Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coherent manipulation of multiple ions in a room-temperature surface-electrode trap

XIE Yi CHEN Ting WANG Hongyang TAO Yi ZHANG Xin CHEN Yan ZHANG Jie WU Wei CHEN Pingxing

Citation:

Coherent manipulation of multiple ions in a room-temperature surface-electrode trap

XIE Yi, CHEN Ting, WANG Hongyang, TAO Yi, ZHANG Xin, CHEN Yan, ZHANG Jie, WU Wei, CHEN Pingxing
cstr: 32037.14.aps.74.20251454
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The development of high-performance chip-scale ion traps is crucial for the integration and scaling of ion-trap-based quantum computers. Although cryogenic environments can greatly reduce anomalous heating, operating ion traps at room temperature remains highly attractive due to its simplicity and lower cost. This work reports significant progress in coherently controlling multiple ions confined in a custom-fabricated, room-temperature surface-electrode trap, establishing a critical foundation for advanced quantum protocols such as quantum error correction and future scalable architectures. Research objectives and methods  This study aims to characterize a home-built chip trap and demonstrate its capabilities for multi-ion quantum logic under ambient conditions. The trap adopts a six-wire electrode design on a high-resistivity silicon substrate, with ions trapped at a height of 154 μm. A combination of Doppler cooling, electromagnetically induced transparency (EIT) cooling, and resolved-sideband cooling is used to prepare the ions in their motional ground state. Coherent manipulations are performed using both a 729 nm laser (for optical qubits between the $|\text{S}_{1/2},m_j=-1/2\rangle$ and $|\text{D}_{5/2},m_j=-3/2\rangle$ states) and microwave radiation (for qubits between the $|\text{S}_{1/2},m_j=-1/2\rangle$ and $|\text{S}_{1/2},m_j=+1/2\rangle$ states). Quantum state detection is achieved via state-dependent fluorescence by using an EMCCD camera, thereby enabling site-resolved readout. Key results  Low room-temperature heating rates: The trap exhibits low heating rates, measured to be 0.074(8) quanta/ms in the axial direction (at 833 kHz) and 0.237(51) quanta/ms in the radial direction (at 1.3 MHz). The spectral density of electric-field noise is on the order of $10^{-13}$ ${{\rm{V}}^2 /({\rm{m}}^{2}\cdot{\rm{Hz}}})$ at trap frequencies above 500 kHz, ranking among the best for room-temperature devices. The spectral density of electric-field noise follows an approximate $f^{-2.52(22)}$ dependence, potentially influenced by external filtering circuits. High-fidelity single-ion control A single 40Ca+ ion is cooled to an average phonon number of 0.04(2) in its axial motion. High-fidelity coherent operations are demonstrated: carrier Rabi oscillations using the 729 nm laser shows a single-pulse fidelity of approximately 98.98(8)%, while microwave-driven operations achieves a fidelity of 99.95(2)%. Ramsey interferometry with microwaves reveals a coherence time $T_2^*$ of 5.0(4) ms.Site-resolved multi-ion coherent control: The core achievement is the global coherent manipulation of ion chains containing up to 20 ions. The system is characterized by driving motional sideband transitions on various axial modes of 5- and 6-ion chains. The resulting Rabi oscillations, measured using site-resolved fluorescence, clearly show the collective dynamics and mode-dependent coupling strengths determined by the normalized mode eigenvectors. Furthermore, global carrier transitions are demonstrated on a two-dimensional (2D) zigzag crystal of 20 ions, confirming the ability to execute simultaneous operations on a large qubit array. Global control of 2D ion crystals Using 20 ions, a 2D zigzag crystal is formed and globally addressed using both laser and microwave drives. Laser-driven carrier transitions show strong decay due to multimode motional coupling, whereas microwave-driven oscillations remain nearly decay-free, consistent with the Lamb–Dicke parameter being negligible for microwave fields. Conclusion  The room-temperature surface-electrode trap can support low-heating confinement, high-fidelity single- and multi-qubit operations, as well as coherent control of large ion arrays. The site-resolved observations of mode-dependent coupling highlight the potential for utilizing collective vibrational modes for selective quantum control. These results validate the trap as a robust and promising platform for medium-scale quantum information processing and quantum simulation at room temperature. Future work will focus on structural optimizations to reduce radial heating and integration with cryogenic systems to further suppress noise, ultimately advancing toward large-scale quantum computing architectures.
      Corresponding author: WU Wei, weiwu@nudt.edu.cn ; CHEN Pingxing, pxchen@nudt.edu.cn
    • Funds: Project supported by the Quantum Science and Technology-National Science and Technology Major Project (Grant No. 2021ZD0301605) and the National Natural Science Foundation of China (Grant Nos. 12204543, 12174447, 12174448, 12074433).
    [1]

