Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser intensity noise evaluation system for space-based gravitational wave detection

Li Fan Wang Jia-Wei Gao Zi-Chao Li Jian-Bo An Bing-Nan Li Rui-Xin Bai Yu Yin Wang-Bao Tian Long Zheng Yao-Hui

Citation:

Laser intensity noise evaluation system for space-based gravitational wave detection

Li Fan, Wang Jia-Wei, Gao Zi-Chao, Li Jian-Bo, An Bing-Nan, Li Rui-Xin, Bai Yu, Yin Wang-Bao, Tian Long, Zheng Yao-Hui
PDF
HTML
Get Citation
  • The space-based gravitational wave detection can acquire the gravitational wave source information with larger characteristic mass and scale, forming a complementary detection scheme with ground-based gravitational wave detection, primordial gravitational wave detection, and pulsar gravitational wave detection. The space-based gravitational wave detection is based on a long-distance laser interference device, which mainly detects gravitational wave signals in a frequency range of 0.1 mHz–1 Hz. The noise evaluation and noise suppression of the laser light source system directly affect the detection sensitivity. In this work, based on low-noise photoelectric detection, a very low-frequency laser intensity noise test and evaluation system is constructed with high-precision digital multimeter, software control and algorithm programming of the host computer. The laser intensity noise can be converted into the fluctuation of the current signal by utilizing the photodiode, and the current signal is converted into the voltage signal and amplified by the transimpedance circuit. Thus the high-frequency interference components are filtered out by a passive low-pass filtering, and the extremely low-frequency noise components are retained. According to the definition of shot noise, it can be known that the photocurrent injected into the detector is inversely proportional to the shot noise, so at least 5 mW laser is chosen for photoelectric detection. After controlling the high-precision digital multimeter through LabVIEW software programming, the acquisition is detected. The output voltage signal by the laser is subjected to the fast Fourier transform and logarithmic frequency axis power spectral density estimation algorithm for noise evaluation in the frequency domain, forming a complete laser intensity noise evaluation and measurement system. The 0.1 mHz–1 Hz frequency band laser intensity noise evaluation is finally obtained. The experimental results show that the noise of the high-precision multimeter in a frequency band of 0.1 mHz–1 Hz is lower than 5×10–5 V/Hz1/2; the noise of the detector electronics ina frequency band of 0.1 mHz–1 Hz is lower than 4×10–5 V/Hz1/2. The electronic noise of the high-precision multimeters and the detectors meet the requirements for space gravitational wave detection. The experimental results show that the 0.1 mHz–1 Hz frequency band laser intensity noise evaluation system we built meets the needs of space-based gravitational wave detection program, and provides an important foundation for building a laser source that meets the needs of space-based gravitational wave detection.
      Corresponding author: Yin Wang-Bao, tianlong@sxu.edu.cn ; Tian Long, ywb65@sxu.edu.cn ; Zheng Yao-Hui, yhzheng@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFC2200402), the National Natural Science Foundation of China (Grant Nos. 62027821, 62225504, 62035015, 12174234, 11874250, 12274275), the Key R&D Program of Shanxi Province, China (Grant No. 202102150101003), and the Program for Sanjin Scholar of Shanxi Province, China.
    [1]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 2Google Scholar

    [2]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [3]

    ESA-SCI 2000 LISA: System and Technology Study Report. ESA-SCI 11 2

    [4]

    Black E D, Gutenkunst R N 2003 Am. J. Phys. 71 365Google Scholar

    [5]

    ESA-SCI 2000 LISA: System and Technology Study Report. ESA-SCI 11 76

    [6]

    Jennrich O 2009 Classical Quantum Gravity 26 153001Google Scholar

    [7]

    Bender P, Brillet A, Ciufolini I, Cruise A M, Cutler C, Danzmann K, Fidecaro F, Folkner W M, Hough J, McNamara P, Peterseim M, Robertson D, Rodrigues M, Rüdiger A, Sandford M, Schäfer G, Schilling R, Schutz B, Speake C, Stebbins R T, Sumner T, Touboul P, Vinet J Y, Vitale S, Ward H, Winkler W 1998 LISA pre-phase a report. Max Planck Institute for Quantum Optics, Garching 1998 p1

    [8]

    Armano M, Audley H, Auger G, et al. 2016 Phys. Rev. Lett. 116 231101Google Scholar

    [9]

