Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamical study on orientation arrangement of gold nanorods via coherent modulation amplitude projection

LI Yao LI Qiong ZHANG Chongqing LI Yanjun

Citation:

Dynamical study on orientation arrangement of gold nanorods via coherent modulation amplitude projection

LI Yao, LI Qiong, ZHANG Chongqing, LI Yanjun
cstr: 32037.14.aps.74.20251124
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Gold nanorods (AuNRs) have become highly promising biomedical probes due to their tunable plasmonic properties, but their real-time, high-resolution imaging of subcellular behavior, particularly their orientation dynamics reflecting critical nano-bio interactions, is hindered by the diffraction limits and drawbacks of existing super-resolution methods, such as reliance on high-intensity lasers and exogenous labeling. To solve this problem, we develop coherent modulation amplitude projection imaging (CMAPI), a novel label-free technique that uses spatially and temporally modulated pairs of femtosecond pulses to coherently control the two-photon photoluminescence (TPPL) of AuNRs. By using AuNRs as three-level systems with a measurable intermediate state, CMAPI encodes sub-diffraction-limit spatial and orientational information into the frequency domain through precise manipulation of inter-pulse delay, phase, and polarization. Experimental results confirm the nonlinear excitation nature of AuNRs, with single-pulse polarization response following a cos2θ dependence. Under two-pulse excitation, the emission exhibits obvious coherence-dependent behavior: at zero delay, the response is controlled by quantum superposition; under a delay that matches the intermediate state lifetime (0.5 ps), the three-level model accurately describes the response; under a longer delays (10 ps), the system returns to incoherent emission. CMAPI retrieves nanoscale information through Fourier analysis of photon arrival times, producing simultaneous amplitude and phase images that reveal AuNRs’ precise positions (about 60 nm localization precision), in-plane orientations (e.g. quadrant-specific arrangement inferred from phase sign), and local environmental coupling, such as plasmon-induced phase jumps, all under ultralow excitation power (<5 μW/μm2) to avoid light damage. This approach enables visualization of features beyond the diffraction limit, distinguishing multiple AuNRs within a single diffractive spot, as validated by scanning electron microscopy. CMAPI provides a powerful, non-invasive platform for quantifying dynamic biological processes involving anisotropic nanoparticles. These process include conformational shifts during endocytosis, torque transmission in molecular motors, and real-time tracking of nanoscale interactions, thereby offering profound insights into theranostic probe design and fundamental biophysical research.
      Corresponding author: LI Yanjun, liyanjun@sxbqeh.com.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62205190), the China Postdoctoral Science Foundation (Grant Nos. 2022M722003, 2024T170536), the Shanxi Provincial Basic Research Program, China (Grant No. 202203021212100), the Scientific Research Start-up Fund of Shanxi Bethune Hospital, China (Grant No. 2021RC032), and the Central Guidance for Local Science and Technology Development Fund of China (Grant No. YDZJSX2025D072).
    [1]

    王致远, 张慧 2025 物理学报 74 158102Google Scholar

    Wang Z Y, Zhang H 2025 Acta Phys. Sin. 74 158102Google Scholar

    [2]

    魏思雨, 黄浩, 马小云, 黄海文, 徐欣, 王荣瑶 2025 物理学报 74 147301Google Scholar

    Wei S Y, Huang H, Ma X Y, Huang H W, Xu X, Wang R Y 2025 Acta Phys. Sin. 74 147301Google Scholar

    [3]

    Liao S N, Yue W, Cai S N, Tang Q, Lu W T, Huang L X, Qi T T, Liao J F 2021 Front. Pharmacol. 12 664123Google Scholar

    [4]

    Zhu R, Li J, Lin L S, Song J B, Yang H H 2021 Adv. Funct. Mater. 31 2005709Google Scholar

    [5]

    王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全 2023 物理学报 72 175202Google Scholar

    Wang Y, Wang L, Sun B X, Lang P, Xu Y, Zhao Z L, Song X W, Ji B Y, Lin J Q 2023 Acta Phys. Sin. 72 175202Google Scholar

    [6]

    Li W, Kaminski Schierle G S, Lei B F, Liu Y L, Kaminski C F 2022 Chem. Rev. 122 12495Google Scholar

    [7]

    Hu Y Q, Wang Y, Yan J H, Wen N C, Xiong H J, Cai S D, He Q Y, Peng D M, Liu Z B, Liu Y F 2020 Adv. Sci. 7 2000557Google Scholar

    [8]

