar
[28] Joseph D D, Preziosi L 1989 Rev. Mod. Phys. 61 41
Google Scholar
[29] Kovács R 2024 Phys. Rep. 1048 1
Google Scholar
[30] Succi S, Karlin I V, Chen H 2002 Rev. Mod. Phys. 74 1203
Google Scholar
[31] Kaviany M 2008 Heat transfer physics (Cambridge University Press
[32] Kubo R T M, N H 1991 Statistical Physics II Nonequilibrium Statistical Mechanics. Springer Series in Solid State Sciences (Springer, Berlin, Heidelberg
[33] Sydney Chapman C C T G Cowling 1995 The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases Cambridge Mathematical Library, (3rd Ed.) (Cambridge: Cambridge University Press
[34] Cheremisin F 1985 USSR Comp. Math. Math. Phys. 25 156
Google Scholar
[35] 吴雷, 张勇豪, 李志辉 2017 中国科学: 物理学 力学 天文学 47 070004
Google Scholar
Wu L, Zhang Y H, Li Z H 2017 Sci. Sin. Phys. Mech. Astron. 47 070004
Google Scholar
[36] Li W, Carrete J, Katcho] N A, Mingo N 2014 Comput. Phys. Commun. 185 1747
Google Scholar
[37] Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 766
Google Scholar
[38] Hardy R J, Albers D L 1974 Phys. Rev. B 10 3546
Google Scholar
[39] Murthy J Y, Narumanchi S V J, Pascual-Gutierrez J A, Wang T, Ni C, Mathur S R 2005 Int. J. Multiscale Computat. Eng. 3 5
Google Scholar
[40] 许爱国, 张玉东 2022 复杂介质动理学 (北京: 科学出版社)
Xu A G, Zhang Y D 2022 Complex Media Dynamics (Beijing: Science Press
[41] Callaway J 1959 Phys. Rev. 113 1046
Google Scholar
[42] 曾嘉楠, 李琪, 吴雷 2022 空气动力学学报 40 1
Google Scholar
Zeng J N, Li Q, Wu L 2022 Acta Aerodyn. Sin. 40 1
Google Scholar
[43] Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511
Google Scholar
[44] Dimarco G, Pareschi L 2014 Acta Numer. 23 369
Google Scholar
[45] Mazumder S 2022 Annu. Rev. Heat Transfer 24 71
Google Scholar
[46] Struchtrup H 2006 Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory. Interaction of Mechanics and Mathematics (Berlin Heidelberg: Springer
[47] Guo Y, Wang M 2015 Phys. Rep. 595 1
Google Scholar
[48] 华钰超, 曹炳阳, 过增元 2015 科学通报 60 2344
Google Scholar
Hua Y C, Cao B Y, Guo Z Y 2015 Chin. Sci. Bull. 60 2344
Google Scholar
[49] Sendra L, Beardo A, Torres P, Bafaluy J, Alvarez F X, Camacho J 2021 Phys. Rev. B 103 L140301
Google Scholar
[50] Burnett D 1936 P. Lond. Math. Soc. s2-40 382
Google Scholar
[51] Cattaneo C 1948 Atti Sem. Mat. Fis. Univ. Modena 3 83
[52] Grad H 1949 Commun. Pur. Appl. Math. 2 331
Google Scholar
[53] Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 778
Google Scholar
[54] Struchtrup H, Torrilhon M 2003 Phys. Fluids 15 2668
Google Scholar
[55] Wu L, Gu X J 2020 Adva. Aerodyn. 2 2
Google Scholar
[56] Weinan E, Han J Q, Zhang L F 2021 Phys. Today 74 36
Google Scholar
[57] Han J F, Ma C, Ma Z, Weinan E 2019 Proc. Natl. Acad. Sci. 116 21983
Google Scholar
[58] Zhao J, Zhao W, Ma Z, Yong W A, Dong B 2022 Int. J. Heat Mass Transfer 185 122396
Google Scholar
[59] Chen L, Zhang C, Zhao J 2024 Phys. Rev. E 110 025303
Google Scholar
[60] Bird G A 1963 Phys. Fluids 6 1518
Google Scholar
[61] Klitsner T, VanCleve J E, Fischer H E, Pohl R O 1988 Phys. Rev. B 38 7576
Google Scholar
[62] Peterson R B 1994 J. of Heat Transfer 116 815
Google Scholar
[63] Mazumder S, Majumdar A 2001 J. Heat Transfer 123 749
Google Scholar
[64] Peraud J P M, Landon C D, Hadjiconstantinou N G 2014 Annu. Rev. Heat Transfer 17 205
Google Scholar
[65] Shen Y, Yang H A, Cao B Y 2023 Int. J. Heat Mass Transfer 211 124284
Google Scholar
[66] Wollaber A B 2016 J. Comput. Theor. Trans. 45 1
Google Scholar
[67] Pareschi L, and G R 2000 Transp. Theory Stat. Phys. 29 415
Google Scholar
[68] Liu C, Zhu Y, Xu K 2020 J. Comput. Phys. 401 108977
