Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of waveguide integrated carbon based infrared detectors

LV Xiaowei ZHANG Jiazhen CHEN Junyu LIU Zizhuo ZHAO Wenchao WU Qiushi XU Hao CHEN Xiaoshuang

Citation:

Research progress of waveguide integrated carbon based infrared detectors

LV Xiaowei, ZHANG Jiazhen, CHEN Junyu, LIU Zizhuo, ZHAO Wenchao, WU Qiushi, XU Hao, CHEN Xiaoshuang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Carbon-based materials have garnered significant attention in the field of infrared photodetection due to their unique and excellent physical properties, including optical, thermal, electrical, magnetic, and mechanical properties. These characteristics endow them with broad application prospects in various fields such as communication, military, imaging, energy, and biology. However, in practical scenarios oriented towards engineering applications, carbon-based materials still encounter numerous challenges, including weak absorption in the infrared band, insufficient sensitivity, and slow response in fullerenes, graphene, and single carbon nanotubes. When integrated with waveguides, carbon-based materials can effectively suppress environmental dissipation of light transmission, confine the light field, enhance the coupling efficiency between light and matter, thereby improving the signal-to-noise ratio, sensitivity, response speed, and operating bandwidth of the detector. On the other hand, waveguide-integrated photodetectors are compatible with CMOS processing technology, promising low-cost, high-density integration to meet the development needs of next-generation infrared photodetectors. This paper provides an overview of carbon-based infrared photodetectors integrated with various waveguide materials, offering a detailed analysis of performance enhancement strategies and development bottlenecks for these devices. Finally, it explores the future directions of waveguide-integrated carbon-based infrared detectors.
  • [1]

    Weiss N O, Zhou H, Liao, L, Liu Y, Jiang S, Huang Y, Duan X 2012 Advanced materials 24 5782

    [2]

    Castro Neto A H, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Reviews of modern physics 81 109

    [3]

    Richter M, Heumüller T, Matt G J, Heiss W, Brabe C J 2017 Advanced Energy Materials 7 1601574

    [4]

    Cheng Z, Li Z, Li M Y, Wen X, Ding X, Xu H, Liu S 2024 Journal of Materials Chemistry A 12 1685

    [5]

    Na W, Zhang J, Cui F, Li X, Shen K, Wu J, Zou G, Xu H 2024 24th International Conference on Transparent Optical Networks, Italy, Jul 14-18, 2024 p1

    [6]

    Lin Q, Zhao C, Li M, Xu H 2024 Chemosensors 12 255

    [7]

    Li X, Dai X, Xu H, Shen K, Guo J, Li C, Zou G, Choy K L, Parkin I P, Guo Z, Liu H 2021 Science China Materials 64 1964

    [8]

    Xu H, Han X, Dai X, Liu W, Wu J, Zhu J, Kim D, Zou G, Sablon K A, Sergeev A, Guo Z 2018 Advanced materials 30 1706561

    [9]

    Itkis M E, Borondics F, Yu A, Haddon R C 2006 Science 312 413

    [10]

    St-Antoine B C, Ménard D, Martel R 2011 Nano letters 11 609

    [11]

    Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nature nanotechnology 4 839

    [12]

    Mueller T, Xia F, Avouris P 2010 Nature photonics 4 297

    [13]

    Yang Q, Zhang C, Wu S, Li S, Bao Q, Giannini V, Maier S A, Li X 2018 Nano Energy 48 161

    [14]

    Liang S, Ma Z, Wu G, Wei N, Huang L, Huang H, Liu H, Wang S, Peng L M 2016 ACS nano 10 6963

    [15]

    Cao X, Peng L, Liu L, Lv J, Li Z, Tian F, Dong Y, Liu X, Shen Y, Sun H, Xu Y, Fang W, Gao C 2022 Carbon 198 244

    [16]

    Jin Y, Zhang T, Zhao J, Zhao Y, Liu C, Song J, Hao X, Wang J, Jiang K, Fan S, Li Q 2021 Carbon 178 616

    [17]

    Bosnick K, Gabo N, McEuen P 2006 Appl. Phys. Lett. 89 163121

    [18]

    Lee J U, Gipp P P, Heller C M 2004 Appl. Phys. Lett. 85 145

    [19]

    Liu Y, Han J, Wei N, Qiu S, Li H, Li Q, Wang S, Peng L M 2016 Nanoscale 8 17122

    [20]

    Pradhan B, Setyowati K, Liu H, Waldeck D H, Chen J 2008 Nano letters 8 1142

    [21]

    Park S, Kim S J, Nam J H, Pitner G, Lee T H, Ayzner A L, Wang H, Fong S W, Vosgueritchian M, Park Y J, Brongersma M L 2014 Advanced Materials 27 759

    [22]

