Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on risk of triboelectric charging and discharging of lunar rovers in lunar surface environment

XIA Qing LI Mengyao CAI Minghui TANG Chengxiong ZHANG Zun YANG Tao XU Liangliang JIA Xinyu

Citation:

Study on risk of triboelectric charging and discharging of lunar rovers in lunar surface environment

XIA Qing, LI Mengyao, CAI Minghui, TANG Chengxiong, ZHANG Zun, YANG Tao, XU Liangliang, JIA Xinyu
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With China’s lunar exploration program steadily advancing from the landmark orbiting missions of Chang’e-1 to the historic sample-return feats of Chang'e-5 and the groundbreaking far-side landing of Chang’e-4, China has entered a critical phase of deepening lunar exploration, including preparations for crewed lunar missions. Among these ambitious endeavors, identifying and mitigating potential operational risks is crucial to ensuring the success of these ambitious efforts. This work focuses on a critical hazard unique to China’s lunar surface exploration efforts: the triboelectric charging and discharging phenomenon between lunar rover wheels and lunar dust, which has a significant impact on astronaut safety and the reliability of onboard electronic systems.Lunar surface missions will face the risk of triboelectric charging and discharging resulting from friction between lunar rover wheels and lunar dust. Preliminary theoretical studies indicate that metal wheels may become charged to a level of approximately –5000 V, with discharge pulse currents reaching an order of magnitude of 0.1 A, posing a severe threat to astronaut safety and the normal operation of device circuits.This paper employs ground-based experimental methods to investigate the triboelectric charging and discharging risks of lunar rover wheels in vacuum and simulated solar wind plasma environments. The research findings are given below.In a vacuum environment, when an aluminum alloy lunar rover wheel (136 mm in diameter) travels on a lunar dust layer at a speed of 0.003 m/s, it rapidly charges to a positive potential of several hundred volts. Discharge breakdown occurs when the wheel travels approximately 20 m and reaches a potential of 550 V. At this point, the captured discharge current pulse amplitude can reach 1.5 A, with a pulse duration of about 100 ns. Increasing the friction frequency significantly accelerates the charging rate and leads to more frequent discharges.In a simulated solar wind plasma environment, when the wheel travels at 0.003 m/s, the combined effect of the environment and friction results in a negative charging potential. After reaching equilibrium, the potential stabilizes at approximately –830 V, and discharges occur more frequently than in a vacuum environment. Discharge breakdown takes place when the wheel travels just 8.5 m, with the discharge current pulse amplitude reaching up to 0.3 A and a pulse duration of 100 ns.These discharge pulses cause electromagnetic interference to linear circuits, leading to abnormal output of voltage signals in subsequent modes. The abnormal signals have an amplitude on the order of 10 V and a duration of 29 ms.This study confirms that the risk of triboelectric charging and discharging in lunar rovers is relatively high. Although theoretical models predict that the lunar roving vehicle (LRV) would experience rapid dissipation of triboelectric charges (with no charging/discharging risk) when operating at 0.03 m/s, the experiments show that even at a slow speed of 0.003 m/s, the wheels still accumulate charges and experience frequent discharge breakdowns. The amplitude of discharge pulse can reach the level of 1 ampere, causing significant electromagnetic interference to nearby circuits. Clearly, theoretical models underestimate the risk of triboelectric charging and discharging in lunar surface environments. It is recommended that future engineering tasks pay close attention to this issue and further evaluate the extent of its hazards.
  • 图 1  材料与月尘摩擦充电试验装置图

    Figure 1.  Schematic diagram of the triboelectric charging test device for materials and lunar dust.

    图 2  在20 ℃条件下, 真空和大气环境中铝材料摩擦充电电位随摩擦次数的变化(紫色方框代表此次摩擦后探测到放电信号)

    Figure 2.  Curve of triboelectric charging potential of aluminum material vs. friction cycles under vacuum and atmospheric environments at 20 ℃.

    图 3  铝材料摩擦放电脉冲电流波形

    Figure 3.  Triboelectric discharge pulse current waveform of aluminum material.

    图 4  不同摩擦周期铝材料摩擦充电特性(真空, 20 ℃)

    Figure 4.  Triboelectric charging characteristics of aluminum material under different friction cycles (vacuum environment, 20 ℃).

