Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-field modeling of dead lithium in solid-state batteries via multiphysics coupling

BAO Wenbin GONG Guoqing

Citation:

Phase-field modeling of dead lithium in solid-state batteries via multiphysics coupling

BAO Wenbin, GONG Guoqing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Owing to, Solid-state batteries have gradually become the focus of people's attention and research in recent years due to the advantages of high energy density and high safety factor. Lithium dendrites are a key factor affecting battery safety and service life, and in severe cases, battery short circuits can occur. Compared with liquid batteries, solid-state batteries rely on solid-state electrolytes with higher mechanical strength, which can effectively inhibit the growth of lithium dendrites, but with the increase of the number of charge-discharge cycles, the dead lithium produced by the incomplete dissolution of lithium dendrites gradually accumulates, and the performance of the battery gradually decreases. In this work, the problem of dead lithium in solid-state batteries is studied by using COMSOL Multiphysics 6.2 finite element simulation software. Due to the fact that existing research on dead lithium mainly focuses on phase field models combined with binary physics, there is little research on the influence of electrochemical parameters on dead lithium. Therefore, the phase field method is used to simulate the dissolution of lithium dendrites and the formation of dead lithium under the coupling of force-thermal-electrochemical fields. When the heat transfer model is coupled, the difference in the morphology of dead lithium before and after the coupled heat transfer model is further studied by applying an external pressure to change the stress of lithium dendrites. When the coupled mechanical field changes, the morphology of dead lithium before and after the coupled mechanical field is further studied by changing the temperature magnitude. At the same time, the effects of changes in three electrochemical parameters, namely diffusion coefficient, interfacial mobility and anisotropic strength, on the area of dead lithium are also explored. The research results indicate that when the heat transfer model or mechanical field is coupled into the phase field model, the dendrite dissolution cut-off time and dead lithium area will change. When the base rises at high temperature or when low external pressure or high external pressure is applied, the area of dead lithium decreases. For changing the electrochemical parameters, reducing the diffusion coefficient, increasing the interfacial mobility and reducing the anisotropic strength can effectively reduce the area of dead lithium.
  • 图 1  不同相场模型下锂枝晶的生长情况 (a) 未耦合传热模型的锂枝晶形貌; (b) 耦合传热模型的锂枝晶形貌; (c) 未耦合传热模型的von Mises应力(单位: MPa); (d) 耦合传热模型的von Mises应力(单位: MPa)

    Figure 1.  Growth of lithium dendrites under different phase field models: (a) Lithium dendrite morphology of uncoupled heat transfer model; (b) lithium dendrite morphology of coupled heat transfer model; (c) von Mises stress for uncoupled heat transfer model (in MPa); (d) von Mises stress coupled to the heat transfer model (in MPa).

    图 2  未耦合传热模型的锂枝晶溶解情况 (a) 锂枝晶形貌变化; (b) von Mises应力(单位: MPa)

    Figure 2.  Dissolution of lithium dendrites in uncoupled heat transfer models: (a) Lithium dendrites change in morphology; (b) von Mises stress (in MPa).

    图 3  耦合传热模型的锂枝晶溶解情况 (a) 锂枝晶形貌变化; (b) von Mises应力(单位: MPa)

    Figure 3.  Dissolution of lithium dendrites in coupled heat transfer model: (a) Lithium dendrites change in morphology; (b) von Mises stress(in MPa).

    图 4  未耦合传热模型加压5 MPa (a) 锂枝晶形貌; (b) von Mises应力(单位: MPa); (c) 死锂形貌

    Figure 4.  Uncoupled heat transfer model is pressurized to 5 MPa: (a) Lithium dendrite morphology; (b) von Mises stress (in MPa); (c) dead lithium morphology.

    图 5  耦合传热模型加压5 MPa (a) 锂枝晶形貌; (b) von Mises应力(单位: MPa); (c) 死锂形貌

    Figure 5.  Coupled heat transfer model is pressurized to 5 MPa: (a) Lithium dendrite morphology; (b) von Mises stress (in MPa); (c) dead lithium morphology.

