Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Upgrades and Improvements of Laser Interferometric Gravitational Wave Detectors

HUANG Xiaoman LIU Jian GUO Yuefan MA Yiqiu MA Yubo WANG Haoyu WANG Mengyao WU Bin YANG Sheng YOU Zhiqiang ZHANG Fan ZHANG Teng ZHAO Yuhang ZHU Xingjiang

Citation:

Upgrades and Improvements of Laser Interferometric Gravitational Wave Detectors

HUANG Xiaoman, LIU Jian, GUO Yuefan, MA Yiqiu, MA Yubo, WANG Haoyu, WANG Mengyao, WU Bin, YANG Sheng, YOU Zhiqiang, ZHANG Fan, ZHANG Teng, ZHAO Yuhang, ZHU Xingjiang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Gravitational wave astronomy has rapidly developed into a powerful means of probing compact objects and understanding the evolution of the Universe. To improve sensitivity and extend the detection band, ground-based laser interferometers such as LIGO, Virgo, and KAGRA have undergone continuous upgrades. This review summarizes their systematic development with an emphasis on noise sources and mitigation strategies. After outlining the principle of gravitational wave detection with laser interferometry, we analyze dominant noise sources including quantum vacuum fluctuations, thermal noise, and seismic disturbances, and introduce techniques such as frequency-dependent squeezed light, advanced seismic isolation, multi-stage suspensions, and cryogenic mirrors. For LIGO, we highlight the transition from the Initial to Advanced configurations, which enabled strain sensitivities of the order of 10-24/√Hz and led directly to the first detection GW150914 and over one hundred subsequent events during O1 to O4. The unique superattenuator system of Virgo and its recent implementation of squeezed light, as well as the underground design of KAGRA and the use of cryogenic sapphire test masses, represent different approaches to suppress low-frequency and thermal noise. In addition, we compare the technical routes adopted by different detectors and summarize the lessons learned from their upgrades, which provide valuable guidance for future detector designs. Finally, we present next-generation projects, including LIGO Voyager, the Cosmic Explorer and the Einstein Telescope, which aim to achieve up to orders of magnitude improvements in sensitivity and provide new research opportunities for gravitational-wave cosmology and fundamental physics. Overall, the evolution of detector technologies has been the key driver of progress in gravitational wave astronomy, and the forthcoming facilities will transform our ability to explore the Universe.
  • [1]

    Einstein A 1915 Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 831 1915

    [2]

    Danzmann K, Team L S, et al. 1996 Class. Quantum Grav. 13 A247

    [3]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S, Ji J, Liu Q, Mei J, Milyukov V, Sazhin M, et al. 2016 Class. Quantum Grav. 33 035010

    [4]

    Luo Z, Guo Z, Jin G, Wu Y, Hu W 2020 Results Phys. 16 102918

    [5]

    Weber J 1969 Phys. Rev. Lett. 22 1320

    [6]

    Whitcomb S E 2008 Class. Quantum Grav. 25 114013

    [7]

    Chen C M, Nester J M, Ni W T 2017 Chin. J. Phys. 55 142

    [8]

    Sigg D, for the LIGO Science Collaboration, et al. 2006 Class. Quantum Grav. 23 S51

    [9]

    Acernese F, Amico P, Arnaud N, Babusci D, Ballardin G, Barille R, Barone F, Barsuglia M, Beauville F, Bellachia F, et al. 2003 Class. Quantum Grav. 20 S609

    [10]

    Somiya K, KAGRA Collaboration, et al. 2012 Class. Quantum Grav. 29 124007

    [11]

    Saulson P R 1994 Fundamentals of interferometric gravitational wave detectors (World Scientific)

    [12]

    Harms J, Chen Y, Chelkowski S, Franzen A, Vahlbruch H, Danzmann K, Schnabel R 2003 Phys. Rev. D 68 042001

    [13]

    Harms J, Venkateswara K 2016 Class. Quantum Grav. 33 234001

    [14]

    Trozzo L, Badaracco F 2022 Galaxies 10 20

    [15]

    Harms J, Slagmolen B J, Adhikari R X, Miller M C, Evans M, Chen Y, Müller H, Ando M 2013 Phys. Rev. D 88 122003

    [16]

    Driggers J C, Harms J, Adhikari R X 2012 Phys. Rev. D 86 102001

    [17]

    Creighton J D, Anderson W G 2012 Gravitational-wave physics and astronomy: An introduction to theory, experiment and data analysis (John Wiley & Sons)