    图 5  太阳风环境下铝材料摩擦充电电位随摩擦次数的变化(真空, 20 ℃, 其中紫色方框代表此次摩擦后发生了放电)

    Figure 5.  Curve of triboelectric charging potential of aluminum material vs. friction cycles under solar wind environment (Vacuum, 20 ℃).

    图 6  太阳风环境下铝材料与月尘摩擦放电脉冲电流波形(6×10–3 Pa, 20 ℃; 电子密度约108 cm–3量级, 电子能量约4 eV, 离子能量约1 eV)

    Figure 6.  Triboelectric discharge pulse current waveform of aluminum material rubbed against lunar dust under solar wind environment (6×10–3 Pa, 20 ℃; electron density ~108 cm–3, electron energy ~4 eV, ion energy ~1 eV).

    图 7  星用线性电路结构图[30]

    Figure 7.  Schematic diagram of space-used linear circuit[30].

    图 8  线性电路输出信号

    Figure 8.  Output signal of linear circuits.

    表 1  月面环境地面模拟参数

    Table 1.  Ground simulation parameters of lunar surface environment.

    环境要素 环境参数
    真实情况 地面试验
    真空度/Pa 10–14—10–10 10–4
    太阳风等离子体 密度: 107/m3;
    温度: 10 eV
    电子密度: 约108/cm3;
    电子温度: 约10 eV;
    离子温度: 约2.5 eV[22,23]
    月尘 月尘 CLDS-1型模拟月尘
    月球车轮材质 铝合金 铝合金
    月球车运动速率
    /(m·s–1)
    0.014—0.056 0.003
    DownLoad: CSV
  • [1]

    Freeman J W, Ibrahim M 1975 Moon 14 103Google Scholar

    [2]

    Halekas J S, Mitchell D L, Lin R P, Frey S, Hood L L, Acuna M H, Binder A B 2002 Geophys. Res. Lett. 29 1435

    [3]

    Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2008 J. Geophys. Res. Lett. 113 A09102

    [4]

    Halekas J S, Delory G T, Brain D A, Lin R P, Fillingim M O, Lee C O, Mewaldt R A, Stubbs T J, Farrell W M, Hudson M K 2007 Geophys. Res. Lett. 34 346

    [5]

    Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2009 J. Geophys. Res. : Space Phys. 114 A5

    [6]

    Liu Y, Par J, Hill E, Kihm K D, Taylor L A 2006 Proceedings of the 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments and Second NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration Houston, TX, USA, March 5–8 2006 pp1–6

    [7]

    Alvarez R 1975 Proceedings of the 6th Lunar Science Conference Houston, USA, March 17–21 1975 pp3187–3197

    [8]

    王赤, 范全林 2025 科技导报 43 32

    Wang C, Fan Q L 2025 Sci. Technol. Rev. 43 32

    [9]

    王赤, 林杨挺, 裴照宇, 邹永廖, 徐琳, 程惠红, 任杰, 于晟 2022 中国科学基金 36 830

    Wang C, Lin Y T, Pei Z Y, Zou Y L, Xu L, Cheng H H, Ren J, Yu S 2022 Chin. Sci. Fund. 36 830

    [10]

    Farrell W M, Halekas J S, Horányi M, Killen R M, Georgiou C, Smith J R, Bahadori M, Conrad P E, Collier M R, Case A, Drobnes J, Ergun R C, Fatemi S, Fujimoto Y, Holmström M, Hanson D M, Kivelson G Y, Mauk B H, Nakamura M N, Nordheim S K, Saito Y, Poppe A R, Reme H, Xu W, Yoshioka S 2023 Rev. Mineral. Geochem. 89 563Google Scholar

    [11]

    Horányi M, Szalay J R, Wang X 2024 Phil. Trans. R. Soc. London, Ser. A 382 20230075

    [12]

    Sathyan S, Bhatt M, Chowdhury M, Gläser P, Misra D, Srivastava N, Narendranath S, Sajinkumar K S, Bhardwaj A 2024 Icarus 412 115988Google Scholar

    [13]

