-
With the advantages of high energy density and high safety factor, solidstate batteries have gradually become the focus of people's attention and research in recent years. Lithium dendrites are a key factor affecting battery safety and service life, and in severe cases, battery short circuits can occur. Compared with liquid batteries, solid-state batteries rely on solid-state electrolytes with higher mechanical strength, which can effectively inhibit the growth of lithium dendrites, but with the increase of the number of charge-discharge cycles, the dead lithium produced by the incomplete dissolution of lithium dendrites gradually accumulates, and the performance of the battery gradually decreases. In this paper, the problem of dead lithium in solid-state batteries is studied by using COMSOL Multiphysics 6.2 finite element simulation software. Since the current research on dead lithium focuses on phase field models coupled with binary physics, there are few studies on the influence of electrochemical parameters on dead lithium. Therefore, the phase field method is used to simulate the dissolution of lithium dendrites and the formation of dead lithium under the coupling of force-thermal-electrochemical fields. When the heat transfer model is coupled, due to the change of lithium dendrite stress distribution, the difference in the morphology of dead lithium before and after the coupled heat transfer model is further studied by applying external pressure to change the stress. When the coupled mechanical field changes, the morphology of dead lithium before and after the coupled mechanical field is further studied by changing the temperature magnitude. At the same time, the effects of changes in three electrochemical parameters, namely diffusion coefficient, interfacial mobility and anisotropic strength, on the area of dead lithium were also explored. The conclusion shows that when the heat transfer model or mechanical field is coupled into the phase field model, the dendrite dissolution cut-off time and dead lithium area will change. When the base rises at high temperature or when low external pressure or high external pressure is applied, the area of dead lithium decreases. For changing the electrochemical parameters, reducing the diffusion coefficient, increasing the interfacial mobility and reducing the anisotropic strength can effectively reduce the area of dead lithium.
-
Keywords:
- Solid-state battery /
- Phase field method /
- Lithium dendrites /
- Dead lithium
-
[1] Duan X R, Li Y J, Huang K,Tu S B, Li G C, Wang W Y, Luo H Y, Chen Z H, Li C H, Cheng K, Wang X X, Wang L, Sun Y M 2025 Sci. Bull. 70 914
[2] Wang Y X, Li Y H, Wang X H, Gao Y, Li C H, Meng T, Zhang H F, Chee P S, Makhlouf S A 2025 Adv. Mater. 37 e2420373
[3] Jin C B, Liu T F, Sheng O W, Matthew L, Liu T C, Yuan Y F, Nai J W, Ju Z J, Zhang W K, Liu Y J, Wang Y, Lin Z, Lu J, Tao X Y 2021 Nat. Energy 6 378
[4] Chen L, Zhang H W, Liang L Y, Liu Z, Qi Y, Lu P, Chen J, Chen L Q 2015 J. Power Sources 300 376
[5] Zhang R, Shen X, Zhang Y T, Zhong X L, Ju H T, Huang T X, Chen X, Zhang J D, Huang J Q 2022 J. Energy Chem. 71 29
[6] Qiao D G, Liu X L, Dou R F, Wen Z, Zhou W N, Liu L 2022 J. Energy Storage 49
[7] Shen X, Zhang R, Shi P, Zhang X Q, Chen X, Zhao C Z, Wu P, Guo Y M, Huang J Q, Zhang Q 2024 Fundam. Res. 4 1498
[8] Gao L T, Huang P Y, Guo Z S 2022 ACS Appl. Mater. Interfaces 14
[9] Xiang Y X, Tao M M, Chen X X, Shan P Z, Zhao D H, Wu J, Lin M, Liu X S, He H J, Zhao W M, Hu Y G, Chen J N, Wang Y X, Yang Y 2023 Nat. Commun. 14 177
[10] Zhu S, Hong Z J, Ahmad Z, Venkatasubramanian V 2023 ACS Appl. Mat. interfaces 15
[11] Han D D, Lin C 2024 J. Energy Storage 83 110641-
[12] Yang H D, Wang Z J 2023 J. Solid State Electrochem. 27 2607
[13] Wang Z H, Jiang W J, Zhao Y Z, Hu L Z, Wang Y, Ma Z S 2022 J. Solid State Electrochem. 27 245
[14] Hou P Y, Xie J M, Li J Y, Zhang P, Li Z K, Hao W Q, Tian J, Wang Z, Li F Z 2025 Acta Phys. Sin. 74 9(in Chinese)[侯鹏洋,谢佳苗,李京阳,张鹏,李兆凯,郝文乾,田佳,王哲,李福正 2025 物理学报 74 9]
[15] Zhai Y F, Yang J Y, Deng Q B, Song S F, Zhao Y, Hu N 2024 Acta Mech. Solida Sin. 45 587(in Chinese)[翟艳芳,杨佳悦,邓齐波,宋树丰,赵莹,胡宁 2024 固体力学学报 45 587]
[16] Yang H D 2023 M.S. Thesis (Chengdu:Southwest Jiaotong University)(in Chinese)[杨皓东 2023 硕士学位论文 (成都:西南交通大学)]
[17] Liang C, Xing P F, Wu M W, Qin X P 2025 Energy Storage Science and Technology 14 1829(in Chinese)[梁辰,邢鹏飞,吴孟武,秦训鹏 2025 储能科学与技术 14 1829]
[18] Zhang Y X, Li K, Li Y F, Shen W J, Qu X Y, Huang J D, Lin Y X 2023 J. Energy Storage 74
[19] Geng X B 2024 M.S. Thesis (Wuhan:Huazhong University of Science and Technology)(in Chinese)[耿晓彬 2024 硕士学位论文 (武汉:华中科技大学)]
[20] Um J H, Yu S H 2021 Adv. Energy Mater. 11
[21] Yue X Y, Ma C, Bao J, Yang S Y, Chen D, Wu X J, Zhou Y N 2021 Acta Phys. Chim. Sin. 37 14(in Chinese)[岳昕阳,马萃,包戬,杨思宇,陈东,吴晓京,周永宁 2021 物理化学学报 37 14]
[22] Wang Z H 2023 M.S. Thesis (Xiangtan:Xiangtan University)(in Chinese)[汪泽华 2023 硕士学位论文 (湘潭:湘潭大学)]
[23] Tao M M, Chen X X, Lin H X, Jin Y T, Shan P Z, Zhao D H, Gao M B, Liang Z T, Yang Y 2023 ACS Nano
[24] Hou S Z, Zeng B Y, Lv Y Q, Sun X Y, Peng X L 2025 Acta Mech. Sin. 14(in Chinese)[侯书增,曾博洋,吕勇奇,孙夏宜,彭鑫淋 2025力学学报 14]
[25] Zhang C, Wang D, Lei C, Zhao Y 2023 J. Electrochem. Soc. 170
Metrics
- Abstract views: 93
- PDF Downloads: 0
- Cited By: 0