    [18]

    M C 1981 Phys. Rev. D 23 1693

    [19]

    Ganapathy D, Jia W, Nakano M, Xu V, Aritomi N, Cullen T, Kijbunchoo N, Dwyer S, Mullavey A, McCuller L, et al. 2023 Phys. Rev. X 13 041021

    [20]

    LIGO Scientific Collaboration 2011 Nat. Phys. 7 962

    [21]

    Yu H, McCuller L, Tse M, Kijbunchoo N, Barsotti L, Mavalvala N 2020 Nature 583 43

    [22]

    Shapiro B, Adhikari R X, Aguiar O, Bonilla E, Fan D, Gan L, Gomez I, Khandelwal S, Lantz B, MacDonald T, et al. 2017 Cryogenics 81 83

    [23]

    Saulson P R 1990 Phys. Rev. D 42 2437

    [24]

    Hammond G, Cumming A, Hough J, Kumar R, Tokmakov K, Reid S, Rowan S 2012 Class. Quantum Grav. 29 124009

    [25]

    Cumming A, Bell A, Barsotti L, Barton M, Cagnoli G, Cook D, Cunningham L, Evans M, Hammond G, Harry G, et al. 2012 Class. Quantum Grav. 29 035003

    [26]

    Harry G M, Gretarsson A M, Saulson P R, Kittelberger S E, Penn S D, Startin W J, Rowan S, Fejer M M, Crooks D, Cagnoli G, et al. 2002 Class. Quantum Grav. 19 897

    [27]

    Hong T, Yang H, Gustafson E K, Adhikari R X, Chen Y 2013 Phys. Rev. D 87 082001

    [28]

    Cole G D, Zhang W, Martin M J, Ye J, Aspelmeyer M 2013 Nat. Photonics 7 644

    [29]

    Kondratiev N, Gurkovsky A, Gorodetsky M 2011 Phys. Rev. D 84 022001

    [30]

    Zhou R, Molina-Ruiz M, Hellman F 2023 Class. Quantum Grav. 40 144001

    [31]

    E Z M, E W S 1996 In Proceedings of the Seventh Marcel Grossman Meeting on recent developments in theoretical and experimental general relativity, gravitation, and relativistic field theories (SpringerVerlag, Berlin), p 1434

    [32]

    Aasi J, Abbott B, Abbott R, Abbott T, Abernathy M, Ackley K, Adams C, Adams T, Addesso P, Adhikari R, et al. 2015 Class. Quantum Grav. 32 074001

    [33]

    Abramovici A, Althouse W E, Drever R W, Gürsel Y, Kawamura S, Raab F J, Shoemaker D, Sievers L, Spero R E, Thorne K S, et al. 1992 science 256 325

    [34]

    Accadia T, Acernese F, Antonucci F, Astone P, Ballardin G, Barone F, Barsuglia M, Basti A, Bauer T S, Bebronne M, et al. 2011 Class. Quantum Grav. 28 114002

    [35]

    Willke B, Aufmuth P, Aulbert C, Babak S, Balasubramanian R, Barr B, Berukoff S, Bose S, Cagnoli G, Casey M M, et al. 2002 Class. Quantum Grav. 19 1377

    [36]

    Takahashi R, collaboration T, et al. 2004 Class. Quantum Grav. 21 S403

    [37]

    Acernese F, Agathos M, Agatsuma K, Aisa D, Allemandou N, Allocca A, Amarni J, Astone P, Balestri G, Ballardin G, et al. 2014 Class. Quantum Grav. 32 024001

    [38]

    KAGRA Collaboration 2019 Nat. Astron. 3 35

    [39]

    LIGO Scientific Collaboration 2024. https://www.ligo.caltech.edu

    [40]

    Abbott B, Abbott R, Adhikari R, Ageev A, Allen B, Amin R, Anderson S, Anderson W, Araya M, Armandula H, et al. 2004 Nucl. Instrum. Methods Phys. Res. 517 154

    [41]

    Adhikari R X, González G, Landry M, O’Reilly B 2003 Class. Quantum Grav. 20

    [42]

    Abbott B, Abbott R, Adhikari R, Ageev A, Agresti J, Allen B, Allen J, Amin R, Anderson S, Anderson W, et al. 2005 Phys. Rev. D 72 062001

    [43]

    Aasi J, Abadie J, Abbott B, Abbott R, Abbott T, Abernathy M, Accadia T, Acernese F, Adams C, Adams T, et al. 2015 Class. Quantum Grav. 32 115012