Google Scholar
[69] Fei F, Zhang J, Li J, Liu Z 2020 J. Comput. Phys. 400 108972
Google Scholar
[70] Baker L L, Hadjiconstantinou N G 2005 Phys. Fluids 17 051703
Google Scholar
[71] Péraud J P M, Hadjiconstantinou N G 2011 Phys. Rev. B 84 205331
Google Scholar
[72] Carrete J, Vermeersch B, Katre A, [van Roekeghem] A, Wang T, Madsen G K, Mingo N 2017 Comput. Phys. Commun. 220 351
Google Scholar
[73] Pathak A, Pawnday A, Roy A P, Aref A J, Dargush G F, Bansal D 2021 Comput. Phys. Commun. 265 108003
Google Scholar
[74] Yang R, Chen G, Laroche M, Taur Y 2005 J. Heat Transfer 127 298
Google Scholar
[75] 舒昌, 杨鲤铭, 王岩, 吴杰 2022 南京航空航天大学学报 54 801
Google Scholar
Shu C, Yang L M, Wang Y, Wu J 2022 J. Nanjing Univ.Aeron. Astron. 54 801
Google Scholar
[76] Guo Z, Xu K 2021 Adva. Aerodyn. 3 6
Google Scholar
[77] Romano G 2021 arXiv: 2106.02764
[78] Chen S, Chen H, Martnez D, Matthaeus W 1991 Phys. Rev. Lett. 67 3776
Google Scholar
[79] Qian Y H, d’Humières D, Lallemand P 1992 EPL 17 479
Google Scholar
[80] Chen H, Chen S, Matthaeus W H 1992 Phys. Rev. A 45 R5339
Google Scholar
[81] Mittal A, Mazumder S 2011 J. Comput. Phys. 230 6977
Google Scholar
[82] Loy J M, Murthy J Y, Singh D 2012 J. Heat Transfer 135 011008
Google Scholar
[83] Hao Q, Zhao H, Xiao Y 2017 J. Appl. Phys. 121 204501
Google Scholar
[84] Hua Y C, Shen Y, Tang Z L, Tang D S, Ran X, Cao B Y 2023 Adv. Heat Transf. 56 355
Google Scholar
[85] Xu K, Huang J C 2010 J. Comput. Phys. 229 7747
Google Scholar
[86] 刘畅, 徐昆 2020 空气动力学学报 38 197
Google Scholar
Liu C, Xu K 2020 Acta Aerodyn. Sin. 38 197
Google Scholar
[87] Kopp H J 1963 Nucl. Sci. Eng. 17 65
Google Scholar
[88] Alcouffe R E 1977 Nucl. Sci. Eng. 64 344
Google Scholar
[89] Zhang C, Guo Z, Chen S 2017 Phys. Rev. E 96 063311
Google Scholar
[90] Frisch U, Hasslacher B, Pomeau Y 1986 Phys. Rev. Lett. 56 1505
Google Scholar
[91] Guo Z, Shu C 2013 Lattice Boltzmann Method and Its Applications in Engineering (Vol. 3) (Singapore: World Scientific
[92] Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press
[93] Ali S A, Kollu G, Mazumder S, Sadayappan P, Mittal A 2014 Int. J. Therm. Sci 86 341
Google Scholar
[94] Lathrop K D 1968 Nucl. Sci. Eng. 32 357
Google Scholar
[95] Chai J C, Lee H S, Patankar S V 1993 Numer. Heat Transf. Part B 24 373
Google Scholar
[96] Guo Z L, Xu K, Wang R J 2013 Phys. Rev. E 88 033305
Google Scholar
[97] Guo Z L, Wang R J, Xu K 2015 Phys. Rev. E 91 033313
Google Scholar
[98] Guo Z L, Xu K 2016 Int. J. Heat Mass Transfer 102 944
Google Scholar
[99] Lian M, Zhang C, Guo Z L, Lü J T 2024 Phys. Rev. E 109 065310
Google Scholar
[100] Song X L, Zhang C, Zhou X F, Guo Z L 2020 Adva. Aerodyn. 2 3
Google Scholar
[101] Liu H, Quan L, Chen Q, Zhou S, Cao Y 2020 Phys. Rev. E 101 043307
Google Scholar
[102] Yuan R F, Zhong C 2020 Comput. Phys. Commun. 247 106972
Google Scholar
[103] Yuan R F, Liu S, Zhong C W 2021 Commun. Nonlinear Sci. 92 105470
Google Scholar
[104] Zhang C, Wu L 2022 Phys. Rev. E 106 014111
Google Scholar
[105] Zhang C, Xin Z Y, Lou Q, Liang H 2025 Appl. Therm. Eng. 271 126293
Google Scholar
[106] Liu P Y, Wang P, Jv L, Guo Z L 2021 Commun. Comput. Phys. 29 265
Google Scholar
[107] Qi Y, Chen T, Wang L P, Guo Z L, Chen S Y 2022 Phys. Fluids 34 116101
Google Scholar
[108] Liu W E, Feng Y D, Li R L, Bai C H, Niu B F 2024 Comput. Phys. Commun. 299 109157
Google Scholar
[109] Harter J R, Hosseini S A, Palmer T S, Greaney P A 2019 Int. J. Heat Mass Transfer 144 118595
Google Scholar
[110] Fiveland V A, Jessee J P 1996 J. Thermophys. Heat Transfer. 10 445