    Zhu X R, Shi Z F, Mao Y, Lächelt U, Huang R Q 2024 Small 20 2310605Google Scholar

    [9]

    Wax A, Sokolov K 2009 Laser Photonics Rev. 3 146Google Scholar

    [10]

    Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M 2014 Chin. Phys. Lett. 31 088701Google Scholar

    [11]

    Willets K A, Wilson A J, Sundaresan V, Joshi P B 2017 Chem. Rev. 117 7538Google Scholar

    [12]

    Kim J M, Lee C, Lee Y, Lee J, Park S J, Park S, Nam J M 2021 Adv. Mater. 33 2006966Google Scholar

    [13]

    Hang Y J, Wang A Y, Wu N Q 2024 Chem. Soc. Rev. 53 2932Google Scholar

    [14]

    Guo Z L, Yu G, Zhang Z G, Han Y D, Guan G J, Yang W S, Han M Y 2023 Adv. Mater. 35 2206700Google Scholar

    [15]

    Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828Google Scholar

    [16]

    Lee T H, Hirst D J, Kulkarni K, Del Borgo M P, Aguilar M I 2018 Chem. Rev. 118 5392Google Scholar

    [17]

    Mcoyi M P, Mpofu K T, Sekhwama M, Mthunzi-Kufa P 2025 Plasmonics 20 5481Google Scholar

    [18]

    Fan Z Y, Mao X H, Zhu M, Hu X J, Li M Q, Huang L L, Li J, Maimaiti T, Zuo X L, Fan C H 2025 Angew. Chem. Int. Ed. 137 e202413244Google Scholar

    [19]

    Ge F, Xue J F, Du Y, He Y 2021 Nano Today 39 101158Google Scholar

    [20]

    Guix M, Mayorga-Martinez C C, Merkoçi A 2014 Chem. Rev. 114 6285Google Scholar

    [21]

    Li Y, Yang Y G, Qin C B, Song Y R, Han S P, Zhang G F, Chen R Y, Hu J Y, Xiao L T, Jia S T 2021 Phys. Rev. Lett. 127 073902Google Scholar

    [22]

    Li Y, Qin C B, Song Y R, Yan H Y, Han S P, Zhou H T, Wei A N, Zhang G F, Chen R Y, Hu J Y, Jing M Y, Xiao L T, Jia S T 2021 Opt. Express 29 22855Google Scholar

    [23]

    Ming T, Zhao L, Yang Z, Chen H J, Sun L D, Wang J F, Yan C H 2009 Nano Lett. 9 3896Google Scholar

    [24]

    Zhanghao K, Liu W H, Li M Q, Wu Z H, Wang X, Chen X Y, Shan C Y, Wang H Q, Chen X W, Dai Q H, Xi P, Jin D Y 2020 Nat. Commun. 11 5890Google Scholar

  • 图 1  AuNRs的双脉冲相干激发TPPL装置与能级示意图 (a) AuNRs的双脉冲相干激发TPPL示意图(DM, 二向色镜; OBJ, 物镜); (b) AuNRs的TPPL能级示意图, F1F2为两个脉冲的电场矢量

    Figure 1.  Schematic of two-pulse coherent excitation TPPL and energy level diagram of AuNRs: (a) Schematic diagram of two-pulse coherent excitation TPPL for AuNRs (DM, dichroic mirror; OBJ, objective); (b) energy-level diagram illustrating TPPL in AuNRs, where F1 and F2 represent the electric field vectors of the two pulses.

    图 2  AuNRs的激发偏振依赖特性 (a) 单脉冲激发时, AuNRs发光强度随着夹角θ变化轨迹; (b)—(d) 分别为延时ΔtA = 0, ΔtB = 0.5 ps和ΔtC = 10 ps时, Pulse 1偏振不变, 旋转Pulse 2的偏振获得的AuNRs发光强度轨迹; (e), (f) 激光偏振与AuNRs长轴夹角的变换示意图, 其中蓝色箭头指示单脉冲激发, 红色和紫色箭头指示了Pulse 1 (红色虚线箭头)和Pulse 2 (紫色虚线箭头)偏振与AuNRs的取向关系

    Figure 2.  Excitation polarization dependence of AuNRs: (a) Polar plot of the AuNRs’ TPPL intensity as a function of the angle θ under single-pulse excitation. (b)–(d) Polar plots of the AuNRs’ luminescence intensity acquired by maintaining the polarization of Pulse 1 fixed and rotating the polarization of Pulse 2 at delay times of ΔtA = 0, ΔtB = 0.5 ps and ΔtC = 10 ps, respectively. (e), (f) Schematics illustrating the variation of the angle between the laser polarization and the long axis of the AuNRs. The blue arrow indicates single-pulse excitation; the red and purple arrows indicate the orientational relationship between the polarization of Pulse 1 (red dashed arrow) and Pulse 2 (purple dashed arrow) relative to the AuNRs.