    [44]

    Ballmer S, Frolov V, Lawrence R, Kells W, Moreno G, Mason K, Ottaway D, Smith M, Vorvick C, Willems P, et al. 2005 LIGO-Document: LIGO-T050064-00-R

    [45]

    Fritschel P, Bork R, González G, Mavalvala N, Ouimette D, Rong H, Sigg D, Zucker M 2001 Appl. Opt. 40 4988

    [46]

    Fricke T T, Smith-Lefebvre N D, Abbott R, Adhikari R, Dooley K L, Evans M, Fritschel P, Frolov V V, Kawabe K, Kissel J S, et al. 2012 Class. Quantum Grav. 29 065005

    [47]

    Driggers J, Frolov V, Atkinson D, Miao H, Landry M, Adhikari R, DeRosa R 2010 LIGO-Document: LIGO-P1000088

    [48]

    Schofield 2010 LIGO-Document:LIGO-G1000923

    [49]

    Smith N D 2012 Techniques for improving the readout sensitivity of gravitational wave antennae. Ph.d. dissertation, (Cambridge, MA: Massachusetts Institute of Technology)

    [50]

    Abbott B P, Abbott R, Abbott T, Abernathy M, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, et al. 2016 Phys. Rev. Lett. 116 061102

    [51]

    Somiya K, Chen Y, Kawamura S, Mio N 2006 Phys. Rev. D 73 122005

    [52]

    Kwee P, Bogan C, Danzmann K, Frede M, Kim H, King P, Pöld J, Puncken O, Savage R L, Seifert F, et al. 2012 Opt. Express 20 10617

    [53]

    P F 2003 In Gravitational-Wave Detection, vol. 4856. p 282. (SPIE)

    [54]

    Gretarsson A M, Harry G M, Penn S D, Saulson P R, Startin W J, Rowan S, Cagnoli G, Hough J 2000 Phys. Lett. A 270 108

    [55]

    Matichard F, Lantz B, Mittleman R, Mason K, Kissel J, Abbott B, Biscans S, McIver J, Abbott R, Abbott S, et al. 2015 Class. Quantum Grav. 32 185003

    [56]

    De Rosa R, Garufi F, Milano L, Mosca S, Persichetti G 2010 In Journal of Physics: Conference Series, vol. 228 (IOP Publishing), p 012018

    [57]

    Martynov D V, Hall E, Abbott B, Abbott R, Abbott T, Adams C, Adhikari R, Anderson R, Anderson S, Arai K, et al. 2016 Phys. Rev. D 93 112004

    [58]

    Evans M, Gras S, Fritschel P, Miller J, Barsotti L, Martynov D, Brooks A, Coyne D, Abbott R, Adhikari R X, et al. 2015 Phys. Rev. Lett. 114 161102

    [59]

    Braginsky V B, Strigin S E, Vyatchanin S P 2002 Phys. Lett. A 305 111

    [60]

    Abbott B, Abbott R, Abbott T, Abernathy M, Acernese F, Ackley K, et al. 2016 Class. Quantum Grav. 33 134001

    [61]

    Abbott B P, Abbott R, Abbott T D, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B, et al. 2017 Phys. Rev. D 96 062002

    [62]

    Abbott B P, Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R, Adya V, Affeldt C, et al. 2019 Phys. Rev. X 9 031040

    [63]

    Davis D, Massinger T, Lundgren A, Driggers J C, Urban A L, Nuttall L 2019 Class. Quantum Grav. 36 055011

    [64]

    Abbott B P, Abbott R, Abbott T, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B, et al. 2017 Phys. Rev. Lett. 119 161101

    [65]

    Biscans S, Gras S, Blair C, Driggers J, Evans M, Fritschel P, Hardwick T, Mansell G 2019 Phys. Rev. D 100 122003

    [66]

    Mow-Lowry C M, Martynov D 2019 Class. Quantum Grav. 36 245006

    [67]

    Aasi J, Abadie J, Abbott B, Abbott R, Abbott T, Abernathy M, Adams C, Adams T, Addesso P, Adhikari R, et al. 2013 Nat. Photonics 7 613

    [68]

    Zhao Y, Aritomi N, Capocasa E, Leonardi M, Eisenmann M, Guo Y, Polini E, Tomura A, Arai K, Aso Y, et al. 2020 Phys. Rev. Lett. 124 171101

    [69]