    Araújo H, Boatella C, Chmeissani M, Conchillo A, García-Berro E, Grimani C, Hajdas W, Lobo A, Martínez Ll, Nofrarias M, Ortega J A, Puigdengoles C, Ramos-Castro J, Sanjuán J, Wass P, Xirgu X 2007 J. Phys. Conf. Ser. 66 012003Google Scholar

    [10]

    罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar

    Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar

    [11]

    罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞 2020 深空探测学报 7 3

    Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020 J. Deep Space Explor. 7 3

    [12]

    王璐钰, 李玉琼, 蔡榕 2021 中国光学 14 1426Google Scholar

    Wang L Y, Li Y Q, Cai R 2021 Chin. Opt. 14 1426Google Scholar

    [13]

    王智, 沙巍, 陈哲, 王永宪, 康玉思, 罗子人, 黎明, 李钰鹏 2018 中国光学 11 131Google Scholar

    Wang Z, Sha W, Chen Z, Wang Y X, Kang Y S, Luo Z R, Li M, Li Y P 2018 Chin. Opt. 11 131Google Scholar

    [14]

    刘河山, 高瑞弘, 罗子人, 靳刚 2019 中国光学 12 486Google Scholar

    Liu H S, Gao R H, Luo Z R, Jin G 2019 Chin. Opt. 12 486Google Scholar

    [15]

    Dahl K, Cebeci P, Fitzau O, Giesberts M, Greve C, Krutzik M, Peters A, Pyka S A, Sanjuan J, Schiemangk M, Schuldt T, Voss K, Wicht A 2018 International Conference on Space Optics—ICSO 2018, Chania Greece, October 9–12, 2018 111800C-2

    [16]

    刘宝洲 2022 电子测量技术 43 76

    Liu B Z 2022 Electron. Meas. Technol. 43 76

    [17]

    Cooley J W, Tukey J W 1965 Math. Comput. 19 297Google Scholar

    [18]

    Welch P D 1967 IEEE Trans. Audio Electroacoust. 15 70Google Scholar

    [19]

    Tröbs M, Heinzel G 2006 Measurement 39 120Google Scholar

    [20]

    Zhou H J, Wang W Z, Chen C Y, Zheng Y H 2015 IEEE Sens. J. 15 2101Google Scholar

    [21]

    刘奎, 杨荣国, 张海龙, 白云飞, 张俊香, 郜江瑞 2009 中国激光 36 1852Google Scholar

    Liu K, Yang R G, Zhang H L 2009 Chinese Journal of Lasers 36 1852Google Scholar

    [22]

    王雅君, 高丽, 张晓莉 2020 红外与激光工程 49 20201073Google Scholar

    Wang Y J, Gao L, Zhang X L 2020 Infrared Laser Eng. 49 20201073Google Scholar

    [23]

    Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quantum Gravity 27 084023Google Scholar

    [24]

    Tröbs M 2005 Ph. D. Dissertation (Hannover: Leibniz University Hannover)

    [25]

    Jerri A J 1977 Proc. IEEE 65 1565Google Scholar

    [26]

    Higgins J R 1985 Bull. Amer. Math. Soc. 12 45Google Scholar

    [27]

    曹敏, 毕志周, 李波, 李毅, 王昕, 石少岩, 梁钻仁, 刘畅 2013 电子器件 36 371Google Scholar

    Cao M, Bi Z Z, Li B, Wang X, Shi S Y, Liang Z R, Liu C 2013 Chin. Electron Devices 36 371Google Scholar

    [28]

    王俊璞, 金志华 2008 计量技术 12 24

    Wang J P, Jin Z H 2008 Meas. Tech. 12 24

    [29]

    Junker J, Oppermann P, Willke B 2017 Opt. Lett. 42 755Google Scholar

  • 图 1  极低频段激光强度噪声评估系统架构

    Figure 1.  Architecture of laser intensity noise measurement and evaluation system for space-based gravitational wave detection.

    图 2  激光强度噪声评估系统程序流程图

    Figure 2.  Program flow chart of laser intensity noise evaluation system.

    图 3  LPSD算法流程图

    Figure 3.  Flow chart of LPSD algorithm.