    图 3  振幅投影示意图 (a) 以0.5 Hz的频率调制Pulse 1和Pluse 2之间的相对相位, AuNR 1和AuNR 2的TPPL强度具有相反的相位响应特征; (b) Pulse 1和Pluse 2的电场矢量方向分别沿x方向和y方向, 它们在平行于AuNR 1轴线上的投影为bc, 垂直于轴线的投影为a, AuNR 2则不同

    Figure 3.  Schematic diagram of amplitude projection. (a) When the relative phase between Pulse 1 and Pulse 2 is modulated at a frequency of 0.5 Hz, the TPPL intensities of AuNR 1 and AuNR 2 exhibit opposite-phase response characteristics. (b) The electric field vectors of Pulse 1 and Pulse 2 are oriented along the x-axis and y-axis, respectively. Their projections parallel to the long axis of AuNR 1 are denoted as b and c, while the perpendicular projection is denoted as a. The case for AuNR 2 is different.

    图 4  AuNRs的CMAPI成像 (a), (b)分别为TPPL强度成像和傅里叶变换强度成像, 黄色箭头标记为依据脉冲对的偏振状态确定的坐标系; (c)傅里叶变换所获得的相位成像; (d)该成像区域内对应的SEM成像, 其中红色圆圈标记出了金纳米棒所处位置, 其区域放大在右侧显示

    Figure 4.  CMAPI imaging of AuNRs. Panel (a) and (b) show the TPPL intensity image and the Fourier-transform intensity image, respectively. A coordinate system, determined by the polarization states of the pulse pair, is indicated by the yellow arrows. (c) Phase image obtained from the Fourier transform. (d) Corresponding SEM image of the same region. The locations of the gold nanorods are marked by red circles, with an enlarged view of the area displayed on the right.

    图 5  衍射极限内的CMAPI成像 (a) 基于傅里叶变换的幅度成像; (b) 基于傅里叶变换的相位成像, 插图为该区域的SEM成像

    Figure 5.  CMAPI imaging within the diffraction limit: (a) The Fourier-transform-based amplitude image; (b) the Fourier-transform-based phase image; the inset shows the SEM image of the corresponding region.

  • [1]

    王致远, 张慧 2025 物理学报 74 158102Google Scholar

    Wang Z Y, Zhang H 2025 Acta Phys. Sin. 74 158102Google Scholar

    [2]

    魏思雨, 黄浩, 马小云, 黄海文, 徐欣, 王荣瑶 2025 物理学报 74 147301Google Scholar

    Wei S Y, Huang H, Ma X Y, Huang H W, Xu X, Wang R Y 2025 Acta Phys. Sin. 74 147301Google Scholar

    [3]

    Liao S N, Yue W, Cai S N, Tang Q, Lu W T, Huang L X, Qi T T, Liao J F 2021 Front. Pharmacol. 12 664123Google Scholar

    [4]

    Zhu R, Li J, Lin L S, Song J B, Yang H H 2021 Adv. Funct. Mater. 31 2005709Google Scholar

    [5]

    王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全 2023 物理学报 72 175202Google Scholar

    Wang Y, Wang L, Sun B X, Lang P, Xu Y, Zhao Z L, Song X W, Ji B Y, Lin J Q 2023 Acta Phys. Sin. 72 175202Google Scholar

    [6]

    Li W, Kaminski Schierle G S, Lei B F, Liu Y L, Kaminski C F 2022 Chem. Rev. 122 12495Google Scholar

    [7]

    Hu Y Q, Wang Y, Yan J H, Wen N C, Xiong H J, Cai S D, He Q Y, Peng D M, Liu Z B, Liu Y F 2020 Adv. Sci. 7 2000557Google Scholar

    [8]

    Zhu X R, Shi Z F, Mao Y, Lächelt U, Huang R Q 2024 Small 20 2310605Google Scholar

    [9]

    Wax A, Sokolov K 2009 Laser Photonics Rev. 3 146Google Scholar

    [10]

    Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M 2014 Chin. Phys. Lett. 31 088701Google Scholar

    [11]

    Willets K A, Wilson A J, Sundaresan V, Joshi P B 2017 Chem. Rev. 117 7538Google Scholar