Google Scholar
[111] Loy S R M James M, Murthy J Y 2015 J. Heat Transfer 137 012402
Google Scholar
[112] Randrianalisoa J, Baillis D 2008 J. Heat Transfer 130 072404
Google Scholar
[113] Ran X, Wang M R 2022 J. Heat Transf. 144 082502
Google Scholar
[114] Mieussens L 2000 Math. Models Methods Appl. Sci. 10 1121
Google Scholar
[115] Chacón L, Chen G, Knoll D A, Newman C, Park H, Taitano W, Willert J A, Womeldorff G 2017 J. Comput. Phys. 330 21
Google Scholar
[116] Zhu Y J, Zhong C W, Xu K 2016 J. Comput. Phys. 315 16
Google Scholar
[117] Su W, Wang P, Liu H H, Wu L 2019 J. Comput. Phys. 378 573
Google Scholar
[118] Zhang R, Liu S, Chen J, Zhuo C, Zhong C 2024 Phys. Fluids 36 016114
Google Scholar
[119] Zhang C, Guo Z, Chen S 2019 Int. J. Heat Mass Transfer 130 1366
Google Scholar
[120] Zhang C, Chen S Z, Guo Z L, Wu L 2021 Int. J. Heat Mass Transfer 174 121308
Google Scholar
[121] Zhang C, Huberman S, Song X L, Zhao J, Chen S Z, Wu L 2023 Int. J. Heat Mass Transfer 217 124715
Google Scholar
[122] Hu Y, Shen Y S, Bao H 2024 Fundam. Res. 4 907
Google Scholar
[123] Hu Y, Jia R, Xu J X, Sheng Y F, Wen M H, Lin J, Shen Y X, Bao H 2024 J. Phys-condens. Mat. 36 025901
Google Scholar
[124] Succi S 2015 EPL 109 50001
Google Scholar
[125] Jeong J, Li X, Lee S, Shi L, Wang Y G 2021 Phys. Rev. Lett. 127 085901
Google Scholar
[126] Huberman S C 2018 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Technology
[127] Huberman S, Duncan R A, Chen K, et al. 2019 Science 364 375
Google Scholar
[128] Hao Q, Chen G, Jeng M S 2009 J. Appl. Phys. 106 114321
Google Scholar
[129] Zhang C, Guo Z L 2019 Int. J. Heat Mass Transfer 134 1127
Google Scholar
[130] Zhu L H, Chen S Z, Guo Z L 2017 Comput. Phys. Commun. 213 155
Google Scholar
[131] Zhang Q, Wang Y L, Pan D H, Chen J F, Liu S, Zhuo C S, Zhong C W 2022 Comput. Phys. Commun. 278 108410
Google Scholar
[132] Karzhaubayev K, Wang L P, Zhakebayev D 2024 Comput. Phys. Commun. 301 109216
Google Scholar
[133] Zhang F F, Wang Y L, Zhang R, Guo J, Zhao T H, Liu S, Zhuo C S, Zhong C W 2025 Adv. Eng. Softw. 201 103840
Google Scholar
[134] Luo X P, Yi H L 2017 Int. J. Heat Mass Transfer 114 970
Google Scholar
[135] Huberman S, Zhang C, Haibeh J A 2022 arXiv: 2206.02769
[136] Luo X P, Guo Y Y, Wang M R, Yi H L 2019 Phys. Rev. B 100 155401
Google Scholar
[137] Zhang C, Guo R L, Lian M, Shiomi J 2024 Appl. Therm. Eng. 249 123379
Google Scholar
[138] Lee S, Broido D, Esfarjani K, Chen G 2015 Nat. Commun. 6 6290
Google Scholar
[139] Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F, Marzari N 2015 Nat. Commun. 6 6400
Google Scholar
[140] Machida Y, Martelli V, Jaoui A, Fauqué B, Behnia K 2024 Low Temp. Phys. 50 574
Google Scholar
[141] Zhang C, Chen S Z, Guo Z L 2021 Int. J. Heat Mass Transfer 176 121282
Google Scholar
[142] Zhang C, Wu L 2025 Appl. Phys. Lett. 126 032201
Google Scholar
[143] Tur-Prats J, Gutiérrez-Pérez M, Bafaluy J, Camacho J, Alvarez F X, Beardo A 2024 Int. J. Heat Mass Transfer 226 125464
Google Scholar
[144] Shang M Y, Zhang C, Guo Z L, Lü J T 2020 Sci. Rep. 10 8272
Google Scholar
[145] Guo Y, Zhang Z, Nomura M, Volz S, Wang M 2021 Int. J. Heat Mass Transfer 169 120981
Google Scholar
[146] Raya-Moreno M, Carrete J, Cartoixà X 2022 Phys. Rev. B 106 014308
Google Scholar
[147] Liu C J, Wang Y Q, Yang Y, Duan Z W 2016 Sci. China Phys. Mech. Astron. 59 684711
Google Scholar
[148] Sýkora M, Pavelka M, Restuccia L, Jou D 2023 Phys. Scr. 98 105234
Google Scholar
[149] Zhang C, Guo Z L 2021 Int. J. Heat Mass Transfer 181 121847
Google Scholar