    Cai M L, Liu Z D, Jiang Y, Wu Y K, Mei Q X, Zhao W D, He L, Zhang X, Zhou Z C, Duan L M 2022 Chin. Phys. Lett. 39 020502Google Scholar

    [2]

    Cui T H, Li J, Yuan Q, Wei Y Q, Dai S Q, Li P D, Zhou F, Zhang J Q, Chen L, Feng M 2023 Chin. Phys. Lett. 40 080501Google Scholar

    [3]

    Zhao X, Bian J, Li Y, Li Y, Zhang M, Lin Y 2025 Chin. Phys. Lett. 42 110601Google Scholar

    [4]

    吴宇恺, 段路明 2023 物理学报 72 230302Google Scholar

    Wu Y K, Duan L M 2023 Acta Phys. Sin. 72 230302Google Scholar

    [5]

    Guo S A, Wu Y K, Ye J, Zhang L, Lian W Q, Yao R, Wang Y, Yan R Y, Yi Y J, Xu Y L, Li B W, Hou Y H, Xu Y Z, Guo W X, Zhang C, Qi B X, Zhou Z C, He L, Duan L M 2024 Nature 630 613Google Scholar

    [6]

    Zhang J, Chow B T, Ejtemaee S, Haljan P C 2023 npj Quantum Inf. 9 68Google Scholar

    [7]

    Cheng Z J, Wu Y K, Li S J, Mei Q X, Li B W, Wang G X, Jiang Y, Qi B X, Zhou Z C, Hou P Y, Duan L M 2024 Sci. Adv. 10 eadr9527Google Scholar

    [8]

    Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, Duan L M 2021 Nat. Commun. 12 1126Google Scholar

    [9]

    Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601Google Scholar

    [10]

    Iqbal M, Tantivasadakarn N, Gatterman T M, Gerber J A, Gilmore K, Gresh D, Hankin A, Hewitt N, Horst C V, Matheny M, Mengle T, Neyenhuis B, Vishwanath A, Foss-Feig M, Verresen R, Dreyer H 2024 Commun. Phys. 7 205Google Scholar

    [11]

    Chertkov E, Cheng Z, Potter A C, Gopalakrishnan S, Gatterman T M, Gerber J A, Gilmore K, Gresh D, Hall A, Hankin A, Matheny M, Mengle T, Hayes D, Neyenhuis B, Stutz R, Foss-Feig M 2023 Nat. Phys. 19 1799Google Scholar

    [12]

    Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R, Chuang I L 2006 Phys. Rev. A 73 032307Google Scholar

    [13]

    Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N, Wineland D J 2006 Phys. Rev. Lett. 96 253003Google Scholar

    [14]

    Qin Q, Chen T, Zhang X, Ou B, Zhang J, Wu C, Xie Y, Wu W, Chen P 2025 Chip 4 100126Google Scholar

    [15]

    王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿 2022 物理学报 71 133701Google Scholar