    [12]

    Kim J M, Lee C, Lee Y, Lee J, Park S J, Park S, Nam J M 2021 Adv. Mater. 33 2006966Google Scholar

    [13]

    Hang Y J, Wang A Y, Wu N Q 2024 Chem. Soc. Rev. 53 2932Google Scholar

    [14]

    Guo Z L, Yu G, Zhang Z G, Han Y D, Guan G J, Yang W S, Han M Y 2023 Adv. Mater. 35 2206700Google Scholar

    [15]

    Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828Google Scholar

    [16]

    Lee T H, Hirst D J, Kulkarni K, Del Borgo M P, Aguilar M I 2018 Chem. Rev. 118 5392Google Scholar

    [17]

    Mcoyi M P, Mpofu K T, Sekhwama M, Mthunzi-Kufa P 2025 Plasmonics 20 5481Google Scholar

    [18]

    Fan Z Y, Mao X H, Zhu M, Hu X J, Li M Q, Huang L L, Li J, Maimaiti T, Zuo X L, Fan C H 2025 Angew. Chem. Int. Ed. 137 e202413244Google Scholar

    [19]

    Ge F, Xue J F, Du Y, He Y 2021 Nano Today 39 101158Google Scholar

    [20]

    Guix M, Mayorga-Martinez C C, Merkoçi A 2014 Chem. Rev. 114 6285Google Scholar

    [21]

    Li Y, Yang Y G, Qin C B, Song Y R, Han S P, Zhang G F, Chen R Y, Hu J Y, Xiao L T, Jia S T 2021 Phys. Rev. Lett. 127 073902Google Scholar

    [22]

    Li Y, Qin C B, Song Y R, Yan H Y, Han S P, Zhou H T, Wei A N, Zhang G F, Chen R Y, Hu J Y, Jing M Y, Xiao L T, Jia S T 2021 Opt. Express 29 22855Google Scholar

    [23]

    Ming T, Zhao L, Yang Z, Chen H J, Sun L D, Wang J F, Yan C H 2009 Nano Lett. 9 3896Google Scholar

    [24]

    Zhanghao K, Liu W H, Li M Q, Wu Z H, Wang X, Chen X Y, Shan C Y, Wang H Q, Chen X W, Dai Q H, Xi P, Jin D Y 2020 Nat. Commun. 11 5890Google Scholar