[150] Qian X, Zhang C, Liu T H, Yang R 2025 Phys. Rev. B 111 035406
Google Scholar
[151] Shan B, Wang P, Zhang Y, Guo Z L 2020 Phys. Rev. E 101 043303
Google Scholar
[152] Simoncelli M, Marzari N, Mauri F 2022 Phys. Rev. X 12 041011
Google Scholar
[153] Zhang Y, Zhang C, Xinliang S, Zhaoli G 2025 Commun. Comput. Phys. 37 383
Google Scholar
[154] Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S, Yang L 2021 Nat. Rev. Phys. 3 422
Google Scholar
[155] Weinan E 2021 Not. Am. Math. Soc. 68 565
Google Scholar
[156] Liu S, Xu K, Zhong C 2022 Acta Mech. Sin. 38 122123
Google Scholar
[157] Liu H, Yang X, Zhang C, Ji X, Xu K 2025 arXiv: 2505.09297
[158] Raissi M, Perdikaris P, Karniadakis G 2019 J. Comput. Phys. 378 686
Google Scholar
[159] Lin Q, Zhang C, Meng X, Guo Z L 2024 arXiv: 2505.09297
-
图 1 DUGKS在多尺度粒子输运领域的发展[76], 涵盖气体分子[96,97]、声子[98]、电子[99]、光子[100]和等离子体[101]等 (a) 稀薄高超声速流动[102,103], 其中位置和动量空间均采用非结构网格离散; (b) 电子设备导热[104,105]: 瞬态温度与热流分布; (c) 等离子体输运: 非平衡分布函数在位置和动量空间的分布; (d) 辐射输运[100]; (e) 不可压低速渗流[106]: 温度分布与速度流线; (f) 可压缩衰减湍流[107]: 同一时刻, 涡量的模/涡量的均方根为 2的等值面
Figure 1. Development of DUGKS in the field of multiscale particle transport[76] covers gas molecules[96,97], phonons[98], electrons[99], photons[100] and plasma[101], etc: (a) Rarefied hypersonic flow[102,103], where both position and momentum space are discretized using unstructured meshes; (b) thermal conduction in electronic devices[104,105]: transient temperature and heat flux distribution; (c) plasma transport: distribution of nonequilibrium distribution functions in position and momentum space; (d) radiative transport[100]; (e) incompressible low-speed seepage flow[106]: temperature distribution and velocity streamlines; (f) compressible decaying turbulence[107]: isosurfaces of the vorticity modu-lus/vorticity root mean square equals 2 at the same time.
图 2 不同介观方法因其数值建模过程的差异, 在不同的适用范围或时空尺度上展现其各自的优越性[2,18,20,30,66,76,115,121,124]
Figure 2. Different mesoscopic methods demonstrate their respective advantages in different scopes of application or spatiotemporal scales due to differences in their numerical modeling processes[2,18,20,30,66,76,115,121,124].
图 3 常用的声子BTE模型或近似处理[29,41,47,123,126], 非灰与灰体模型的区别在于是否考虑声子色散关系或频率依赖特性, 动量空间: 各向异性或各向同性; 平衡态分布: 采用非线性的Bose-Einstein平衡态分布或引入比热作线性化近似处理
Figure 3. Commonly used phonon BTE models or approximations[29,41,47,123,126], the difference between non-gray and gray models lies in whether the phonon dispersion relation or frequency dependence is considered. Momentum space: anisotropic or isotropic; equilibrium distribution: using nonlinear Bose-Einstein equilibrium distribution or introducing specific heat for linear approximation.
图 6 多尺度粒子输运模拟流程[102,118,130–133], 即前处理-DUGKS求解器-后处理. 前处理: 动量空间和位置空间均可采用结构/非结构/自适应网格等, 输入参数—弛豫时间和色散关系等, 可以通过第一性原理计算、实验或经验公式等方式获取; DUGKS求解器: 分布函数在时间和位置空间的演化过程; 后处理: 通过分布函数求矩得到宏观量并计算相关等效参数, 不局限于经典的宏观本构关系
Figure 6. Multiscale particle transport simulation process[102,118,130–133]: Pre-processing-DUGKS solver-post-processing. Pre-processing: Both momentum space and position space can use struc-tured/unstructured/adaptive meshes, etc. Input parameters such as relaxation time and dispersion rela-tions can be obtained through first-principles calculations, experiments, or empirical formulas; DUGKS solver: The evolution of the distribution function in time and position space; Post-processing: Macro-scopic quantities are obtained by taking the moments of the distribution function and calculating related effective parameters, not limited to classical macroscopic constitutive relations.