    Jackson T L, Farrell W M, Killen R M, Delort G T 2011 J. Spacecraft Rockets 48 700Google Scholar

    [14]

    Jackson T L, Farrell W M, Zimmerman M I 2015 Adv. Space Res. 55 1710Google Scholar

    [15]

    Narendra R, Sudheer M L, Pande D C 2013 IEEE Electromagn. Compat. Mag. 2 47Google Scholar

    [16]

    张卫国, 姜景山, 刘和光, 张晓辉, 张德海, 李涤徽, 胥传东 2009 中国科学 (D 辑: 地球科学) 39 1059

    Zhang W G, Jiang J S, Liu H G, Zhang X H, Zhang D H, Li D H, Xu C D 2009 Sci. China Ser. D-Earth Sci. 39 1059

    [17]

    Farrell W M, Stubbs T J, Halekas J S, Killen R M, Delory G T, Collier M R, Vondrak R R 2010 J. Geophys. Res. 115 E03004

    [18]

    Xie L, Zhang X, Li L, Zhou B, Zhang Y, Yan Q, Feng Y Y, Guo D W, Yu S R 2020 Geophys. Res. Lett. 47 e2020GL089593Google Scholar

    [19]

    张森森, 王世杰, 李雄耀 2012 第十届全国月球科学与比较行星学陨石学与天体化学学术研讨会会议论文集 (贵阳: 中国科学院地球化学研究所月球与行星科学研究中心;中国科学院研究大学) 2012 第43—45页

    Zhang S S, Wang S J, Li X Y 2012 Proceedings of the 10th National Symposium on Lunar Science, Comparative Planetology, Meteoritics and Astrochemistry Guiyang, China, April 15–16 2012 pp43–45

    [20]

    Pagan M J H, Xu W, Horányi M, Kharchenko V, Hansen L, Chane M, van de Kamp M, Yakovlev A M, Krivtsov P, Alexeev D 2024 Phys. Rev. Lett. 133 115301Google Scholar

    [21]

    Elena O, Hsiang-Wen H, Xu W, Drobnes J, Horányi M 2024 Icarus 421 116213Google Scholar

    [22]

    Horányi M, Walch B, Robertson S, et al. 1998 J. Geophys. Res. 103 8575Google Scholar

    [23]

    Horányi M, Walch B, Robertson S 1995 Geophys. Res. Lett. 22 2079Google Scholar

    [24]

    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer-Verlag) p13

    [25]

    Chen R, Chen L, Li S, Zhu X, Han J W 2019 IEEE Trans. Device Mater. Reliab. 19 733Google Scholar

    [26]

    Chen R, Chen L, Han J W, Wang X, Liang Y N, Ma Y Q, Shangguan S P 2021 Electronics 10 802Google Scholar

    [27]

    Chen R, Han J W, Zheng H S, Yu Y T, Shangguan S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103Google Scholar

    [28]

    张成铭, 徐晓英, 舒晓榕, 周钰雄 2020 电子测量与仪器学报 34 103

    Zhang C M, Xu X Y, Shu X R, Zhou Y X 2020 J. Electron. Meas. Instrum. 34 103

    [29]

    袁润杰, 陈睿, 韩建伟, 夏清, 王璇, 陈钱, 梁亚楠 2024 北京航空航天大学学报 60 1

    Yuan R J, Chen R, Han J W, Xia Q, Wang X, Chen Q, Liang Y N 2024 J. Beijing Univ. Aeronaut. Astronaut. 60 1

    [30]