    Arnold M S, Zimmerman J D, Renshaw C K, Xu X, Lunt R R, Austin C M, Forrest S R 2009 Nano letters 9 3354

    [23]

    Echtermeyer T J, Britnell L, Jasnos P K, Lombardo A, Gorbachev R V, Grigorenko A N, Geim A K, Ferrari A C, Novoselov K S 2011 Nature communications 2 458

    [24]

    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews A M, Schrenk W, Strasser G, Mueller T 2012 Nano letters 12 2773

    [25]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, De Arquer F P, Gatti F, Koppens F H 2012 Nature nanotechnology 7 363

    [26]

    Liu C H, Chang Y C, Norris T B, Zhong Z 2014 Nature nanotechnolog 9 273

    [27]

    Koester S J, Li M 2013 IEEE Journal of Selected Topics in Quantum Electronics 20 84

    [28]

    Tailor N K, Aranda C A, Saliba M, Satapathi S 2022 ACS Materials Letters 4 2298

    [29]

    Long M, Wang P, Fang H, Hu W 2019 Advanced Functional Materials 29 1803807

    [30]

    Xu J, Zhang Z, Zhang W, Chen Z 2024 Processes 12 1728

    [31]

    Periyanagounder D, Gnanasekar P, Varadhan P, He J H, Kulandaivel J 2018 Journal of Materials Chemistry C 6 9545

    [32]

    Cai X, Wang S, Peng L M 2023 Nano Res. Energy 2 e9120058

    [33]

    Fugallo G, Cepellotti A, Paulatto L, Lazzeri M, Marzari N, Mauri F 2014 Nano letters 14 6109

    [34]

    Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nature nanotechnology 9 780

    [35]

    Tissot J L, Trouilleau C, Fieque B, Crastes A, Legras O 2006 Opto-Electronics Review 14 25

    [36]

    Gong Y G, Li W, Cai H H, Li Z, Chen C, Jiang Y D 2009 Chinese Journal of Sensors and Actuators 8 1122 (in Chinese) [龚宇光,李伟,蔡海洪,李志,陈超,蒋亚东 2009 传感技术学报 8 1122]

    [37]

    Soref R A 2002 Proceedings of the IEEE 81 1687

    [38]

    Richards P L 1994 Journal of Applied Physics 76 1

    [39]

    He X, Léonard F, Kono J 2015 Advanced Optical Materials 3 989

    [40]

    Yang Q, Shen J, Wei X Z, Shi H F 2020 Infrared and Laser Engineering 49 23 (in Chinese) [杨旗,申钧,魏兴战,史浩飞 2020 红外与激光工程 49 23]

    [41]

    Gabor N M, Song J C, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S, Jarillo-Herrero P 2011 Science 334 648

    [42]

    Song J C, Tielrooij K J, Koppens F H, Levitov L S 2013 Physical Review B 87 155429

    [43]

    Tielrooij K J, Song J C, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S, Koppens F H 2013 Nature Physics 9 248

    [44]

    Li H, Anugrah Y, Koester S J, Li M 2012 Appl. Phys. Lett. 101 611

    [45]

    Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Letters 16 8

    [46]

    Fang J, Wang D, DeVault C T, Chung T F, Chen Y P, Boltasseva A, Shalaev V M, Kildishev A V 2017 Nano letters 17 57

    [47]

    Gan X, Shiue R J, Gao Y, Meric I, Heinz T F, Shepard K, Hone J, Assefa S, Englund D 2013 Nature photonics 7 883

    [48]

    Pospischil A, Humer M, Furchi M M, Bachmann D, Guider R, Fromherz T, Mueller T 2013 Nature Photonics 7 892

    [49]

    Schall D, Neumaier D, Mohsin M, Chmielak B, Bolten J, Porschatis C, Prinzen A, Matheisen C, Kuebart W, Junginger B, Templ W 2014 Acs Photonics 1 781

    [50]

    Wang X, Cheng Z, Xu K, Tsang H K, Xu J B 2013 Nature Photonics 7 888

    [51]

    Youngblood N, Anugrah Y, Ma R, Koester S J, Li M 2014 Nano letters 14 2741

    [52]

    Ma Z, Yang L, Liu L, Wang S, Peng L M 2020 ACS nano 14 7191

    [53]

    Zhao H, Yang L, Wu W, Cai X, Yang F, Xiu H, Wang Y, Zhang Q, Xin X, Zhang F, Peng L M 2023 ACS nano 17 7466

    [54]

    Zhao H, Yang L, Xiu H, Deng M, Wang Y, Zhang Q 2024 Applied Optics 63 4435

    [55]

    Shiue R J, Gao Y, Wang Y, Peng C, Robertson A D, Efetov D K, Assefa S, Koppens F H, Hone J, Englund D 2015 Nano letters 15 7288

    [56]