-
[1] Stettler M A, Cea S M, Hasan S, Jiang L, Keys P H, Landon C D, Marepalli P, Pantuso D, Weber C E 2021 IEEE T. Electron Dev. 68 5350
Google Scholar
[2] 陈锦峰, 朱林繁 2024 物理学报 73 095201
Google Scholar
Chen J F, Zhu L F 2024 Acta Phys. Sin. 73 095201
Google Scholar
[3] 中国科学院 2022 中国学科发展战略: 电子设备热管理 (北京: 科学出版社)
Chinese Academy of Sciences 2022 Chinese Discipline Development Strategy: Thermal Management of Electronic Devices (Beijing: Science Press
[4] Bird G A 1994 Molecular Gas Dynamics And The Direct Simulation Of Gas Flows (Oxford University Press
[5] 段文晖, 张刚 2017 纳米材料热传导. 21世纪理论物理及其交叉学科前沿丛书 (北京: 科学出版社)
Duan W H, Zhang G 2017 Nanomaterial Thermal Conductivity Series on Theoretical Physics and Its Interdisciplinary Frontiers in the 21st Century (Beijing: Science Press
[6] Chen G 2021 Nat. Rev. Phys. 3 555
Google Scholar
[7] Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002
Google Scholar
[8] 罗天麟, 丁亚飞, 韦宝杰, 杜建迎, 沈翔瀛, 朱桂妹, 李保文 2023 物理学报 72 234401
Google Scholar
Luo T L, Ding Y F, Wei B J, Tu J Y, Zhu G M, Li B W 2023 Acta Phys. Sin. 72 234401
Google Scholar
[9] 曹炳阳 2023 纳米结构的非傅里叶导热 (北京: 科学出版社)
Cao B Y 2023 Non Fourier Thermal Conductivity of Nanostructured Materials (Beijing: Science Press) (Beijing: Science Press
[10] Tang Z L, Shen Y, Cao B Y 2025 IEEE T. Electron Dev. 72 1907
Google Scholar
[11] 吴志鹏, 张创, 胡世谦, 马登科, 杨诺 2023 物理学报 72 184401
Google Scholar
Wu Z P, Zhang C, Hu S Q, Ma D K, Yang N 2023 Acta Phys. Sin. 72 184401
Google Scholar
[12] 赵瑾, 孙向春, 张俊, 唐志共, 文东升 2022 航空学报 43 89
Google Scholar
Zhao J, Sun X C, Zhang J, Tang Z G, Wen D S 2022 Acta Aeron. Aston. Sin. 43 89
Google Scholar
[13] 沈青 2003 稀薄气体动力学 (北京: 国防工业出版社)
Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press
[14] 樊菁 2013 力学进展 43 185
Google Scholar
Fan J 2013 Adv. Mech. 43 185
Google Scholar
[15] 陈伟芳, 赵文文 2017 稀薄气体动力学矩方法及数值模拟 (上海: 科学出版社)
Chen W F, Zhao W W 2017 Thin Gas Dynamics Moment Method and Numerical Simulation (Shanghai: Science Press
[16] 靳旭红, 黄飞, 张俊, 王学德, 程晓丽, 沈清 2024 航空学报 45 30254
Google Scholar
Ji X H, Huang F, ZHANG J, Wang X D, Cheng X L, Shen Q 2024 Acta Aeron. Aston. Sin. 45 30254
Google Scholar
[17] Jin S 1999 SIAM J Sci. Comput. 21 441
Google Scholar
[18] Xu K 2015 Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes (Singapore: World Scientific
[19] Guo Z, Li J, Xu K 2023 Phys. Rev. E 107 025301
Google Scholar
[20] Adams M L, Larsen E W 2002 Prog. Nucl. Energ. 40 3
Google Scholar
[21] Guo W, Bai B, Sawin H H 2009 J. Vac. Sci. Technol. A 27 388
Google Scholar
[22] Chen G 2005 Nanoscale Energy Transport and Conversion: A Parallel Ttreatment of Electrons, Molecules, Phonons, and Photons (Oxford: Oxford University Press
[23] Plimpton S 1995 J. Comput. Phys. 117 1
Google Scholar
[24] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys-condens. Mat. 21 395502
Google Scholar
[25] Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922
Google Scholar
[26] Kim H, Son D, Myeong I, Kang M, Jeon J, Shin H 2018 IEEE T. Electron Dev. 65 4520
Google Scholar
[27] Zhang C, Lou Q, Liang H 2025 Int. J. Heat Mass Transfer 236 126374
Google Scholar
[28] Joseph D D, Preziosi L 1989 Rev. Mod. Phys. 61 41
Google Scholar
[29] Kovács R 2024 Phys. Rep. 1048 1
Google Scholar
[30] Succi S, Karlin I V, Chen H 2002 Rev. Mod. Phys. 74 1203
Google Scholar
[31] Kaviany M 2008 Heat transfer physics (Cambridge University Press
[32] Kubo R T M, N H 1991 Statistical Physics II Nonequilibrium Statistical Mechanics. Springer Series in Solid State Sciences (Springer, Berlin, Heidelberg
[33] Sydney Chapman C C T G Cowling 1995 The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases Cambridge Mathematical Library, (3rd Ed.) (Cambridge: Cambridge University Press
