Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Revisiting Near-Threshold Photoelectron Interference in Argon with a Non-Adiabatic Semiclassical Model

TAO Jianfei JIN Xin WU Kefei LIU Xiaojing

Citation:

Revisiting Near-Threshold Photoelectron Interference in Argon with a Non-Adiabatic Semiclassical Model

TAO Jianfei, JIN Xin, WU Kefei, LIU Xiaojing
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Purpose : The interaction of intense, ultrashort laser pulses with atoms gives rise to a rich tapestry of non-perturbative phenomena, encoded within the final-state photoelectron momentum distribution (PMD). A particularly enigmatic feature, often observed in the multiphoton ionization regime (Keldysh parameter $\gamma \gtrsim 1$), is a complex, fan-like interference pattern in the near-threshold, low-energy region of the PMD. The physical origin of this structure has been the subject of extensive debate, with proposed mechanisms ranging from multipath interference in the Coulomb field to complex sub-barrier dynamics. This work aims to provide a physical explanation for this phenomenon. We hypothesize and demonstrate that this fan-like structure is not a mere consequence of Coulomb focusing but serves as a direct and sensitive signature of non-adiabatic dynamics occurring as the electron tunnels through the laser-dressed atomic potential barrier. Our goal is to unambiguously isolate the key physical ingredients responsible for shaping this quantum interference.
    Methodology : To achieve this, we employ a synergistic three-pronged approach that combines experiment, exact numerical simulation, and a sophisticated theoretical model.
    1. Experiment : We performed velocity-map imaging measurements on argon atoms ionized by a 798 nm, 35 fs laser pulse at a peak intensity of $6.3 \times 10^{13}$ W/cm$^2$. This provides the experimental result, clearly revealing the low-energy fan-like interference pattern.
    2. Quantum Benchmark : We solved the time-dependent Schrödinger equation (TDSE) within the single-active-electron (SAE) approximation, using a well-established model potential for argon that accurately reproduces its ionization potential and ground-state properties. After performing a focal-volume average to simulate experimental conditions, the TDSE results show excellent qualitative agreement with the measurements, establishing the TDSE as a reliable quantum benchmark for our investigation.
    3. Semiclassical Model (CTMC-p) : The core of our analysis relies on a custom-developed semiclassical trajectory model based on the Feynman path-integral formulation. In this framework, ionization is a two-step process: (i) an electron tunnels through the potential barrier at an initial time $t_0$ and position $\mathbf{r}_0$, and (ii) it propagates classically in the combined laser and ionic fields according to Newton's equations. Crucially, each trajectory is endowed with a quantum phase accumulated along its path, $\Phi_k$, allowing for the coherent summation of all trajectories ending with the same final momentum, $M_j = \sum_k e^{i\Phi_k}$. Our model incorporates two critical physical effects beyond standard treatments:
    Non-Adiabatic Tunneling : We introduce a non-zero initial longitudinal momentum, $v_{0\parallel} = -A(t_0)(\sqrt{1+\gamma_{\text{eff}}^2}-1)$, acquired by the electron at the tunnel exit. This term accounts for the non-instantaneous nature of the tunneling process, a key non-adiabatic effect.
    Core Polarization : We include an induced dipole potential, $U_{\text{ID}} = -\alpha^I \mathbf{E}(t) \cdot \mathbf{r}/r^3$, to model the dynamic polarization of the Ar$^+$ ionic core, a multi-electron effect.
    By selectively including or excluding these effects, we can unambiguously isolate their respective contributions to the final PMD.
    Results : Our central finding is that the non-adiabatic initial longitudinal momentum is the decisive factor for correctly describing the near-threshold interference. This is powerfully illustrated in Figure 6. The benchmark TDSE calculation [Fig. 6(a)] for a single intensity of $5 \times 10^{13}$ W/cm$^2$ ($\gamma \approx 1.6$) reveals a distinct 6-lobe interference pattern. A conventional semiclassical simulation based on the quasi-static tunneling approximation (i.e., setting $v_{0\parallel}=0$) qualitatively fails, predicting an incorrect 8-lobe structure [Fig. 6(c)]. However, upon including the non-zero initial longitudinal momentum ($v_{0\parallel} \neq 0$), our non-adiabatic semiclassical model quantitatively reproduces the correct 6-lobe structure in perfect agreement with the TDSE benchmark [Fig. 6(b)].
    To understand the underlying physics, we performed a quantum-orbit decomposition. This analysis reveals that the overall fan-like structure arises from the interference of multiple trajectory types, including 'direct' (Category I), 'forward-scattered' (Category II), and 'glory-scattered' (Category III) orbits. While the full structure results from the collective interference of these paths, we have pinpointed the origin of the lobe-count correction. The initial longitudinal momentum contributes a phase term, $\Delta\Phi_{\text{initial}} \approx -\mathbf{v}_{0\parallel} \cdot \mathbf{r}_0$, to the total accumulated action. We found that the relative phase between the 'direct' and 'glory' trajectories is exquisitely sensitive to this term due to their vastly different paths and birth conditions. It is this specific and dramatic change in the I-III interference channel that ultimately corrects the topology of the entire pattern, reducing the lobe count from 8 to 6. In contrast, other interference pairs, such as the holographic pair II-III, are largely robust against this effect as their nearly identical birth conditions cause the initial phase term to cancel in their relative phase. In parallel, our simulations show that the ionic core polarization has a negligible effect on this low-energy structure but is essential for accurately describing higher-energy rescattering features by smoothing unphysical caustics caused by a pure Coulomb potential.
    Conclusion : We have unequivocally demonstrated that the near-threshold fan-like interference pattern in the multiphoton regime is a direct manifestation of non-adiabatic dynamics during tunneling, specifically the acquisition of a longitudinal momentum component by the electron during its finite-time passage under the potential barrier. Our findings not only provide a clear, intuitive, and orbit-based physical picture for this complex quantum phenomenon but also highlight the predictive power of semiclassical methods when crucial non-adiabatic effects are properly incorporated. This understanding lays a foundation for future investigations, including the extension of this model to more complex molecular systems and its application in retrieving attosecond electron dynamics from holographic interference patterns.
  • [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    Pazourek R, Nagele S, Burgdörfer J 2015 Rev. Mod. Phys. 87 765