    Wang C X, He R, Li R R, Chen Y, Fang D, Cui J M, Huang Y F, Li C F, Guo G C 2022 Acta Phys. Sin. 71 133701Google Scholar

    [16]

    陈婷, 谢艺, 张杰, 欧保全, 秦青青, 张鑫方, 王弘扬, 陶毅, 熊凯莉, 樊钢, 欧阳仪, 陈岩, 吴伟, 陈平形 2025 光学学报 45 2027004Google Scholar

    Chen T, Xie Y, Zhang J, Ou B Q, Qin Q Q, Zhang X F, Wang H Y, Tao Y, Xiong K L, Fan G, Ouyang Y, Chen Y, Wu W, Chen P X 2025 Acta Optica Sin. 45 2027004Google Scholar

    [17]

    Kwon J, Setzer W J, Gehl M, Karl N, Van Der Wall J, Law R, Blain M G, Stick D, McGuinness H J 2024 Nat. Commun. 15 3709Google Scholar

    [18]

    Weber M A, Gely M F, Hanley R K, Harty T P, Leu A D, Löschnauer C M, Nadlinger D P, Lucas D M 2024 Phys. Rev. A 110 L010601Google Scholar

    [19]

    Todaro S L, Verma V B, McCormick K C, Allcock D T C, Mirin R P, Wineland D J, Nam S W, Wilson A C, Leibfried D, Slichter D H 2021 Phys. Rev. Lett. 126 010501Google Scholar

    [20]

    Moses S A, Baldwin C H, Allman M S, Ancona R, Ascarrunz L, Barnes C, Bartolotta J, Bjork B, Blanchard P, Bohn M, Bohnet J G, Brown N C, Burdick N Q, Burton W C, Campbell S L, Campora J P, Carron C, Chambers J, Chan J W, Chen Y H, Chernoguzov A, Chertkov E, Colina J, Curtis J P, Daniel R, DeCross M, Deen D, Delaney C, Dreiling J M, Ertsgaard C T, Esposito J, Estey B, Fabrikant M, Figgatt C, Foltz C, Foss-Feig M, Francois D, Gaebler J P, Gatterman T M, Gilbreth C N, Giles J, Glynn E, Hall A, Hankin A M, Hansen A, Hayes D, Higashi B, Hoffman I M, Horning B, Hout J J, Jacobs R, Johansen J, Jones L, Karcz J, Klein T, Lauria P, Lee P, Liefer D, Lu S T, Lucchetti D, Lytle C, Malm A, Matheny M, Mathewson B, Mayer K, Miller D B, Mills M, Neyenhuis B, Nugent L, Olson S, Parks J, Price G N, Price Z, Pugh M, Ransford A, Reed A P, Roman C, Rowe M, Ryan-Anderson C, Sanders S, Sedlacek J, Shevchuk P, Siegfried P, Skripka T, Spaun B, Sprenkle R T, Stutz R P, Swallows M, Tobey R I, Tran A, Tran T, Vogt E, Volin C, Walker J, Zolot A M, Pino J M 2023 Phys. Rev. X 13 041052Google Scholar

    [21]

    Ruster T, Warschburger C, Kaufmann H, Schmiegelow C T, Walther A, Hettrich M, Pfister A, Kaushal V, Schmidt-Kaler F, Poschinger U G 2014 Phys. Rev. A 90 033410Google Scholar

    [22]

    Hilder J, Pijn D, Onishchenko O, Stahl A, Orth M, Lekitsch B, Rodriguez-Blanco A, Müller M, Schmidt-Kaler F, Poschinger U G 2022 Phys. Rev. X 12 011032Google Scholar

    [23]

    Palmero M, Martínez-Garaot S, Poschinger U G, Ruschhaupt A, Muga J G 2015 New J. Phys. 17 093031Google Scholar

    [24]

    James D F V 1998 Appl. Phys. B 66 181Google Scholar

    [25]