[34] Cheremisin F 1985 USSR Comp. Math. Math. Phys. 25 156
Google Scholar
[35] 吴雷, 张勇豪, 李志辉 2017 中国科学: 物理学 力学 天文学 47 070004
Google Scholar
Wu L, Zhang Y H, Li Z H 2017 Sci. Sin. Phys. Mech. Astron. 47 070004
Google Scholar
[36] Li W, Carrete J, Katcho] N A, Mingo N 2014 Comput. Phys. Commun. 185 1747
Google Scholar
[37] Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 766
Google Scholar
[38] Hardy R J, Albers D L 1974 Phys. Rev. B 10 3546
Google Scholar
[39] Murthy J Y, Narumanchi S V J, Pascual-Gutierrez J A, Wang T, Ni C, Mathur S R 2005 Int. J. Multiscale Computat. Eng. 3 5
Google Scholar
[40] 许爱国, 张玉东 2022 复杂介质动理学 (北京: 科学出版社)
Xu A G, Zhang Y D 2022 Complex Media Dynamics (Beijing: Science Press
[41] Callaway J 1959 Phys. Rev. 113 1046
Google Scholar
[42] 曾嘉楠, 李琪, 吴雷 2022 空气动力学学报 40 1
Google Scholar
Zeng J N, Li Q, Wu L 2022 Acta Aerodyn. Sin. 40 1
Google Scholar
[43] Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511
Google Scholar
[44] Dimarco G, Pareschi L 2014 Acta Numer. 23 369
Google Scholar
[45] Mazumder S 2022 Annu. Rev. Heat Transfer 24 71
Google Scholar
[46] Struchtrup H 2006 Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory. Interaction of Mechanics and Mathematics (Berlin Heidelberg: Springer
[47] Guo Y, Wang M 2015 Phys. Rep. 595 1
Google Scholar
[48] 华钰超, 曹炳阳, 过增元 2015 科学通报 60 2344
Google Scholar
Hua Y C, Cao B Y, Guo Z Y 2015 Chin. Sci. Bull. 60 2344
Google Scholar
[49] Sendra L, Beardo A, Torres P, Bafaluy J, Alvarez F X, Camacho J 2021 Phys. Rev. B 103 L140301
Google Scholar
[50] Burnett D 1936 P. Lond. Math. Soc. s2-40 382
Google Scholar
[51] Cattaneo C 1948 Atti Sem. Mat. Fis. Univ. Modena 3 83
[52] Grad H 1949 Commun. Pur. Appl. Math. 2 331
Google Scholar
[53] Guyer R A, Krumhansl J A 1966 Phys. Rev. 148 778
Google Scholar
[54] Struchtrup H, Torrilhon M 2003 Phys. Fluids 15 2668
Google Scholar
[55] Wu L, Gu X J 2020 Adva. Aerodyn. 2 2
Google Scholar
[56] Weinan E, Han J Q, Zhang L F 2021 Phys. Today 74 36
Google Scholar
[57] Han J F, Ma C, Ma Z, Weinan E 2019 Proc. Natl. Acad. Sci. 116 21983
Google Scholar
[58] Zhao J, Zhao W, Ma Z, Yong W A, Dong B 2022 Int. J. Heat Mass Transfer 185 122396
Google Scholar
[59] Chen L, Zhang C, Zhao J 2024 Phys. Rev. E 110 025303
Google Scholar
[60] Bird G A 1963 Phys. Fluids 6 1518
Google Scholar
[61] Klitsner T, VanCleve J E, Fischer H E, Pohl R O 1988 Phys. Rev. B 38 7576
Google Scholar
[62] Peterson R B 1994 J. of Heat Transfer 116 815
Google Scholar
[63] Mazumder S, Majumdar A 2001 J. Heat Transfer 123 749
Google Scholar
[64] Peraud J P M, Landon C D, Hadjiconstantinou N G 2014 Annu. Rev. Heat Transfer 17 205
Google Scholar
[65] Shen Y, Yang H A, Cao B Y 2023 Int. J. Heat Mass Transfer 211 124284
Google Scholar
[66] Wollaber A B 2016 J. Comput. Theor. Trans. 45 1
Google Scholar
[67] Pareschi L, and G R 2000 Transp. Theory Stat. Phys. 29 415
Google Scholar
[68] Liu C, Zhu Y, Xu K 2020 J. Comput. Phys. 401 108977
Google Scholar
[69] Fei F, Zhang J, Li J, Liu Z 2020 J. Comput. Phys. 400 108972
Google Scholar
[70] Baker L L, Hadjiconstantinou N G 2005 Phys. Fluids 17 051703
Google Scholar
[71] Péraud J P M, Hadjiconstantinou N G 2011 Phys. Rev. B 84 205331
Google Scholar
[72] Carrete J, Vermeersch B, Katre A, [van Roekeghem] A, Wang T, Madsen G K, Mingo N 2017 Comput. Phys. Commun. 220 351
Google Scholar
[73] Pathak A, Pawnday A, Roy A P, Aref A J, Dargush G F, Bansal D 2021 Comput. Phys. Commun. 265 108003
Google Scholar
[74] Yang R, Chen G, Laroche M, Taur Y 2005 J. Heat Transfer 127 298
Google Scholar
[75] 舒昌, 杨鲤铭, 王岩, 吴杰 2022 南京航空航天大学学报 54 801
Google Scholar