    Dwyer S E 2013 Quantum noise reduction using squeezed states in LIGO. Ph.D. Dissertation, (Cambridge, MA: Massachusetts Institute of Technology)

    [70]

    Billingsley G, Yamamoto H, Zhang L 2017 ASPE 66 78

    [71]

    Brooks A F, Vajente G, Yamamoto H, Abbott R, Adams C, Adhikari R X, Ananyeva A, Appert S, Arai K, Areeda J S, et al. 2021 Appl. Opt. 60 4047

    [72]

    Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R, Adya V, Affeldt C, et al. 2021 Phys. Rev. X 11 021053

    [73]

    Dolesi R, Hueller M, Nicolodi D, Tombolato D, Vitale S, Wass P, Weber W J, Evans M, Fritschel P, Weiss R, et al. 2011 Phys. Rev. D 84 063007

    [74]

    Mitrofanov V, Prokhorov L, Tokmakov K, Willems P 2004 Class. Quantum Grav. 21 S1083

    [75]

    Abbott R, Abbott T, Acernese F, Ackley K, Adams C, Adhikari N, Adhikari R, Adya V, Affeldt C, Agarwal D, et al. 2023 Phys. Rev. X 13 041039

    [76]

    Capote E, Jia W, Aritomi N, Nakano M, Xu V, Abbott R, Abouelfettouh I, Adhikari R, Ananyeva A, Appert S, et al. 2025 Phys. Rev. D 111 062002

    [77]

    Buikema A, Cahillane C, Mansell G, Blair C, Abbott R, Adams C, Adhikari R, Ananyeva A, Appert S, Arai K, et al. 2020 Phys. Rev. D 102 062003

    [78]

    Soni S, Berger B, Davis D, Di Renzo F, Effler A, Ferreira T, Glanzer J, Goetz E, González G, Helmling-Cornell A, et al. 2025 Class. Quantum Grav. 42 085016

    [79]

    Jia W, Xu V, Kuns K, Nakano M, Barsotti L, Evans M, Mavalvala N, Collaboration† L S, Abbott R, Abouelfettouh I, et al. 2024 Science 385 1318

    [80]

    Collaboration L S 2022 LIGO-Document: LIGO-T2200287-v2

    [81]

    Abbott B, Abbott R, Adhikari R, Ajith P, Allen B, Allen G, Amin R, Anderson S, Anderson W, Arain M, et al. 2009 Rep. Prog. Phys. 72 076901

    [82]

    Virgo Collaboration 2024. https://www.virgo-gw.eu

    [83]

    Acernese F, Alshourbagy M, Amico P, Antonucci F, Aoudia S, Arun K, Astone P, Avino S, Baggio L, Ballardin G, et al. 2008 Class. Quantum Grav. 25 184001

    [84]

    Accadia T, Swinkels B, forthe VIRGO Collaboration, et al. 2010 Class. Quantum Grav. 27 084002

    [85]

    Braccini S, Barsotti L, Bradaschia C, Cella G, Di Virgilio A, Ferrante I, Fidecaro F, Fiori I, Frasconi F, Gennai A, et al. 2005 Astropart. Phys. 23 557

    [86]

    Lorenzini M, on behalf ofthe Virgo Collaboration, et al. 2010 Class. Quantum Grav. 27 084021

    [87]

    Bersanetti D, Patricelli B, Piccinni O J, Piergiovanni F, Salemi F, Sequino V 2021 Universe 7 322

    [88]

    Di Pace S, Collaboration V, et al. 2021 Phys. Scr. 96 124054

    [89]

    Naticchioni L, Collaboration V, et al. 2018 In Journal of Physics: Conference Series, vol. 957 (IOP Publishing), p 012002

    [90]

    Rocchi A, Coccia E, Fafone V, Malvezzi V, Minenkov Y, Sperandio L 2012 In Journal of Physics: Conference Series, vol. 363 (IOP Publishing), p 012016

    [91]

    De Rossi C, Brooks J, Casanueva Diaz J, Chiummo A, Genin E, Gosselin M, Leroy N, Mantovani M, Montanari B, Nocera F, Pillant G 2020 Galaxies 8 87

    [92]

    Collette C, Boudart V, Cudell J R, Collaboration L S, Collaboration V, et al. 2023 In yes (Institute of Physics)

    [93]

    Garufi F 2024 Ground-based and Airborne Telescopes X 13094 573

    [94]