    Tao Y, Chen T, Wang H, Zhang J, Zhang T, Xie Y, Chen P, Wu W 2024 Phys. Rev. A 109 062434Google Scholar

    [26]

    张见, 陈书明, 刘威 2014 物理学报 63 060303Google Scholar

    Zhang J, Chen S M, Liu W 2014 Acta Phys. Sin. 63 060303Google Scholar

    [27]

    Lauprêtre T, Achi B, Groult L, Carry É, Kersalé Y, Delehaye M, Hafiz M A, Lacroûte C 2023 Appl. Phys. B 129 37Google Scholar

    [28]

    Zhang J, Zhang M C, Xie Y, Wu C W, Ou B Q, Chen T, Bao W S, Haljan P, Wu W, Zhang S, Chen P X 2022 Phys. Rev. Appl. 18 014022Google Scholar

    [29]

    Turchette Q A, Kielpinski, King B E, Leibfried D, Meekhof D M, Myatt C J, Rowe M A, Sackett C A, Wood C S, Itano W M, Monroe C, Wineland D J 2000 Phys. Rev. A 61 063418Google Scholar

    [30]

    Chiaverini J, Sage J M 2014 Phys. Rev. A 89 012318Google Scholar

    [31]

    Chen W, Gan J, Zhang J N, Matuskevich D, Kim K 2021 Chin. Phys. B 30 060311Google Scholar

  • 图 1  40Ca+相关能级示意图 (a) 40Ca+最低的几个能级; (b) 与相干操控相关的塞曼子能级

    Figure 1.  Schematic diagram of the energy level structure of 40Ca+: (a) The lowest-lying energy levels; (b) Zeeman sublevels involved in coherent control.

    图 2  表面电极离子阱的照片

    Figure 2.  Picture of the surface electrode ion trap.

    图 3  轴向加热率曲线(a)与电场噪声密度谱曲线(b)

    Figure 3.  Curve of axial heating rate (a) and spectral density of the electric-field noise (b).

    图 4  单离子冷却及相干操控测试 (a) 激光驱动蓝边带Rabi振荡曲线, 轴向阱频为748 kHz; (b) 激光驱动载波Rabi振荡曲线; (c) 微波操控Rabi振荡曲线; (d) 微波操控Ramsey干涉测量曲线

    Figure 4.  Single-ion cooling and coherent manipulation characterization: (a) Laser-driven blue motional sideband Rabi oscillations at an axial trap frequency of 748 kHz; (b) laser-driven carrier Rabi oscillations; (c) microwave-driven Rabi oscillations; (d) microwave-driven Ramsey interference.

    图 5  离子可分辨的多离子蓝边带Rabi振荡曲线(实验数据由点表示, 理论曲线由线条表示, 离子序号按照从左到右的顺序标记为1—5(6). 实验误差棒表示估计的投影测量不确定度) (a) 5个离子第2个轴向模式的蓝边带振荡曲线, 模式频率约691 kHz, 失谐为0; (b) 5个离子第3个轴向模式的蓝边带振荡曲线, 模式频率约962 kHz, 失谐为$ 0.2 \varOmega_{0, 1} $; (c) 5个离子第5个轴向模式的蓝边带振荡曲线, 模式频率约1219 kHz, 失谐为$ 0.08 \varOmega_{0, 1} $; (d) 6个离子第6个轴向模式的蓝边带振荡曲线, 模式频率约1464 kHz, 失谐为$ 0.06 \varOmega_{0, 1} $

    Figure 5.  Site-resolved blue-sideband Rabi oscillations for multiple ions: (a) Blue-sideband oscillations on the 2nd axial mode of a 5-ion chain. The mode frequency is about 691 kHz and detuning is 0. (b) Blue-sideband oscillations on the 3rd axial mode of a 5-ion chain. The mode frequency is about 962 kHz and detuning is $ 0.2 \varOmega_{0, 1} $. (c) Blue-sideband oscillations on the 5th axial mode of a 5-ion chain. The mode frequency is about 1219 kHz and detuning is $ 0.08 \varOmega_{0, 1} $. (d) Blue-sideband oscillations on the 6th axial mode of a 6-ion chain. The mode frequency is about 1464 kHz and detuning is $ 0.06 \varOmega_{0, 1} $. Experimental data are represented by points, with theoretical curves shown as lines. Ions are labeled 1 to 5 (6) from left to right. Error bars indicate the estimated projection measurement uncertainty.