    [3]

    Agostini P, Fabre F, Mainfray G, Petite G, Rahman N K 1979 Phys. Rev. Lett. 42 1127

    [4]

    Paulus G G, Nicklich W, Xu H, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851

    [5]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535

    [6]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [7]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y, Smirnova O, Bauer D, Popruzhenko S V, Vrakking M J J 2011 Science 331 61

    [8]

    He M, Li Y, Zhou Y, Li M, Cao W, Lu P 2018 Phys. Rev. Lett. 120 133204

    [9]

    Xie W, Yan J, Li M, Cao C, Guo K, Zhou Y, Lu P 2021 Phys. Rev. Lett. 127 263202

    [10]

    Li M, Xie H, Cao W, Luo S, Tan J, Feng Y, Du B, Zhang W, Li Y, Zhang Q, Lan P, Zhou Y, Lu P 2019 Phys. Rev. Lett. 122 183202

    [11]

    Tao J F, Cai J, Xia Q Z, Liu J 2020 Phys. Rev. A 101 043416

    [12]

    Tao J F, Xia Q Z, Liao L G, Liu J, Liu X J 2022 Acta Phys. Sin. 71 233206 (in Chinese) [陶建飞, 夏 勤智, 廖临谷, 刘杰, 刘小井 2022 物理学报 71 233206]

    [13]

    Huang X F, Su J, Liao J Y, Li Y B, Huang C 2022 Acta Phys. Sin. 71 093202 (in Chinese) [黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚 2022 物理学报 71 093202]

    [14]

    He M, Fan Y, Zhou Y, Lu P 2021 Chinese Phys. B 30 123202

    [15]

    Muller H G 1999 Phys. Rev. A 60 1341

    [16]

    HuP B, Liu J, gang Chen S 1997 Phys. Lett. A 236 533

    [17]

    Liu J, Xia Q Z, Tao J F, Fu L B 2013 Phys. Rev. A 87 041403

    [18]