    Acernese F, Agathos M, Ain A, Albanesi S, Alléné C, Allocca A, Amato A, Andia M, Andrade T, Andres N, et al. 2023 In J. Phys.: Conf. Ser., vol. 2429 (IOP Publishing), p 012040

    [95]

    KAGRA Collaboration 2024. https://gwcenter.icrr.u-tokyo.ac.jp

    [96]

    Wang H, Aso Y, Leonardi M, Eisenmann M, Hirose E, Billingsley G, Kokeyama K, Ushiba T, Tamaki M, Michimura Y 2024 Phys. Rev. D 110 082007

    [97]

    Michimura Y, Wang H, Salces-Carcoba F, Wipf C, Brooks A, Arai K, Adhikari R X 2024 Phys. Rev. D 109 022009

    [98]

    Y I, Collaboration K 2024 In 38th International Cosmic Ray Conference. p 1555

    [99]

    Akiyama Y, Akutsu T, Ando M, Arai K, Arai Y, Araki S, Araya A, Aritomi N, Asada H, Aso Y, et al. 2019 Class. Quantum Grav. 36 095015

    [100]

    Abac A, Abbott R, Abouelfettouh I, Acernese F, Ackley K, Adhicary S, Adhikari N, Adhikari R, Adkins V, Agarwal D, et al. 2024 arXiv:2410.16565[astro-ph.HE]

    [101]

    Akutsu T, Ando M, Aoumi M, Araya A, Aso Y, Baiotti L, Bajpai R, Cannon K, Chen A Y, Chen D, et al. 2025 arXiv:2508.03392[astro-ph.HE]

    [102]

    Adhikari R X, Arai K, Brooks A, Wipf C, Aguiar O, Altin P, Barr B, Barsotti L, Bassiri R, Bell A, et al. 2020 Class. Quantum Grav. 37 165003

    [103]

    Adhikari R, Arai K, Brooks A, Salces-Carcoba F, Wipf C 2023 LIGO-Document:LIGO-G1601461

    [104]

    Team L V 2016 LIGO-Document: LIGO-G1602258-v1

    [105]

    Adhikari R X, Brooks A 2024 LIGO-Document: LIGO-T1400226

    [106]

    Hall E D 2022 Galaxies 10 90

    [107]

    Reitze D, Adhikari R X, Ballmer S, Barish B, Barsotti L, Billingsley G, Brown D A, Chen Y, Coyne D, Eisenstein R, et al. 2019 arXiv:1907.04833

    [108]

    Evans M, Adhikari R X, Afle C, Ballmer S W, Biscoveanu S, Borhanian S, Brown D A, Chen Y, Eisenstein R, Gruson A, et al. 2021 arXiv:2109.09882

    [109]

    Branchesi M, Maggiore M, Alonso D, Badger C, Banerjee B, Beirnaert F, Belgacem E, Bhagwat S, Boileau G, Borhanian S, et al. 2023 JCAP 2023 068

    [110]

    Committee E S 2020 ET-Document: Design Report Update 2020 Technical Report

    [111]

    Brown D D, Miao H, Collins C, Mow-Lowry C, Töyrä D, Freise A 2017 Phys. Rev. D 96 062003