    图 6  离子可分辨的载波Rabi振荡曲线

    Figure 6.  Site-resolved carrier Rabi oscillations.

    图 7  多离子Rabi振荡的集体荧光计数曲线 (a) 5离子载波Rabi振荡集体荧光曲线; (b) 5(6)离子蓝边带Rabi振荡的集体荧光曲线

    Figure 7.  Collective fluorescence measurement of multi-ion Rabi oscillations: (a) Collective fluorescence signal of the carrier transition for a 5-ion chain; (b) collective fluorescence signal of the blue-sideband transition for 5- or 6-ion chains.

    图 8  20个离子全局相干操控 (a) 20个离子形成二维之字形排列的照片; (b) 激光驱动的$ |\text{S}_{1/2}, m_j = -1/2\rangle $到$ |\text{D}_{5/2}, $$ m_j = +1/2\rangle $的载波跃迁Rabi振荡曲线; (c) 微波驱动的$ |\text{S}_{1/2}, m_j = -1/2\rangle $到$ |\text{S}_{1/2}, m_j = +1/2\rangle $的载波跃迁Rabi振荡曲线

    Figure 8.  Global coherent manipulation of 20 ions: (a) Fluorescence image of 20 ions crystallized into a two-dimensional zigzag configuration; (b) laser-driven carrier transition Rabi oscillations between $ |\text{S}_{1/2}, m_j = -1/2\rangle $ and $ |\text{D}_{5/2}, $$ m_j = +1/2\rangle $; (c) microwave-driven carrier transition Rabi oscillations between $ |\text{S}_{1/2}, m_j = -1/2\rangle $ and $ |\text{S}_{1/2}, m_j = +1/2\rangle $.

  • [1]

    Cai M L, Liu Z D, Jiang Y, Wu Y K, Mei Q X, Zhao W D, He L, Zhang X, Zhou Z C, Duan L M 2022 Chin. Phys. Lett. 39 020502Google Scholar

    [2]

    Cui T H, Li J, Yuan Q, Wei Y Q, Dai S Q, Li P D, Zhou F, Zhang J Q, Chen L, Feng M 2023 Chin. Phys. Lett. 40 080501Google Scholar

    [3]

    Zhao X, Bian J, Li Y, Li Y, Zhang M, Lin Y 2025 Chin. Phys. Lett. 42 110601Google Scholar

    [4]

    吴宇恺, 段路明 2023 物理学报 72 230302Google Scholar

    Wu Y K, Duan L M 2023 Acta Phys. Sin. 72 230302Google Scholar

    [5]

    Guo S A, Wu Y K, Ye J, Zhang L, Lian W Q, Yao R, Wang Y, Yan R Y, Yi Y J, Xu Y L, Li B W, Hou Y H, Xu Y Z, Guo W X, Zhang C, Qi B X, Zhou Z C, He L, Duan L M 2024 Nature 630 613Google Scholar

    [6]

    Zhang J, Chow B T, Ejtemaee S, Haljan P C 2023 npj Quantum Inf. 9 68Google Scholar

    [7]

    Cheng Z J, Wu Y K, Li S J, Mei Q X, Li B W, Wang G X, Jiang Y, Qi B X, Zhou Z C, Hou P Y, Duan L M 2024 Sci. Adv. 10 eadr9527Google Scholar

    [8]

    Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, Duan L M 2021 Nat. Commun. 12 1126Google Scholar

    [9]

    Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601Google Scholar

    [10]

    Iqbal M, Tantivasadakarn N, Gatterman T M, Gerber J A, Gilmore K, Gresh D, Hankin A, Hewitt N, Horst C V, Matheny M, Mengle T, Neyenhuis B, Vishwanath A, Foss-Feig M, Verresen R, Dreyer H 2024 Commun. Phys. 7 205Google Scholar

    [11]

    Chertkov E, Cheng Z, Potter A C, Gopalakrishnan S, Gatterman T M, Gerber J A, Gilmore K, Gresh D, Hall A, Hankin A, Matheny M, Mengle T, Hayes D, Neyenhuis B, Stutz R, Foss-Feig M 2023 Nat. Phys. 19 1799Google Scholar

    [12]

    Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R, Chuang I L 2006 Phys. Rev. A 73 032307Google Scholar

    [13]

    Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N, Wineland D J 2006 Phys. Rev. Lett. 96 253003Google Scholar

    [14]

    Qin Q, Chen T, Zhang X, Ou B, Zhang J, Wu C, Xie Y, Wu W, Chen P 2025 Chip 4 100126Google Scholar

    [15]

    王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿 2022 物理学报 71 133701Google Scholar

    Wang C X, He R, Li R R, Chen Y, Fang D, Cui J M, Huang Y F, Li C F, Guo G C 2022 Acta Phys. Sin. 71 133701Google Scholar

    [16]

    陈婷, 谢艺, 张杰, 欧保全, 秦青青, 张鑫方, 王弘扬, 陶毅, 熊凯莉, 樊钢, 欧阳仪, 陈岩, 吴伟, 陈平形 2025 光学学报 45 2027004Google Scholar

    Chen T, Xie Y, Zhang J, Ou B Q, Qin Q Q, Zhang X F, Wang H Y, Tao Y, Xiong K L, Fan G, Ouyang Y, Chen Y, Wu W, Chen P X 2025 Acta Optica Sin. 45 2027004Google Scholar

    [17]

    Kwon J, Setzer W J, Gehl M, Karl N, Van Der Wall J, Law R, Blain M G, Stick D, McGuinness H J 2024 Nat. Commun. 15 3709Google Scholar

    [18]

    Weber M A, Gely M F, Hanley R K, Harty T P, Leu A D, Löschnauer C M, Nadlinger D P, Lucas D M 2024 Phys. Rev. A 110 L010601Google Scholar

    [19]

    Todaro S L, Verma V B, McCormick K C, Allcock D T C, Mirin R P, Wineland D J, Nam S W, Wilson A C, Leibfried D, Slichter D H 2021 Phys. Rev. Lett. 126 010501Google Scholar

    [20]

    Moses S A, Baldwin C H, Allman M S, Ancona R, Ascarrunz L, Barnes C, Bartolotta J, Bjork B, Blanchard P, Bohn M, Bohnet J G, Brown N C, Burdick N Q, Burton W C, Campbell S L, Campora J P, Carron C, Chambers J, Chan J W, Chen Y H, Chernoguzov A, Chertkov E, Colina J, Curtis J P, Daniel R, DeCross M, Deen D, Delaney C, Dreiling J M, Ertsgaard C T, Esposito J, Estey B, Fabrikant M, Figgatt C, Foltz C, Foss-Feig M, Francois D, Gaebler J P, Gatterman T M, Gilbreth C N, Giles J, Glynn E, Hall A, Hankin A M, Hansen A, Hayes D, Higashi B, Hoffman I M, Horning B, Hout J J, Jacobs R, Johansen J, Jones L, Karcz J, Klein T, Lauria P, Lee P, Liefer D, Lu S T, Lucchetti D, Lytle C, Malm A, Matheny M, Mathewson B, Mayer K, Miller D B, Mills M, Neyenhuis B, Nugent L, Olson S, Parks J, Price G N, Price Z, Pugh M, Ransford A, Reed A P, Roman C, Rowe M, Ryan-Anderson C, Sanders S, Sedlacek J, Shevchuk P, Siegfried P, Skripka T, Spaun B, Sprenkle R T, Stutz R P, Swallows M, Tobey R I, Tran A, Tran T, Vogt E, Volin C, Walker J, Zolot A M, Pino J M 2023 Phys. Rev. X 13 041052Google Scholar