    图 4  极低频段激光强度噪声评估系统(laser, 全固态激光器; pump combiner, 泵浦合束器; gain fiber, 增益光纤; LD, 半导体泵浦模块; λ/2, 半波片; PBS, 偏振分束器; ISO, 光隔离器; HR, 高反镜; FC1, 光纤耦合器; FC2, 光纤准直器; QW, 楔形分光镜; Filter, 衰减片; OSC, 示波器; PD, 光电探测器; meter, 高精度数字万用表)

    Figure 4.  Evaluation system for laser intensity noise at ultra low frequency band. Laser, soild state laser; pump combiner, pump combiner; gain fiber, gain fiber; LD, semiconductor pump module; λ/2, half-wave-plate; PBS, polarization beam splitter; ISO, optical isolator; HR, high reflection mirror; FC, fiber coupler; QW, wedge beamsplitter; Filter, optical attenuator; OSC, oscilloscope; PD, photodetector; Meter, high-precision digital multimeter.

    图 5  高精度万用表电子学噪声测试表征 (a) 时域数据结果; (b) 利用LPSD及FFT算法得到的噪声功率谱结果

    Figure 5.  Electronic noise of the high-precision multimeter in the time domain (a) and spectral domain (b). The red and black lines in Figure (b) are spectrum estimations obtained by LPSD and FFT, respectively.

    图 6  探测器电子学噪声测试表征 (a)时域数据结果; (b) 利用LPSD及FFT算法得到的噪声功率谱结果

    Figure 6.  Electronic noise of the photodetector in the time domain (a) and spectral domain (b). The red and black lines in Figure (b) are spectrum estimations obtained by LPSD and FFT, respectively.

    图 7  激光放大器自由运转时激光强度噪声测试表征 (a) 时域数据结果; (b) 有无绝热罩子情况下激光放大器输出激光的强度噪声功率谱结果

    Figure 7.  Intensity noise of laser amplifier in the time domain (a) and spectral domain (b). The blue and red lines in Figure (b) are spectrum estimations with and without using adiabatic tank, respectively.

  • [1]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 2Google Scholar

    [2]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [3]

    ESA-SCI 2000 LISA: System and Technology Study Report. ESA-SCI 11 2

    [4]

    Black E D, Gutenkunst R N 2003 Am. J. Phys. 71 365Google Scholar

    [5]

    ESA-SCI 2000 LISA: System and Technology Study Report. ESA-SCI 11 76

    [6]

    Jennrich O 2009 Classical Quantum Gravity 26 153001Google Scholar

    [7]

    Bender P, Brillet A, Ciufolini I, Cruise A M, Cutler C, Danzmann K, Fidecaro F, Folkner W M, Hough J, McNamara P, Peterseim M, Robertson D, Rodrigues M, Rüdiger A, Sandford M, Schäfer G, Schilling R, Schutz B, Speake C, Stebbins R T, Sumner T, Touboul P, Vinet J Y, Vitale S, Ward H, Winkler W 1998 LISA pre-phase a report. Max Planck Institute for Quantum Optics, Garching 1998 p1

    [8]

    Armano M, Audley H, Auger G, et al. 2016 Phys. Rev. Lett. 116 231101Google Scholar

    [9]

    Araújo H, Boatella C, Chmeissani M, Conchillo A, García-Berro E, Grimani C, Hajdas W, Lobo A, Martínez Ll, Nofrarias M, Ortega J A, Puigdengoles C, Ramos-Castro J, Sanjuán J, Wass P, Xirgu X 2007 J. Phys. Conf. Ser. 66 012003Google Scholar

    [10]

    罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar

    Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar

    [11]

    罗子人, 张敏, 靳刚, 吴岳良, 胡文瑞 2020 深空探测学报 7 3

    Luo Z R, Zhang M, Jin G, Wu Y L, Hu W R 2020 J. Deep Space Explor. 7 3

    [12]

    王璐钰, 李玉琼, 蔡榕 2021 中国光学 14 1426Google Scholar

    Wang L Y, Li Y Q, Cai R 2021 Chin. Opt. 14 1426Google Scholar

    [13]

    王智, 沙巍, 陈哲, 王永宪, 康玉思, 罗子人, 黎明, 李钰鹏 2018 中国光学 11 131Google Scholar

    Wang Z, Sha W, Chen Z, Wang Y X, Kang Y S, Luo Z R, Li M, Li Y P 2018 Chin. Opt. 11 131Google Scholar

    [14]

    刘河山, 高瑞弘, 罗子人, 靳刚 2019 中国光学 12 486Google Scholar

    Liu H S, Gao R H, Luo Z R, Jin G 2019 Chin. Opt. 12 486Google Scholar

    [15]