  • [1] LI Xiang, WANG Jiawei, LI Fan, HUANG Tianshi, DANG Hao, ZHAO Desheng, TIAN Long, SHI Shaoping, LI Wei, YIN Wangbao, ZHENG Yaohui. Ultra-low-noise laser intensity noise evaluation system in Hz frequency band for ground-based gravitational wave detection. Acta Physica Sinica, doi: 10.7498/aps.74.20241319
    [2] Ruan Yuan-Dong, Zhang Zhi-Hao, Jia Jiang-Xie, Gu Yu-Ning, Zhang Shan-Duan, Cui Xu-Gao, Hong Wei, Bai Yan-Zheng, Tian Peng-Fei. Application of ultraviolet light sources in charge management systems for space gravitational wave detection. Acta Physica Sinica, doi: 10.7498/aps.73.20241115
    [3] Guo Xi-Qing, Zhou Jing, Wang Chen-Xi, Qin Chen, Guo Cheng-Zhe, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Residual gas noises in vacuum of optical interferometer for ground-based gravitational wave detection. Acta Physica Sinica, doi: 10.7498/aps.73.20231462
    [4] Wang Jia-Wei, Li Jian-Bo, Li Fan, Zheng Li-Ang, Gao Zi-Chao, An Bing-Nan, Ma Zheng-Lei, Yin Wang-Bao, Tian Long, Zheng Yao-Hui. Programmable precision voltage reference source for space-based gravitational wave detection. Acta Physica Sinica, doi: 10.7498/aps.72.20222119
    [5] Wang Zai-Yuan, Wang Jie-Hao, Li Yu-Hang, Liu Qiang. Millihertz band low-intensity-noise single-frequency laser for space gravitational wave detection. Acta Physica Sinica, doi: 10.7498/aps.72.20222127
    [6] Li Fan, Wang Jia-Wei, Gao Zi-Chao, Li Jian-Bo, An Bing-Nan, Li Rui-Xin, Bai Yu, Yin Wang-Bao, Tian Long, Zheng Yao-Hui. Laser intensity noise evaluation system for space-based gravitational wave detection. Acta Physica Sinica, doi: 10.7498/aps.71.20220841
    [7] Li Qing-Hui, Li Wei, Sun Yu, Wang Ya-Jun, Tian Long, Chen Li-Rong, Zhang Peng-Fei, Zheng Yao-Hui. Laser parameters requirement for third-generation ground-based gravitational wave detection. Acta Physica Sinica, doi: 10.7498/aps.71.20220552
    [8] Han Rui-Long, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Xia Qing, Han Jian-Wei. Mechanism of cosmic ray high-energy particles charging test mass. Acta Physica Sinica, doi: 10.7498/aps.70.20210747
    [9] Tang Yuan-He, Cui Jin, Gao Hai-Yang, Qu Ou-Yang, Duan Xiao-Dong, Li Cun-Xia, Liu Li-Na. Calibrations of ground based airglow imaging interferometer for the upper atmospheric wind field measurement. Acta Physica Sinica, doi: 10.7498/aps.66.130601
    [10] Wang Feng, Peng Xiao-Shi, Mei Lu-Sheng, Liu Shen-Ye, Jiang Xiao-Hua, Ding Yong-Kun. Shock timing experiment based on imaging velocity interferometer system for any reflector. Acta Physica Sinica, doi: 10.7498/aps.61.135201
    [11] Hu Hua, Wu Kang, Shen Lei, Li Gang, Wang Li-Jun. A new high precision absolute gravimeter. Acta Physica Sinica, doi: 10.7498/aps.61.099101
    [12] Wang Yu-Zhao, Wu Xin, Zhong Shuang-Ying. Characterization of gravitational waves from spinning compact binaries. Acta Physica Sinica, doi: 10.7498/aps.61.160401
    [13] Zhong Shuang-Ying, Liu Song. Study on gravitational waveform from post-Newtonian orbits of spinning compact binary. Acta Physica Sinica, doi: 10.7498/aps.61.120401
    [14] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Ding Yong-Kun. Shock timing experiment in polystyrene target based on imaging velocity interferometer system for any reflector. Acta Physica Sinica, doi: 10.7498/aps.60.085203
    [15] Qing Xin. . Acta Physica Sinica, doi: 10.7498/aps.49.194
    [16] ZHENG QING-ZHANG, TANG MENG-XI, HU EN-KE. DISCUSSION ABOUT THE RELATION OF POSITION BETWEEN GRAVITATIONAL WAVES DETECTORS AND THE SOURCE. Acta Physica Sinica, doi: 10.7498/aps.39.685
    [17] TAO FU-ZHEN. ON GRAVITATIONAL SOLITONS. Acta Physica Sinica, doi: 10.7498/aps.36.350
    [18] XU BU-XIN, QIN RONG-XIAN. DESIGN OF A TUNING FORK ANTENNA WITH COLLECTIVE MASS FOR DETECTING GRAVITATIONAL RADIATION FROM VELA PULSAR. Acta Physica Sinica, doi: 10.7498/aps.31.1097
    [19] ZHENG QING-ZHANG, CUI SHI-ZHI. TORSIONAL PENDULUM ——A POSSIBLE ANTENNA FOR DETECTING LOW FREQUENCY GRAVI-TATIONAL WAVES. Acta Physica Sinica, doi: 10.7498/aps.29.1204
    [20] LU QI-HUNG, LIU YU-FEN, ZHOU ZHENG-LONG, GUO HAN-YING. THE SCALAR-TENSOR GRAVITATIONAL WAVES. Acta Physica Sinica, doi: 10.7498/aps.23.15
Metrics
  • Abstract views:  157
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  02 September 2025
  • /

    返回文章
    返回