  • [1] LIU Hao, MENG Jianqiao. Research on Topological Materials Using Ultrafast Spectroscopy. Acta Physica Sinica, 2026, 75(4): . doi: 10.7498/aps.75.20251330
    [2] CHEN Runzhi, WANG Xiaoying, ZHANG Lihao, LIU Yang, WU Jihua, DIAO Xincai, ZHANG Di, LI Lianyong, CHANG Guoqing, XUE Ping, JING Gang. Multiphoton microscopy imaging system driven by dual-wavelength-pumped self-phase modulation spectral selection. Acta Physica Sinica, 2025, 74(24): 244206. doi: 10.7498/aps.74.20251069
    [3] ZHANG Zhijie, GUO Yanqiang, GUO Xiaoli, ZHANG Li, SONG Kaiwei, ZHANG Mingjiang. Ultra-fast exposure enhanced imaging with SPAD arrays based on super-resolution deep learning. Acta Physica Sinica, 2025, 74(15): 154201. doi: 10.7498/aps.74.20250432
    [4] Fang Yu, Wu Xing-Zhi, Chen Yong-Qiang, Yang Jun-Yi, Song Ying-Lin. Study on two-photon induced ultrafast carrier dynamcis in Ge-doped GaN by transient absorption spectroscopy. Acta Physica Sinica, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [5] Gao Wei, Wang Bo-Yang, Han Qing-Yan, Han Shan-Shan, Cheng Xiao-Tong, Zhang Chen-Xue, Sun Ze-Yu, Liu Lin, Yan Xue-Wen, Wang Yong-Kai, Dong Jun. Building vertical gold nanorod arrays to enhance upconversion luminescence of β-NaYF4: Yb3+/Er3+ nanocrystals. Acta Physica Sinica, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [6] Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang. Technique of detecting optical components based on coherent modulation imaging. Acta Physica Sinica, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [7] Jiazila Hasaien, Zhu Ke-Jia, Sun Fei, Wu Yan-Ling, Shi You-Guo, Zhao Ji-Min. Generation and control of photo-excited thermal currents in triple degenerate topological semimetal MoP with circularly polarized ultrafast light pulses. Acta Physica Sinica, 2020, 69(20): 207801. doi: 10.7498/aps.69.20200031
    [8] Jiang Cong-Ying, Sun Fei, Feng Zi-Li, Liu Shi-Bing, Shi You-Guo, Zhao Ji-Min. Time-resolved ultrafast dynamics in triple degenerate topological semimetal molybdenum phosphide. Acta Physica Sinica, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [9] Yang Ying, Song Jun-Jie, Wan Ming-Wei, Gao Liang-Hui, Fang Wei-Hai. Morphologies of self-assembled gold nanorod-surfactant-lipid complexes at molecular level. Acta Physica Sinica, 2020, 69(24): 248701. doi: 10.7498/aps.69.20200979
    [10] Song Bang-Ju, Jin Zuan-Ming, Guo Chen-Yang, Ruan Shun-Yi, Li Ju-Geng, Wan Cai-Hua, Han Xiu-Feng, Ma Guo-Hong, Yao Jian-Quan. Terahertz emission from Y3Fe5O12(YIG)/Pt heterostructures via ultrafast spin Seebeck effect. Acta Physica Sinica, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [11] Lin Xian,  Jin Zuan-Ming,  Li Ju-Geng,  Guo Fei-Yun,  Zhuang Nai-Feng,  Chen Jian-Zhong,  Dai Ye,  Yan Xiao-Na,  Ma Guo-Hong. Ultrafast polarization modulation of laser pulses at terahertz frequencies via optical Kerr effect. Acta Physica Sinica, 2018, 67(23): 237801. doi: 10.7498/aps.67.20181450
    [12] Zhang Shun-Nong, Zhu Wei-Hua, Li Ju-Geng, Jin Zuan-Ming, Dai Ye, Zhang Zong-Zhi, Ma Guo-Hong, Yao Jian-Quan. Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures. Acta Physica Sinica, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [13] Yan Zhao, Zhao Wen-Jing, Wang Rong-Yao. Kinetic study of nanorods self-assembly process based on logistic function model. Acta Physica Sinica, 2016, 65(12): 126101. doi: 10.7498/aps.65.126101
    [14] Wang Chang-Yuan, Yang Xiao-Hong, Ma Yong, Feng Yuan-Yuan, Xiong Jin-Long, Wang Wei. Microstructure and photoluminescence of ZnO:Cd nanorods synthesized by hydrothermal method. Acta Physica Sinica, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [15] Wang Wen-Cong, Liang Jing-Qiu, Liang Zhong-Zhu, Lü Jin-Guang, Qin Yu-Xin, Tian Chao, Wang Wei-Biao. Design and analysis for the front imaging optical system of the spatiotemporal mixed modulated Fourier transform imaging spectrometer. Acta Physica Sinica, 2014, 63(10): 100701. doi: 10.7498/aps.63.100701
    [16] Wang Li-Feng, He Xin-Kui, Teng Hao, Yun Chen-Xia, Zhang Wei, Wei Zhi-Yi. Tunable optimization of high-order harmonic generation driven by 5 fs laser pulses. Acta Physica Sinica, 2014, 63(22): 224103. doi: 10.7498/aps.63.224103
    [17] Ye Tong, Gao Yun, Yin Yan. Surface-enhanced Raman scattering effects of gold nanorods prepared by polycarbonate membranes. Acta Physica Sinica, 2013, 62(12): 127801. doi: 10.7498/aps.62.127801
    [18] Cheng Ping, Gao Feng, Chen Xiang-Dong, Yang Ji-Ping. Effect of the electric field on the decay of excited states in poly-phenylenevinylene. Acta Physica Sinica, 2010, 59(4): 2831-2835. doi: 10.7498/aps.59.2831
    [19] Jin Hua, An Li-Nan, Bu Fan-Liang, Li Li-Hua, Wang Rong, Yang Wei-You, Zhang Li-Gong. Study of ultraviolet photoluminescence from SiC nanorods. Acta Physica Sinica, 2009, 58(4): 2594-2598. doi: 10.7498/aps.58.2594
    [20] Huang Kai, Wang Si-Hui, Shi Yi, Qin Guo-Yi, Zhang Rong, Zheng You-Dou. Effect of inner electric field on the photoluminescence spectrum of nanosilicon. Acta Physica Sinica, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
Metrics
  • Abstract views:  426
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  21 August 2025
  • Accepted Date:  24 September 2025
  • Available Online:  10 October 2025
  • Published Online:  20 December 2025
  • /

    返回文章
    返回