    [21]

    Ruster T, Warschburger C, Kaufmann H, Schmiegelow C T, Walther A, Hettrich M, Pfister A, Kaushal V, Schmidt-Kaler F, Poschinger U G 2014 Phys. Rev. A 90 033410Google Scholar

    [22]

    Hilder J, Pijn D, Onishchenko O, Stahl A, Orth M, Lekitsch B, Rodriguez-Blanco A, Müller M, Schmidt-Kaler F, Poschinger U G 2022 Phys. Rev. X 12 011032Google Scholar

    [23]

    Palmero M, Martínez-Garaot S, Poschinger U G, Ruschhaupt A, Muga J G 2015 New J. Phys. 17 093031Google Scholar

    [24]

    James D F V 1998 Appl. Phys. B 66 181Google Scholar

    [25]

    Tao Y, Chen T, Wang H, Zhang J, Zhang T, Xie Y, Chen P, Wu W 2024 Phys. Rev. A 109 062434Google Scholar

    [26]

    张见, 陈书明, 刘威 2014 物理学报 63 060303Google Scholar

    Zhang J, Chen S M, Liu W 2014 Acta Phys. Sin. 63 060303Google Scholar

    [27]

    Lauprêtre T, Achi B, Groult L, Carry É, Kersalé Y, Delehaye M, Hafiz M A, Lacroûte C 2023 Appl. Phys. B 129 37Google Scholar

    [28]

    Zhang J, Zhang M C, Xie Y, Wu C W, Ou B Q, Chen T, Bao W S, Haljan P, Wu W, Zhang S, Chen P X 2022 Phys. Rev. Appl. 18 014022Google Scholar

    [29]

    Turchette Q A, Kielpinski, King B E, Leibfried D, Meekhof D M, Myatt C J, Rowe M A, Sackett C A, Wood C S, Itano W M, Monroe C, Wineland D J 2000 Phys. Rev. A 61 063418Google Scholar

    [30]

    Chiaverini J, Sage J M 2014 Phys. Rev. A 89 012318Google Scholar

    [31]

    Chen W, Gan J, Zhang J N, Matuskevich D, Kim K 2021 Chin. Phys. B 30 060311Google Scholar