    Dahl K, Cebeci P, Fitzau O, Giesberts M, Greve C, Krutzik M, Peters A, Pyka S A, Sanjuan J, Schiemangk M, Schuldt T, Voss K, Wicht A 2018 International Conference on Space Optics—ICSO 2018, Chania Greece, October 9–12, 2018 111800C-2

    [16]

    刘宝洲 2022 电子测量技术 43 76

    Liu B Z 2022 Electron. Meas. Technol. 43 76

    [17]

    Cooley J W, Tukey J W 1965 Math. Comput. 19 297Google Scholar

    [18]

    Welch P D 1967 IEEE Trans. Audio Electroacoust. 15 70Google Scholar

    [19]

    Tröbs M, Heinzel G 2006 Measurement 39 120Google Scholar

    [20]

    Zhou H J, Wang W Z, Chen C Y, Zheng Y H 2015 IEEE Sens. J. 15 2101Google Scholar

    [21]

    刘奎, 杨荣国, 张海龙, 白云飞, 张俊香, 郜江瑞 2009 中国激光 36 1852Google Scholar

    Liu K, Yang R G, Zhang H L 2009 Chinese Journal of Lasers 36 1852Google Scholar

    [22]

    王雅君, 高丽, 张晓莉 2020 红外与激光工程 49 20201073Google Scholar

    Wang Y J, Gao L, Zhang X L 2020 Infrared Laser Eng. 49 20201073Google Scholar

    [23]

    Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quantum Gravity 27 084023Google Scholar

    [24]

    Tröbs M 2005 Ph. D. Dissertation (Hannover: Leibniz University Hannover)

    [25]

    Jerri A J 1977 Proc. IEEE 65 1565Google Scholar

    [26]

    Higgins J R 1985 Bull. Amer. Math. Soc. 12 45Google Scholar

    [27]

    曹敏, 毕志周, 李波, 李毅, 王昕, 石少岩, 梁钻仁, 刘畅 2013 电子器件 36 371Google Scholar

    Cao M, Bi Z Z, Li B, Wang X, Shi S Y, Liang Z R, Liu C 2013 Chin. Electron Devices 36 371Google Scholar

    [28]

    王俊璞, 金志华 2008 计量技术 12 24

    Wang J P, Jin Z H 2008 Meas. Tech. 12 24

    [29]