Shu C, Yang L M, Wang Y, Wu J 2022 J. Nanjing Univ.Aeron. Astron. 54 801
Google Scholar
[76] Guo Z, Xu K 2021 Adva. Aerodyn. 3 6
Google Scholar
[77] Romano G 2021 arXiv: 2106.02764
[78] Chen S, Chen H, Martnez D, Matthaeus W 1991 Phys. Rev. Lett. 67 3776
Google Scholar
[79] Qian Y H, d’Humières D, Lallemand P 1992 EPL 17 479
Google Scholar
[80] Chen H, Chen S, Matthaeus W H 1992 Phys. Rev. A 45 R5339
Google Scholar
[81] Mittal A, Mazumder S 2011 J. Comput. Phys. 230 6977
Google Scholar
[82] Loy J M, Murthy J Y, Singh D 2012 J. Heat Transfer 135 011008
Google Scholar
[83] Hao Q, Zhao H, Xiao Y 2017 J. Appl. Phys. 121 204501
Google Scholar
[84] Hua Y C, Shen Y, Tang Z L, Tang D S, Ran X, Cao B Y 2023 Adv. Heat Transf. 56 355
Google Scholar
[85] Xu K, Huang J C 2010 J. Comput. Phys. 229 7747
Google Scholar
[86] 刘畅, 徐昆 2020 空气动力学学报 38 197
Google Scholar
Liu C, Xu K 2020 Acta Aerodyn. Sin. 38 197
Google Scholar
[87] Kopp H J 1963 Nucl. Sci. Eng. 17 65
Google Scholar
[88] Alcouffe R E 1977 Nucl. Sci. Eng. 64 344
Google Scholar
[89] Zhang C, Guo Z, Chen S 2017 Phys. Rev. E 96 063311
Google Scholar
[90] Frisch U, Hasslacher B, Pomeau Y 1986 Phys. Rev. Lett. 56 1505
Google Scholar
[91] Guo Z, Shu C 2013 Lattice Boltzmann Method and Its Applications in Engineering (Vol. 3) (Singapore: World Scientific
[92] Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford: Oxford University Press
[93] Ali S A, Kollu G, Mazumder S, Sadayappan P, Mittal A 2014 Int. J. Therm. Sci 86 341
Google Scholar
[94] Lathrop K D 1968 Nucl. Sci. Eng. 32 357
Google Scholar
[95] Chai J C, Lee H S, Patankar S V 1993 Numer. Heat Transf. Part B 24 373
Google Scholar
[96] Guo Z L, Xu K, Wang R J 2013 Phys. Rev. E 88 033305
Google Scholar
[97] Guo Z L, Wang R J, Xu K 2015 Phys. Rev. E 91 033313
Google Scholar
[98] Guo Z L, Xu K 2016 Int. J. Heat Mass Transfer 102 944
Google Scholar
[99] Lian M, Zhang C, Guo Z L, Lü J T 2024 Phys. Rev. E 109 065310
Google Scholar
[100] Song X L, Zhang C, Zhou X F, Guo Z L 2020 Adva. Aerodyn. 2 3
Google Scholar
[101] Liu H, Quan L, Chen Q, Zhou S, Cao Y 2020 Phys. Rev. E 101 043307
Google Scholar
[102] Yuan R F, Zhong C 2020 Comput. Phys. Commun. 247 106972
Google Scholar
[103] Yuan R F, Liu S, Zhong C W 2021 Commun. Nonlinear Sci. 92 105470
Google Scholar
[104] Zhang C, Wu L 2022 Phys. Rev. E 106 014111
Google Scholar
[105] Zhang C, Xin Z Y, Lou Q, Liang H 2025 Appl. Therm. Eng. 271 126293
Google Scholar
[106] Liu P Y, Wang P, Jv L, Guo Z L 2021 Commun. Comput. Phys. 29 265
Google Scholar
[107] Qi Y, Chen T, Wang L P, Guo Z L, Chen S Y 2022 Phys. Fluids 34 116101
Google Scholar
[108] Liu W E, Feng Y D, Li R L, Bai C H, Niu B F 2024 Comput. Phys. Commun. 299 109157
Google Scholar
[109] Harter J R, Hosseini S A, Palmer T S, Greaney P A 2019 Int. J. Heat Mass Transfer 144 118595
Google Scholar
[110] Fiveland V A, Jessee J P 1996 J. Thermophys. Heat Transfer. 10 445
Google Scholar
[111] Loy S R M James M, Murthy J Y 2015 J. Heat Transfer 137 012402
Google Scholar
[112] Randrianalisoa J, Baillis D 2008 J. Heat Transfer 130 072404
Google Scholar
[113] Ran X, Wang M R 2022 J. Heat Transf. 144 082502
Google Scholar
[114] Mieussens L 2000 Math. Models Methods Appl. Sci. 10 1121
Google Scholar
[115] Chacón L, Chen G, Knoll D A, Newman C, Park H, Taitano W, Willert J A, Womeldorff G 2017 J. Comput. Phys. 330 21
Google Scholar
[116] Zhu Y J, Zhong C W, Xu K 2016 J. Comput. Phys. 315 16
Google Scholar
[117] Su W, Wang P, Liu H H, Wu L 2019 J. Comput. Phys. 378 573
Google Scholar
[118] Zhang R, Liu S, Chen J, Zhuo C, Zhong C 2024 Phys. Fluids 36 016114
Google Scholar
[119] Zhang C, Guo Z, Chen S 2019 Int. J. Heat Mass Transfer 130 1366