    Desch S J, Cuzzi J N 2000 Icarus 143 87Google Scholar

  • [1] Li Meng-Yao, Xia Qing, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Jia Xin-Yu, Han Jian-Wei. Characteristics of dust plasma environment at lunar south pole. Acta Physica Sinica, doi: 10.7498/aps.73.20240599
    [2] Duan Hao-Yang, Yang Ke-Xin, Cao Yi-Gang. Friction characteristics of colloidal particle systems with repulsive interactions of different force ranges. Acta Physica Sinica, doi: 10.7498/aps.73.20231701
    [3] Zhang Gai, Xie Hai-Mei, Song Hai-Bin, Li Xiao-Fei, Zhang Qian, Kang Yi-Lan. Experimental analysis of influence of different charge-discharge modes on lithium storage performance of reduced graphene oxide electrodes. Acta Physica Sinica, doi: 10.7498/aps.71.20211405
    [4] Liu Qing-Yang, Xu Qing-Song, Li Rui. Effect of N-doping on tribological properties of graphene by molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.71.20212309
    [5] Chen Kang, Shen Yu-Nian. Nonlinear frictional contact behavior of porous polymer hydrogels for soft robot. Acta Physica Sinica, doi: 10.7498/aps.70.20202134
    [6] Li Peng-Cheng, Tang Chong-Yang, Cheng Liang, Hu Yong-Ming, Xiao Xiang-Heng, Chen Wan-Ping. Reduction of CO2 by TiO2 nanoparticles through friction in water. Acta Physica Sinica, doi: 10.7498/aps.70.20210210
    [7] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, doi: 10.7498/aps.68.20190692
    [8] Pan Deng, Liu Chang-Xin, Zhang Ze-Yang, Gao Yu-Jin, Hao Xiu-Hong. Effect of velocity on polytetrafluoroethylene friction coefficient using molecular dynamics simulaiton. Acta Physica Sinica, doi: 10.7498/aps.68.20190495
    [9] Wang Shi-Wei, Zhu Peng-Zhe, Li Rui. Influences of hydroxyl groups on friction behavior and energy dissipation of carbon nanotube. Acta Physica Sinica, doi: 10.7498/aps.67.20180311
    [10] Li Rui, Mi Jun-Xia. Influence of hydroxyls at interfaces on motion and friction of carbon nanotube by molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.66.046101
    [11] Tang Yi-Wei, Ai Liang, Cheng Yun, Wang An-An, Li Shu-Guo, Jia Ming. Relaxation behavior simulation of power lithium-ion battery in high-rate charging-discharging process. Acta Physica Sinica, doi: 10.7498/aps.65.058201
    [12] Li Rui, Sun Dai-Hai. Influence of defects on friction and motion of carbon nanotube. Acta Physica Sinica, doi: 10.7498/aps.63.056101
    [13] Jia Ru-Juan, Wang Cang-Long, Yang Yang, Gou Xue-Qiang, Chen Jian-Min, Duan Wen-Shan. Friction phenomena in two-dimensional Frenkel-Kontorova model with hexagonal symmetry lattice. Acta Physica Sinica, doi: 10.7498/aps.62.068104
    [14] Wan Jin, Tian Yu, Zhou Ming, Zhang Xiang-Jun, Meng Yong-Gang. Experimental research of load effect on the anisotropic friction behaviors of gecko seta array. Acta Physica Sinica, doi: 10.7498/aps.61.016202
    [15] Lan Hui-Qing, Xu Cang. Molecular dynamics simulation on friction process of silicon-doped diamond-like carbon films. Acta Physica Sinica, doi: 10.7498/aps.61.133101
    [16] Yang Yang, Wang Cang-Long, Duan Wen-Shan, Shi Yu-Ren, Chen Jian-Min. The influence of the disorderded substrate potential on static friction force. Acta Physica Sinica, doi: 10.7498/aps.61.130501
    [17] Li Rui, Hu Yuan-Zhong, Wang Hui. Molecular dynamics simulation on carbon nanotube bundles sandwitched between Si surfaces. Acta Physica Sinica, doi: 10.7498/aps.60.016106
    [18] Gong Zhong-Liang, Huang Ping. Study on discontinucous energy dissipation mechanism of friction. Acta Physica Sinica, doi: 10.7498/aps.57.2358
    [19] Shi Yan-Xiang, Ge De-Biao, Wu Jian. Influence of charge and discharge processes of dust particles on the dust plasma conductivity. Acta Physica Sinica, doi: 10.7498/aps.55.5318
    [20] Xu Zhong-Ming, Huang Ping. Composite oscillator model for the energy dissipation mechanism of friction. Acta Physica Sinica, doi: 10.7498/aps.55.2427
Metrics
  • Abstract views:  309
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  02 August 2025
  • Accepted Date:  29 August 2025
  • Available Online:  17 September 2025
  • /

    返回文章
    返回