    图 6  不同外压下锂枝晶的生长和溶解情况 (a) 锂枝晶形貌; (b) von Mises应力(单位: MPa); (c) 死锂形貌

    Figure 6.  Growth and dissolution of lithium dendrites under different external pressures: (a) Lithium dendrite morphology; (b) von Mises stress (in MPa); (c) dead lithium morphology.

    图 7  锂枝晶的溶解以及相场温度变化情况 (a) 未耦合力学场锂枝晶溶解情况; (b) 未耦合力学场温度变化; (c) 耦合力学场温度变化

    Figure 7.  Dissolution of lithium dendrites and changes in phase field temperature: (a) Dissolution of lithium dendrites in the uncoupled mechanical field; (b) temperature changes in the uncoupled mechanical field; (c) temperature changes in the coupled mechanical field.

    图 8  未耦合力学场、环境温度353 K下锂枝晶的溶解形貌

    Figure 8.  Dissolution morphology of lithium dendrites at ambient temperature of 353 K in the uncoupled mechanical field.

    图 9  耦合力学场、环境温度353 K下锂枝晶的溶解情况 (a) 锂枝晶形貌; (b) von Mises应力(单位: MPa)

    Figure 9.  Dissolution of lithium dendrites at ambient temperature 353 K: (a) Lithium dendrite morphology; (b) von Mises stress (in MPa).

    图 10  耦合力学场、环境温度273 K下锂枝晶溶解情况 (a) 锂枝晶形貌; (b) von Mises应力(单位: MPa)

    Figure 10.  Dissolution of lithium dendrites at ambient temperature 273 K: (a) Lithium dendrite morphology; (b) von Mises stress (in MPa).

    图 11  不同扩散系数下锂枝晶的生长与溶解情况 (a) 增大扩散系数锂枝晶形貌; (b) 减小扩散系数锂枝晶形貌; (c) 增大扩散系数死锂形貌; (d) 减小扩散系数死锂形貌

    Figure 11.  Growth and dissolution of lithium dendrites under different diffusion coefficients: (a) Lithium dendrite morphology when the diffusion coefficient is increased; (b) lithium dendrite morphology when the diffusion coefficient is decreased; (c) dead lithium morphology when the diffusion coefficient is increased; (d) dead lithium morphology when the diffusion coefficient is decreased.

    图 12  不同界面迁移率下锂枝晶的生长与溶解情况 (a) 锂枝晶形貌; (b) 死锂形貌

    Figure 12.  Growth and dissolution of lithium dendrites under different interfacial mobility: (a) Lithium dendrite morphology; (b) dead lithium morphology.

    图 13  不同各向异性强度下的锂枝晶生长情况

    Figure 13.  Lithium dendrite growth under different anisotropic strengths.

    图 14  不同各向异性强度下的死锂形貌

    Figure 14.  Dead lithium morphology under different anisotropic strengths.

    表 1  相场参数

    Table 1.  Phase field parameters.