Google Scholar
[120] Zhang C, Chen S Z, Guo Z L, Wu L 2021 Int. J. Heat Mass Transfer 174 121308
Google Scholar
[121] Zhang C, Huberman S, Song X L, Zhao J, Chen S Z, Wu L 2023 Int. J. Heat Mass Transfer 217 124715
Google Scholar
[122] Hu Y, Shen Y S, Bao H 2024 Fundam. Res. 4 907
Google Scholar
[123] Hu Y, Jia R, Xu J X, Sheng Y F, Wen M H, Lin J, Shen Y X, Bao H 2024 J. Phys-condens. Mat. 36 025901
Google Scholar
[124] Succi S 2015 EPL 109 50001
Google Scholar
[125] Jeong J, Li X, Lee S, Shi L, Wang Y G 2021 Phys. Rev. Lett. 127 085901
Google Scholar
[126] Huberman S C 2018 Ph. D. Dissertation (Massachusetts: Massachusetts Institute of Technology
[127] Huberman S, Duncan R A, Chen K, et al. 2019 Science 364 375
Google Scholar
[128] Hao Q, Chen G, Jeng M S 2009 J. Appl. Phys. 106 114321
Google Scholar
[129] Zhang C, Guo Z L 2019 Int. J. Heat Mass Transfer 134 1127
Google Scholar
[130] Zhu L H, Chen S Z, Guo Z L 2017 Comput. Phys. Commun. 213 155
Google Scholar
[131] Zhang Q, Wang Y L, Pan D H, Chen J F, Liu S, Zhuo C S, Zhong C W 2022 Comput. Phys. Commun. 278 108410
Google Scholar
[132] Karzhaubayev K, Wang L P, Zhakebayev D 2024 Comput. Phys. Commun. 301 109216
Google Scholar
[133] Zhang F F, Wang Y L, Zhang R, Guo J, Zhao T H, Liu S, Zhuo C S, Zhong C W 2025 Adv. Eng. Softw. 201 103840
Google Scholar
[134] Luo X P, Yi H L 2017 Int. J. Heat Mass Transfer 114 970
Google Scholar
[135] Huberman S, Zhang C, Haibeh J A 2022 arXiv: 2206.02769
[136] Luo X P, Guo Y Y, Wang M R, Yi H L 2019 Phys. Rev. B 100 155401
Google Scholar
[137] Zhang C, Guo R L, Lian M, Shiomi J 2024 Appl. Therm. Eng. 249 123379
Google Scholar
[138] Lee S, Broido D, Esfarjani K, Chen G 2015 Nat. Commun. 6 6290
Google Scholar
[139] Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F, Marzari N 2015 Nat. Commun. 6 6400
Google Scholar
[140] Machida Y, Martelli V, Jaoui A, Fauqué B, Behnia K 2024 Low Temp. Phys. 50 574
Google Scholar
[141] Zhang C, Chen S Z, Guo Z L 2021 Int. J. Heat Mass Transfer 176 121282
Google Scholar
[142] Zhang C, Wu L 2025 Appl. Phys. Lett. 126 032201
Google Scholar
[143] Tur-Prats J, Gutiérrez-Pérez M, Bafaluy J, Camacho J, Alvarez F X, Beardo A 2024 Int. J. Heat Mass Transfer 226 125464
Google Scholar
[144] Shang M Y, Zhang C, Guo Z L, Lü J T 2020 Sci. Rep. 10 8272
Google Scholar
[145] Guo Y, Zhang Z, Nomura M, Volz S, Wang M 2021 Int. J. Heat Mass Transfer 169 120981
Google Scholar
[146] Raya-Moreno M, Carrete J, Cartoixà X 2022 Phys. Rev. B 106 014308
Google Scholar
[147] Liu C J, Wang Y Q, Yang Y, Duan Z W 2016 Sci. China Phys. Mech. Astron. 59 684711
Google Scholar
[148] Sýkora M, Pavelka M, Restuccia L, Jou D 2023 Phys. Scr. 98 105234
Google Scholar
[149] Zhang C, Guo Z L 2021 Int. J. Heat Mass Transfer 181 121847
Google Scholar
[150] Qian X, Zhang C, Liu T H, Yang R 2025 Phys. Rev. B 111 035406
Google Scholar
[151] Shan B, Wang P, Zhang Y, Guo Z L 2020 Phys. Rev. E 101 043303
Google Scholar
[152] Simoncelli M, Marzari N, Mauri F 2022 Phys. Rev. X 12 041011
Google Scholar
[153] Zhang Y, Zhang C, Xinliang S, Zhaoli G 2025 Commun. Comput. Phys. 37 383
Google Scholar
[154] Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S, Yang L 2021 Nat. Rev. Phys. 3 422
Google Scholar
[155] Weinan E 2021 Not. Am. Math. Soc. 68 565
Google Scholar
[156] Liu S, Xu K, Zhong C 2022 Acta Mech. Sin. 38 122123
Google Scholar
[157] Liu H, Yang X, Zhang C, Ji X, Xu K 2025 arXiv: 2505.09297
[158] Raissi M, Perdikaris P, Karniadakis G 2019 J. Comput. Phys. 378 686
Google Scholar
[159] Lin Q, Zhang C, Meng X, Guo Z L 2024 arXiv: 2505.09297
Catalog
Metrics
- Abstract views: 766
- PDF Downloads: 44
- Cited By: 0