    Wang J, Cheng Z, Chen Z, Wan X, Zhu B, Tsang H K, Shu C, Xu J 2016 Nanoscale 8 13206

    [57]

    Guo J, Li J, Liu C, Yin Y, Wang W, Ni Z, Fu Z, Yu H, Xu Y, Shi Y, Ma Y 2020 Light: Science & Applications 9 29

    [58]

    Marconi S, Giambra M A, Montanaro A, Mišeikis V, Soresi S, Tirelli S, Galli P, Buchali F, Templ W, Coletti C, Sorianello V 2021 Nature communications 12 806

    [59]

    Goykhman I, Sassi U, Desiatov B, Mazurski N, Milana S, De Fazio D, Eiden A, Khurgin J, Shappir J, Levy U, Ferrari A C 2016 Nano letters 16 3005

    [60]

    Rieben D, Blatter T, Koepfli S M, Kulmer L, Horst Y, Moor D, Nashashibi S, Homs M, Bisang D, Baumann M, Fedoryshyn Y, Leuthold J 2025 Optical Fiber Communication Conference (OFC 2025) Th3E.4

    [61]

    Muñoz P, Micó G, Bru L A, Pastor D, Pérez D, Doménech J D, Fernández J, Baños R, Gargallo B, Alemany R, Sánchez A M 2017 Sensors 17 2088

    [62]

    Blumenthal D J, Heideman R, Geuzebroek D, Leinse A, Roeloffzen C 2018 Proceedings of the IEEE 106 2209

    [63]

    Bauters J F, Heck M J, John D, Dai D, Tien M C, Barton J S, Leinse A, Heideman R G, Blumenthal D J, Bowers J E 2011 Optics express 19 3163

    [64]

    Wang J, Cheng Z, Chen Z, Xu J B, Tsang H K, Shu C 2015 J. Appl. Phys. 117 144504

    [65]

    Ferrari A C, Bonaccorso F, Fal'Ko V, Novoselov K S, Roche S, Bøggild P, Borini S, Koppens F H, Palermo V, Pugno N, Garrido J A 2015 Nanoscale 7 4598

    [66]

    Mišeikis V, Marconi S, Giambra M A, Montanaro A, Martini L, Fabbri F, Pezzini S, Piccinini G, Forti S, Terrés B, Goykhman I 2020 ACS nano 14 11190

    [67]

    Muench J E, Ruocco A, Giambra M A, Miseikis V, Zhang D, Wang J, Watson H F, Park G C, Akhavan S, Sorianello V, Midrio M 2019 Nano letters 19 7632

    [68]

    Gao Y, Tao L, Tsang H K, Shu C 2018 Appl. Phys. Lett. 112 211107

    [69]

    Giambra M A, Mišeikis V, Pezzini S, Marconi S, Montanaro A, Fabbri F, Sorianello V, Ferrari A C, Coletti C, Romagnoli M 2021 ACS nano 15 3171

    [70]

    Schuler S, Schall D, Neumaier D, Dobusch L, Bethge O, Schwarz B, Krall M, Mueller T 2016 Nano letters 16 7107

    [71]

    Yan S, Zuo Y, Xiao S, Oxenløwe L K, Ding Y 2022 Opto-Electronic Advances 5 210159

    [72]

    Li T, Mao D, Petrone N W, Grassi R, Hu H, Ding Y, Huang Z, Lo G Q, Hone J C, Low T, Wong C W 2018 npj 2D Materials and Applications 2 36

    [73]

    Goldstein J, Lin H, Deckoff-Jones S, Hempel M, Lu A Y, Richardson K A, Palacios T, Kong J, Hu J, Englund D 2022 Nature Communications 13 3915

    [74]

    Hashemnezhad H, Noori M 2025 Optics & Laser Technology 181 111852

    [75]

    Ding Y, Cheng Z, Zhu X, Yvind K, Dong J, Galili M, Galili M, Hu H, Mortensen N A, Xiao S, Oxenløwe L K 2020 Nanophotonics 9 317

    [76]

    Jian J L, Wu J H, Zhong C Y, Ma H, Sun B S, Ye Y T, Luo Y, Wei M L, Lei K H, Liu R Z, Chen Z Q, Li G Y, Dai H, Tang R J, Sun C L, Li J Y, Li W, Li M, Lin H T, Li L 2023 ACS Photonics 10 3494

    [77]

    Li Z W, Hu S Q, Zhang Q, Tian R J, Gu L P, Zhu Y S, Yuan Q S, Yi R X, Li C, Liu Y, Hao Y, Gan X T, Zhao J L 2022 ACS Photonics 9 282

    [78]

    Hlushchenko D, Olszewski J, Martynkien T, Łukomski M, Gemza K, Karasinski P, Zięba M, Baraniecki T, Duda Ł, Bachmatiuk A, Guzik M, Kudrawiec R 2024 ACS Applied Materials & Interfaces 16 28874