    参数名 符号 数值 文献
    梯度能量系数/(10–10 J·m–1) $ {\kappa }_{0} $ 1 [15]
    各向异性强度 $ \delta $ 0.1 [15]
    各向异性模数 $ \omega $ 4 [22]
    势垒高度/(105 J·m–3) $ W $ 3.75 [22]
    标准体积浓度/(103 mol·m–3) $ {c}_{0} $ 1 [22]
    环境温度/K $ {T}_{0} $ 293 [14]
    电极杨氏模量/GPa $ {E}^{\mathrm{e}} $ 7.8 [14]
    电解质杨氏模量/GPa $ {E}^{\mathrm{s}} $ 1 [14]
    电极泊松比 $ {v}^{\mathrm{e}} $ 0.42 [15]
    电解质泊松比 $ {v}^{\mathrm{s}} $ 0.3 [15]
    –0.866×10–3
    Vegard应变系数 $ {\lambda }_{i} $ –0.773×10–3 [14]
    –0.529×10–3
    界面迁移率/(10–6 m3·J–1·s–1) $ {L}_{\sigma } $ 1 [22]
    反应常数/s–1 $ {L}_{\eta } $ 0.5 [22]
    对称因子 $ \alpha $ 0.5 [22]
    固相锂浓度/(104 mol·m–3) $ {C}_{\mathrm{s}} $ 7.64 [22]
    电极电导率/(107 S·m–1) $ {\sigma }^{\mathrm{e}} $ 1 [14]
    电解质电导率/(S·m–1) $ {\sigma }^{\mathrm{s}} $ 0.1 [14]
    电极比热容/(J·kg–1·K–1) $ {c}^{\mathrm{p}\mathrm{e}} $ 1200 [14]
    电解质比热容/(J·kg–1·K–1) $ {c}^{\mathrm{p}\mathrm{s}} $ 133 [14]
    电极导热系数/(W·m–1·K–1) $ {\lambda }^{\mathrm{e}} $ 1.04 [14]
    电解质导热系数/(W·m–1·K–1) $ {\lambda }^{\mathrm{s}} $ 0.45 [14]
    对流换热系数/(W·m–2·K–1) $ \mathrm{h} $ 10 [17]
    DownLoad: CSV
  • [1]

    Duan X R, Li Y J, Huang K, Tu S B, Li G C, Wang W Y, Luo H Y, Chen Z H, Li C H, Cheng K, Wang X X, Wang L, Sun Y M 2025 Sci. Bull. 70 914Google Scholar

    [2]

    Wang Y X, Li Y H, Wang X H, Gao Y, Li C H, Meng T, Zhang H F, Chee P S, Makhlouf S A 2025 Adv. Mater. 37 e2420373Google Scholar

    [3]

    Jin C B, Liu T F, Sheng O W, Matthew L, Liu T C, Yuan Y F, Nai J W, Ju Z J, Zhang W K, Liu Y J, Wang Y, Lin Z, Lu J, Tao X Y 2021 Nat. Energy 6 378Google Scholar

    [4]

    Chen L, Zhang H W, Liang L Y, Liu Z, Qi Y, Lu P, Chen J, Chen L Q 2015 J. Power Sources 300 376Google Scholar

    [5]

    Zhang R, Shen X, Zhang Y T, Zhong X L, Ju H T, Huang T X, Chen X, Zhang J D, Huang J Q 2022 J. Energy Chem. 71 29Google Scholar

    [6]

    Qiao D G, Liu X L, Dou R F, Wen Z, Zhou W N, Liu L 2022 J. Energy Storage 49 104137Google Scholar

    [7]

    Shen X, Zhang R, Shi P, Zhang X Q, Chen X, Zhao C Z, Wu P, Guo Y M, Huang J Q, Zhang Q 2024 Fundam. Res. 4 1498Google Scholar

    [8]

    Gao L T, Huang P Y, Guo Z S 2022 ACS Appl. Mater. Interfaces 14 41957Google Scholar

    [9]

    Xiang Y X, Tao M M, Chen X X, Shan P Z, Zhao D H, Wu J, Lin M, Liu X S, He H J, Zhao W M, Hu Y G, Chen J N, Wang Y X, Yang Y 2023 Nat. Commun. 14 177Google Scholar

    [10]

    Zhu S, Hong Z J, Ahmad Z, Venkatasubramanian V 2023 ACS Appl. Mater. Interfaces 15 6639Google Scholar

    [11]

    Han D D, Lin C 2024 J. Energy Storage 83 110641Google Scholar

    [12]

    Yang H D, Wang Z J 2023 J. Solid State Electrochem. 27 2607Google Scholar

    [13]

    Wang Z H, Jiang W J, Zhao Y Z, Hu L Z, Wang Y, Ma Z S 2022 J. Solid State Electrochem. 27 245

    [14]