    Junker J, Oppermann P, Willke B 2017 Opt. Lett. 42 755Google Scholar

  • [1] Zhou Fei, Chen Qi, Liu Hao, Dai Yue, Wei Chen, Yuan Hang, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Zhang La-Bao, Wu Pei-Heng. Noise characteristics analysis and suppression of optical system based on infrared superconducting single-photon detector. Acta Physica Sinica, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] Guo Xi-Qing, Zhou Jing, Wang Chen-Xi, Qin Chen, Guo Cheng-Zhe, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Residual gas noises in vacuum of optical interferometer for ground-based gravitational wave detection. Acta Physica Sinica, 2024, 73(5): 050401. doi: 10.7498/aps.73.20231462
    [3] Wang Zai-Yuan, Wang Jie-Hao, Li Yu-Hang, Liu Qiang. Millihertz band low-intensity-noise single-frequency laser for space gravitational wave detection. Acta Physica Sinica, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [4] Le Tao-Ran, Mu Heng-Lin, Xu Xin, Tan Yi-Dong, Wei Hao-Yun, Li Yan. Weak-light phase locking aided by frequency division phase meter for intersatellite laser interferometry. Acta Physica Sinica, 2023, 72(14): 149501. doi: 10.7498/aps.72.20221941
    [5] Wang Jia-Wei, Li Jian-Bo, Li Fan, Zheng Li-Ang, Gao Zi-Chao, An Bing-Nan, Ma Zheng-Lei, Yin Wang-Bao, Tian Long, Zheng Yao-Hui. Programmable precision voltage reference source for space-based gravitational wave detection. Acta Physica Sinica, 2023, 72(4): 049502. doi: 10.7498/aps.72.20222119
    [6] Li Qing-Hui, Li Wei, Sun Yu, Wang Ya-Jun, Tian Long, Chen Li-Rong, Zhang Peng-Fei, Zheng Yao-Hui. Laser parameters requirement for third-generation ground-based gravitational wave detection. Acta Physica Sinica, 2022, 71(16): 164203. doi: 10.7498/aps.71.20220552
    [7] Nie Dan-Dan, Feng Jin-Xia, Qi Meng, Li Yuan-Ji, Zhang Kuan-Shou. Intensity noise of tunable infrared laser based on singly resonant optical parametric oscillator. Acta Physica Sinica, 2020, 69(9): 094205. doi: 10.7498/aps.69.20191952
    [8] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [9] Tai Zhao-Yang, Hou Fei-Yan, Wang Meng-Meng, Quan Run-Ai, Liu Tao, Zhang Shou-Gang, Dong Rui-Fang. Intensity noise analysis of a fibre laser after passing through an optical mode cleaner. Acta Physica Sinica, 2014, 63(19): 194203. doi: 10.7498/aps.63.194203
    [10] Fan Zhi-Qiang, Sheng Zheng, Wan Li, Shi Han-Qing, Jiang Yu. Comprehensive assessment of the accuracy of the data from near space meteorological rocket sounding. Acta Physica Sinica, 2013, 62(19): 199601. doi: 10.7498/aps.62.199601
    [11] Tian Yan, Huang Li, Luo Mao-Kang. Effects of time-periodic modulation of cross-correlation intensity between noises on stochastic resonance of over-damped linear system. Acta Physica Sinica, 2013, 62(5): 050502. doi: 10.7498/aps.62.050502
    [12] Zhang Liang-Ying, Cao Li, Jin Guo-Xiang. Stochastic resonance of amplitude modulation wave in single-mode laser driven by color noises. Acta Physica Sinica, 2007, 56(9): 5093-5097. doi: 10.7498/aps.56.5093
    [13] Jin Guo-Xiang, Cao Li, Zhang Liang-Ying. Stochastic resonance in a single-mode laser with modulated noise and biased amplitude modulation. Acta Physica Sinica, 2007, 56(7): 3739-3743. doi: 10.7498/aps.56.3739
    [14] Shi Dong-Ping, Li Fang-Yu, Zhang Yi. Selective effect to frequency and direction of gravitational waves on gaussian beam resonance system. Acta Physica Sinica, 2006, 55(10): 5041-5047. doi: 10.7498/aps.55.5041
    [15] Xu De-Sheng, Cao Li, Wu Da-Jin. Cubic model of a single-mode laser driven by quadratic pump noise and the steady probability distribution of laser intensity. Acta Physica Sinica, 2006, 55(2): 692-695. doi: 10.7498/aps.55.692
    [16] Han Li-Bo, Cao Li, Wu Da-Jin, Wang Jun. Normalized intensity fluctuation for bias signal modulation in a single-mode laser driven by colored correlated noises. Acta Physica Sinica, 2004, 53(10): 3363-3368. doi: 10.7498/aps.53.3363
    [17] DONG RUI-FANG, ZHANG JUN-XIANG, ZHANG TIAN-CAI, ZHANG JING, XIE CHANG-DE, PENG KUN-CHI. INTENSITY NOISE SQUEEZING OF LASER DIODE WITH INPHASE EXTERNAL WEAK FEEDBACK BY HALF WAVE PLATE. Acta Physica Sinica, 2001, 50(3): 462-466. doi: 10.7498/aps.50.462
    [18] ZHU ZHU-XIANG, ZHENG DA-FANG, LIU YOU-YAN. SPECTRAL DENSITY FOR THE TUNNELING CURRENT ZERO-FREQUENCY SHOT-NOISE IN A ONE-DIMENTIONAL MESOSCOPIC SYSTEM. Acta Physica Sinica, 1999, 48(2): 302-313. doi: 10.7498/aps.48.302
    [19] HUANG XIAN-GAO, XU JIAN-XUE, HE DAI-HAI, XIA JUN-LI, LV ZE-JUN. REDUCTION OF NOISE IN CHAOTIC SYSTEMS BY WAVELET MULTISCALING DECOMPOSITION ALGORITHM. Acta Physica Sinica, 1999, 48(10): 1810-1817. doi: 10.7498/aps.48.1810
    [20] ZHANG TIAN-CAI, LI TIAN-YU, D.VAN EFFENTERRE, XIE CHANG-DE, PENG KUN-CHI. OBSERVATION OF INTENSITY SQUEEZING AND LARGE PHASE NOISE REDUCTION IN SELF-LOCKED SEMICONDUCTOR LASERS. Acta Physica Sinica, 1998, 47(9): 1498-1503. doi: 10.7498/aps.47.1498
Metrics
  • Abstract views:  3438
  • PDF Downloads:  173
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2022
  • Accepted Date:  04 June 2022
  • Available Online:  11 October 2022
  • Published Online:  20 October 2022

/

返回文章
返回