    Ding B, Xu W, Wu R, Feng Y, Tian L, Li X, Huang J, Liu Z, Liu X 2021 Appl. Sci. 11

    [19]

    Hickstein D D, Gibson S T, Yurchak R, Das D D, Ryazanov M 2019 Rev. Sci. Instrum. 90 065115

    [20]

    Tulsky V, Bauer D 2020 Comput. Phys. Comm. 251 107098

    [21]

    Tong X M, Lin C D 2005 J. Phys. B: At. Mol. Opt. Phys. 38 2593

    [22]

    Tao L, Scrinzi A 2012 New J. Phys. 14 013021

    [23]

    Shvetsov-Shilovski N I, Lein M, Madsen L B, Räsänen E, Lemell C, Burgdörfer J, Arbó D G, Tőkési K 2016 Phys. Rev. A 94 013415

    [24]

    Delone N B, Krainov V P 1991 J. Opt. Soc. Am. B 8 1207

    [25]

    Arissian L, Smeenk C, Turner F, Trallero C, Sokolov A V, Villeneuve D M, Staudte A, Corkum P B 2010 Phys. Rev. Lett. 105 133002

    [26]

    Dreissigacker I, Lein M 2013 Chem. Phys. 414 69

    [27]

    Shvetsov-Shilovski N I, Dimitrovski D, Madsen L B 2012 Phys. Rev. A 85 023428

    [28]

    Dimitrovski D, Maurer J, Stapelfeldt H, Madsen L B 2014 Phys. Rev. Lett. 113 103005

    [29]

    Kang H P, Xu S P, Wang Y L, Yu S G, Zhao X Y, Hao X L, Lai X Y, Pfeifer T, Liu X J, Chen J, Cheng Y, Xu Z Z 2018 J. Phys. B: At. Mol. Opt. Phys 51 105601

    [30]

    Etches A, Madsen L B 2010 J. Phys. B: At. Mol. Opt. Phys 43 155602

    [31]

    Bristow M P F, Glass I I 1972 Phys. Fluids 15 2066

    [32]

    Li M, Geng J W, Han M, Liu M M, Peng L Y, Gong Q, Liu Y 2016 Phys. Rev. A 93 013402

    [33]

    Tao J F, Xia Q Z, Cai J, Fu L B, Liu J 2017 Phys. Rev. A 95 011402

    [34]

    Xia Q Z, Tao J F, Cai J, Fu L B, Liu J 2018 Phys. Rev. Lett. 121 143201

    [35]

    Liao L G, Xia Q Z, Cai J, Liu J 2022 Phys. Rev. A 105 053115

    [36]

    Wang T, Dube Z, Mi Y, Vampa G, Villeneuve D M, Corkum P B, Liu X, Staudte A 2022 Phys. Rev. A 106 013106

    [37]

    Möller M, Meyer F, Sayler A M, Paulus G G, Kling M F, Schmidt B E, Becker W, Milošević D B 2014 Phys. Rev. A 90 023412