    侯鹏洋, 谢佳苗, 李京阳, 张鹏, 李兆凯, 郝文乾, 田佳, 王哲, 李福正 2025 物理学报 74 070201Google Scholar

    Hou P Y, Xie J M, Li J Y, Zhang P, Li Z K, Hao W Q, Tian J, Wang Z, Li F Z 2025 Acta Phys. Sin. 74 070201Google Scholar

    [15]

    翟艳芳, 杨佳悦, 邓齐波, 宋树丰, 赵莹, 胡宁 2024 固体力学学报 45 587

    Zhai Y F, Yang J Y, Deng Q B, Song S F, Zhao Y, Hu N 2024 Chin. J. Solid Mech. 45 587

    [16]

    杨皓东 2023 硕士学位论文 (成都: 西南交通大学)

    Yang H D 2023 M. S. Thesis (Chengdu: Southwest Jiaotong University

    [17]

    梁辰, 邢鹏飞, 吴孟武, 秦训鹏 2025 储能科学与技术 14 1829

    Liang C, Xing P F, Wu M W, Qin X P 2025 Energy Storage Sci. Technol. 14 1829

    [18]

    Zhang Y X, Li K, Li Y F, Shen W J, Qu X Y, Huang J D, Lin Y X 2023 J. Energy Storage 74 109422Google Scholar

    [19]

    耿晓彬 2024 硕士学位论文 (武汉: 华中科技大学)

    Geng X B 2024 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [20]

    Um J H, Yu S H 2021 Adv. Energy Mater. 11 2003004Google Scholar

    [21]

    岳昕阳, 马萃, 包戬, 杨思宇, 陈东, 吴晓京, 周永宁 2021 物理化学学报 37 2005012

    Yue X Y, Ma C, Bao J, Yang S Y, Chen D, Wu X J, Zhou Y N 2021 Acta Phys. -Chim. Sin. 37 2005012

    [22]

    汪泽华 2023 硕士学位论文 (湘潭: 湘潭大学)

    Wang Z H 2023 M. S. Thesis (Xiangtan: Xiangtan University

    [23]

    Tao M M, Chen X X, Lin H X, Jin Y T, Shan P Z, Zhao D H, Gao M B, Liang Z T, Yang Y 2023 ACS Nano 17 24104Google Scholar

    [24]

    侯书增, 曾博洋, 吕勇奇, 孙夏宜, 彭鑫淋 2025 力学学报 57 1952

    Hou S Z, Zeng B Y, Lv Y Q, Sun X Y, Peng X L 2025 Chin. J. Theor. Appl. Mech. 57 1952

    [25]

    Zhang C, Wang D, Lei C, Zhao Y 2023 J. Electrochem. Soc. 170 052506Google Scholar