    [79]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nature photonics 9 247

    [80]

    Yin Y L, Cao R, Guo J S, Liu C Y, Li J, Feng X L, Wang H D, Du W, Qadir A, Zhang H, Ma Y G, Gao S M, Xu Y, Shi Y C, Tong L M, Dai D X 2019 Laser & Photonics Reviews 13 1900032

    [81]

    Huang L, Dong B, Guo X, Chang Y H, Chen N, Huang X, Liao W G, Zhu C X, Wang H, Lee C K, Ang K W 2018 ACS nano 13 913

    [82]

    Pang C, Deng Y H, Kheradmand E, Poonkottil N, Petit R, Elsinger L, Detavernier C, Geiregat P, Hens Z, Thourhout D V 2023 ACS photonics 10 4215

    [83]

    Yang C, Liu Z, Cai H, Li D, Yu Y, Zhang X 2025 ACS nano 19 8661

  • [1] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.73.20240489
    [2] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, doi: 10.7498/aps.73.20231657
    [3] Liu Ying, Guo Si-Lin, Zhang Yong, Yang Peng, Lyu Ke-Hong, Qiu Jing, Liu Guan-Jun. Review on 1/f noise and its research progress in two-dimensional material graphene. Acta Physica Sinica, doi: 10.7498/aps.72.20221253
    [4] Li Kai, Sun Jie, Du Zai-Fa, Qian Feng-Song, Tang Peng-Hao, Mei Yu, Xu Chen, Yan Qun, Liu Ming, Li Long-Fei, Guo Wei-Ling. Metal thermopile infrared detector with vertical graphene. Acta Physica Sinica, doi: 10.7498/aps.72.20221564
    [5] Ge Hao-Nan, Xie Run-Zhang, Guo Jia-Xiang, Li Qing, Yu Yi-Ye, He Jia-Le, Wang Fang, Wang Peng, Hu Wei-Da. Artificial micro- and nano-structure enhanced long and very long-wavelength infrared detectors. Acta Physica Sinica, doi: 10.7498/aps.71.20220380
    [6] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, doi: 10.7498/aps.71.20212203
    [7] Zhou Hai-Tao, Xiong Xi-Ya, Luo Fei, Luo Bing-Wei, Liu Da-Bo, Shen Cheng-Min. Graphene enforced copper matrix composites fabricated by in-situ deposition technique. Acta Physica Sinica, doi: 10.7498/aps.70.20201943
    [8] Cheng Xin, Xue Wen-Rui, Wei Zhuang-Zhi, Dong Hui-Ying, Li Chang-Yong. Mode characteristic analysis of optical waveguides based on graphene-coated elliptical dielectric nanowire. Acta Physica Sinica, doi: 10.7498/aps.68.20182090
    [9] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.68.20190903
    [10] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, doi: 10.7498/aps.67.20180125
    [11] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, doi: 10.7498/aps.67.20180114
    [12] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, doi: 10.7498/aps.67.20180196
    [13] Wei Zhuang-Zhi, Xue Wen-Rui, Peng Yan-Ling, Cheng Xin, Li Chang-Yong. Modes characteristics analysis of THz waveguides based on three graphene-coated dielectric nanowires. Acta Physica Sinica, doi: 10.7498/aps.67.20180036
    [14] Peng Yan-Ling, Xue Wen-Rui, Wei Zhuang-Zhi, Li Chang-Yong. Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides. Acta Physica Sinica, doi: 10.7498/aps.67.20172016
    [15] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, doi: 10.7498/aps.67.20180129
    [16] Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2Graphene-based broadband all-optical spatial modulator. Acta Physica Sinica, doi: 10.7498/aps.67.20180307
    [17] Huang Le, Zhang Zhi-Yong, Peng Lian-Mao. High performance graphene Hall sensors. Acta Physica Sinica, doi: 10.7498/aps.66.218501
    [18] Chen Wen-Hao, Du Lei, Yin Xue-Song, Kang Li, Wang Fang, Chen Song. Investigation on the low-freauency noise physical models and the defects' characterization of the PbS infrared dectector. Acta Physica Sinica, doi: 10.7498/aps.60.107202
    [19] Li Liang-Xin, Hu Yong-Hua. Intersubband and intraband transitions of self-assembled quantum wires for the infrared detectors. Acta Physica Sinica, doi: 10.7498/aps.54.848
    [20] CHEN CHANG-HONG, YI XIN-JIAN, XIONG BI-FENG. INFRARED RESPONSIVITY OF UNCOOLED VO2-BASED THIN FILMS BOLOMETER. Acta Physica Sinica, doi: 10.7498/aps.50.450
Metrics
  • Abstract views:  113
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  02 September 2025
  • /

    返回文章
    返回