  • [1] Wang Yin, Wang Ren-Ying, Chen Qiao, Deng Yong-He. Effect of inter-dot tunneling coupling on soliton dynamical behaviors in four-level triple quantum dot EIT medium. Acta Physica Sinica, doi: 10.7498/aps.73.20231194
    [2] Sun Zhen, Lü Xiang, Li Sheng, An Zhong. Nonadiabatic molecular dynamics under adiabatic representation. Acta Physica Sinica, doi: 10.7498/aps.73.20240401
    [3] Wang Xue-Mei, Zhang An-Qi, Zhao Sheng-Mei. Implementation of controlled phase gate based on superadiabatic shortcut in circuit quantum electrodynamics. Acta Physica Sinica, doi: 10.7498/aps.71.20220248
    [4] Ma Yun-E, Qiao Xin, Gao Rui, Liang Jun-Cheng, Zhang Ai-Xia, Xue Ju-Kui. Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, doi: 10.7498/aps.71.20220697
    [5] Wang Yan-Mei, Tang Ying, Zhang Song, Long Jin-You, Zhang Bing. Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging. Acta Physica Sinica, doi: 10.7498/aps.67.20181334
    [6] Li Xiao-Ke, Feng Wei. Quantum trajectory simulation for nonadiabatic molecular dynamics. Acta Physica Sinica, doi: 10.7498/aps.66.153101
    [7] Lin Cheng, Zhang Hua-Tang, Sheng Zhi-Hao, Yu Xian-Huan, Liu Peng, Xu Jing-Wen, Song Xiao-Hong, Hu Shi-Lin, Chen Jing, Yang Wei-Feng. Strong field photoelectron holography studied by a generalized quantum-trajectory Monte Carlo method. Acta Physica Sinica, doi: 10.7498/aps.65.223207
    [8] Huang Wen-Xiao, Zhang Yi-Zhu, Yan Tian-Min, Jiang Yu-Hai. Progress in study of low-energy photoelectron in ultra-fast strong fields-analytical R-matrix theory based semiclassical trajectory method. Acta Physica Sinica, doi: 10.7498/aps.65.223204
    [9] Xiao Xiang-Ru, Wang Mu-Xue, Li Min, Geng Ji-Wei, Liu Yun-Quan, Peng Liang-You. Semiclassical methods for strong field ionization of atoms. Acta Physica Sinica, doi: 10.7498/aps.65.220203
    [10] Liu Xiang-Long, Zhu Man-Zuo, Lu Lu. Two-dimensional quantum spectra and classical orbits of isosceles- right triangular billiards. Acta Physica Sinica, doi: 10.7498/aps.61.220301
    [11] Tang Xiao-Feng, Niu Ming-Li, Zhou Xiao-Guo, Liu Shi-Lin. Spectroscopic studies of molecular ions and their dissociation dynamics by the threshold photoelectron-photoion coincidence. Acta Physica Sinica, doi: 10.7498/aps.59.6940
    [12] Gao Song, Xu Xue-You, Zhou Hui, Zhang Yan-Hui, Lin Sheng-Lu. The dynamics of Rydberg atom in an electric field near the saddle point. Acta Physica Sinica, doi: 10.7498/aps.58.1473
    [13] Lu Jun, Du Meng-Li. From quantum spectra to classical orbits: the rectangular billiards. Acta Physica Sinica, doi: 10.7498/aps.53.2450
    [14] ZHANG FEI-ZHOU, WANG JIAO, GU YAN. THE STATISTICAL NON-ERGODICITY OF THE EIGENSTATES OF THE QUANTUM CHAOTIC SYSTEMS AND ITS SEMI-CLASSICAL LIMIT. Acta Physica Sinica, doi: 10.7498/aps.48.2169
    [15] LI ZHI-KUAN. SEMICLASSICAL THEORY OF RAMAN FREE-ELECTRON LASERS. Acta Physica Sinica, doi: 10.7498/aps.45.1812
    [16] Zuo Wei, Wang Shun-Jin. . Acta Physica Sinica, doi: 10.7498/aps.44.1363
    [17] LI GUO-QIANG, XU GONG-OU. THE PROPERTITIES OF GIANT RESONANCED ON HOT NUC-LEI STUDIED BY FINITE TEMPERATURE SELFCO-NSISTENT SEMICLASSICAL APPROACH. Acta Physica Sinica, doi: 10.7498/aps.38.1413
    [18] WU BAI-MEI, CHEN ZHAO-JIA, BAO SHI-NING, BAO DE-SONG, JI ZHEN-GUO, LIU GU. UPS STUDIES OF Nb-Ni GLASSES DURING CRYSTALLIZATION. Acta Physica Sinica, doi: 10.7498/aps.38.675
    [19] CHEN TIAN-JIE. THE FUNCTION OF PHASE FACTOR IN SEMICLASSICAL EXPLANATION OF OPTICAL QUANTUM BEAT. Acta Physica Sinica, doi: 10.7498/aps.35.1652
    [20] TANG JING-CHANG, S. Y. TONG. NORMAL ONE BEAM MODEL FOR FOURIER TRANSFORM ANALYSIS METHOD OF PHOTOELECTRON DIFFRACTION SPECTRUM. Acta Physica Sinica, doi: 10.7498/aps.33.362
Metrics
  • Abstract views:  132
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  05 September 2025
  • /

    返回文章
    返回