  • [1] WU Siyuan, LI Hong. Evaluation of the application of large language models in the entire process of battery research and development of a comprehensive database forinorganic solid electrolyte. Acta Physica Sinica, doi: 10.7498/aps.74.20250572
    [2] HOU Pengyang, XIE Jiamiao, LI Jingyang, ZHANG Peng, LI Zhaokai, HAO Wenqian, TIAN Jia, WANG Zhe, LI Fuzheng. Phase field simulation of dendrite growth in solid-state lithium batteries based on mechaincal-thermo-electrochemical coupling. Acta Physica Sinica, doi: 10.7498/aps.74.20241727
    [3] Geng Xiao-Bin, Li Ding-Gen, Xu Bo. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta Physica Sinica, doi: 10.7498/aps.72.20230824
    [4] Zhang Qiao-Bao, Gong Zheng-Liang, Yang Yong. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Physica Sinica, doi: 10.7498/aps.69.20201581
    [5] Liu Yu-Long, Xin Ming-Yang, Cong Li-Na, Xie Hai-Ming. Recent research progress of interface for polyethylene oxide based solid state battery. Acta Physica Sinica, doi: 10.7498/aps.69.20201588
    [6] Yu Qi-Peng, Liu Qi, Wang Zi-Qiang, Li Bao-Hua. Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Acta Physica Sinica, doi: 10.7498/aps.69.20201218
    [7] Zhao Ning, Mu Shuang, Guo Xiang-Xin. Physical issues in solid garnet batteries. Acta Physica Sinica, doi: 10.7498/aps.69.20201191
    [8] Cao Wen-Zhuo, Li Quan, Wang Sheng-Bin, Li Wen-Jun, Li Hong. Mechanism, strategies, and characterizations of Li plating in solid state batteries. Acta Physica Sinica, doi: 10.7498/aps.69.20201293
    [9] Chu Shuo, Guo Chun-Wen, Wang Zhi-Jun, Li Jun-Jie, Wang Jin-Cheng. Effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification. Acta Physica Sinica, doi: 10.7498/aps.68.20190603
    [10] Zhang Jun, Chen Wen-Xiong, Zheng Cheng-Wu, Li Dian-Zhong. Phase-field modeling of ferrite morphology in austenite-to-ferrite transformation with considering anisotropic effects. Acta Physica Sinica, doi: 10.7498/aps.66.070701
    [11] Guo Chun-Wen, Li Jun-Jie, Ma Yuan, Wang Jin-Cheng. Growth behaviors and forced modulation characteristics of dendritic sidebranches in directional solidification. Acta Physica Sinica, doi: 10.7498/aps.64.148101
    [12] Wang Ya-Qin, Wang Jin-Cheng, Li Jun-Jie. Phase field modeling of the growth and competition behavior of tilted dendrites in directional solidification. Acta Physica Sinica, doi: 10.7498/aps.61.118103
    [13] Wang Ming-Guang, Zhao Yu-Hong, Ren Juan-Na, Mu Yan-Qing, Wang Wei, Yang Wei-Ming, Li Ai-Hong, Ge Hong-Hao, Hou Hua. Phase-field simulation of Non-Isothermal dendritic growth of NiCu alloy. Acta Physica Sinica, doi: 10.7498/aps.60.040507
    [14] Long Wen-Yuan, Lü Dong-Lan, Xia Chun, Pan Mei-Man, Cai Qi-Zhou, Chen Li-Liang. Phase-field simulation of non-isothermal solidification dendrite growth of binary alloy under the force flow. Acta Physica Sinica, doi: 10.7498/aps.58.7802
    [15] Feng Li, Wang Zhi-Ping, Lu Yang, Zhu Chang-Sheng. Phase-field model of isothermal solidification of binary alloy with multiple grains. Acta Physica Sinica, doi: 10.7498/aps.57.1084
    [16] Chen Yu-Juan, Chen Chang-Le. Simulation of the influence of convection velocity on upstream dendritic growth using phase-field method. Acta Physica Sinica, doi: 10.7498/aps.57.4585
    [17] Li Jun-Jie, Wang Jin-Cheng, Xu Quan, Yang Gen-Cang. Effect of foreign particles on the dendritic growth in phase-field theory. Acta Physica Sinica, doi: 10.7498/aps.56.1514
    [18] Long Wen-Yuan, Cai Qi-Zhou, Wei Bo-Kang, Chen Li-Liang. Simulation of dendritic growth of multicomponent alloys using phase-field method. Acta Physica Sinica, doi: 10.7498/aps.55.1341
    [19] Yang Hong, Zhang Qing-Guang, Chen Min. A phase-field simulation on the influence of thermal fluctuation on secondary branch growth in undercooled melt. Acta Physica Sinica, doi: 10.7498/aps.54.3740
    [20] YU YAN-MEI, YANG GEN-CANG, ZHAO DA-WEN, Lü YI-LI, A. KARMA, C. BECKERMANN. NUMERICAL SIMULATION OF DENDRITIC GROWTH IN UNDERCOOLED MELT USING PHASE-FIELD APPROACH. Acta Physica Sinica, doi: 10.7498/aps.50.2423
Metrics
  • Abstract views:  530
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  09 August 2025
  • Accepted Date:  19 September 2025
  • Available Online:  30 September 2025
  • /

    返回文章
    返回