  • [1] Fu Yu-Liang, Zhang Si-Yuan, Yang Jin-Yuan, Sun An-Bang, Wang Ya-Nan. Electron heating mode in magnetic field diffusion region of microwave discharge ion thruster. Acta Physica Sinica, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [2] Wang Yan, Peng Miao, Cheng Wei, Peng Zheng, Cheng Hao, Zang Sheng-Yin, Liu Hao, Ren Xiao-Dong, Shuai Yu-Bei, Huang Cheng-Zhi, Wu Jia-Gui, Yang Jun-Bo. Controllable multi-trap optical tweezers based on low loss optical phase change and metalens. Acta Physica Sinica, 2023, 72(2): 027801. doi: 10.7498/aps.72.20221794
    [3] Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le. Phonon-mediated many-body quantum entanglement and logic gates in ion traps. Acta Physica Sinica, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [4] Li Xiang-Yan, Wang Zhi-Hui, Li Shao-Kang, Tian Ya-Li, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Measurement of magnetically insensitive state coherent time in blue dipole trap. Acta Physica Sinica, 2020, 69(8): 080301. doi: 10.7498/aps.69.20192001
    [5] Peng Jie-Yang, Wang Jia-Hai, Shen Bin, Li Hao-Liang, Sun Hao-Ming. Influences of nanoscale particles and interparticle compression in electrodes on voltage hysteresis of lithium ion batteries. Acta Physica Sinica, 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [6] Wei Zheng-Hong, Yun Feng, Ding Wen, Huang Ya-Ping, Wang Hong, Li Qiang, Zhang Ye, Guo Mao-Feng, Liu Shuo, Wu Hong-Bin. Reflective Ni/Ag/Ti/Au electrode with low specific contact resistivity. Acta Physica Sinica, 2015, 64(12): 127304. doi: 10.7498/aps.64.127304
    [7] Liu Yu-Zhu, Gerber Thomas, Knopp Gregor. Optical control of the vibrational excitation of the polyatomic ions via strong field multi-photon ionization. Acta Physica Sinica, 2014, 63(24): 244208. doi: 10.7498/aps.63.244208
    [8] Zhang Jian, Chen Shu-Ming, Liu Wei. Substrate effect on surface-electrode ion trap and hybrid design for ion trap. Acta Physica Sinica, 2014, 63(6): 060303. doi: 10.7498/aps.63.060303
    [9] Wang Wei, Yang Lan-Jun, Gao Jie, Liu Shuai. Experimental study on the thrust and the ratio of thrust to power of multi-points/grid ionic wind exciter. Acta Physica Sinica, 2013, 62(7): 075205. doi: 10.7498/aps.62.075205
    [10] Ma Zhi-Bin, Shen Wu-Lin, Wu Jun, Yan Lei, Wang Jian-Hua. Effect of cylinder-electrode on magnetoelectric heating of ions. Acta Physica Sinica, 2013, 62(1): 015202. doi: 10.7498/aps.62.015202
    [11] Cheng Mu-Tian. Coherent controlling surface plasmon transport properties in Ag nanowire by classic optical field. Acta Physica Sinica, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [12] Shen Wu-Lin, Ma Zhi-Bin, Tan Bi-Song, Wu Jun, Wang Jian-Hua. Magnetoelectric heating in the ECR plasma. Acta Physica Sinica, 2011, 60(10): 105204. doi: 10.7498/aps.60.105204
    [13] Zhang Ji-Yan, Yang Jia-Min, Xu Yan, Yang Guo-Hong, Yan Jun, Meng Guang-Wei, Ding Yao-Nan, Wang Yan. Absorption experiments on radiatively heated Al plasma. Acta Physica Sinica, 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [14] Sheng Zheng-Mao, Wang Yong, Ma Jian, Zheng Si-Bo. Simulation on heating of plasma in a magnetic field with electrostatic wave. Acta Physica Sinica, 2006, 55(3): 1301-1306. doi: 10.7498/aps.55.1301
    [15] Nie Zong-Xiu, Li Jiao-Mei, Jiang Yu-Rong, Zhu Yan-Wu, Guan Hua, Shu Hua-Lin, Shao Hui-Li, Gao Ke-Lin. Character of store and reaction of ground state multiply charged Fen+(n=1—3) ions in a Paul trap. Acta Physica Sinica, 2004, 53(4): 1034-1038. doi: 10.7498/aps.53.1034
    [16] ZHU XUE-GUANG, KUANG GUANG-LI, ZHAO YAN-PING, LI YOU-YI, XIE JI-KANG. FAST WAVE MINORITY ION HEATING. Acta Physica Sinica, 1999, 48(9): 1709-1717. doi: 10.7498/aps.48.1709
    [17] SHEN LIN-FANG, YU GUO-YANG. THE EFFECT OF ION CYCLOTRON RESONANCE HEATING ON LOWER HYBRID CURRENT DRIVE IN TOKAMAK PLASMA. Acta Physica Sinica, 1992, 41(4): 587-593. doi: 10.7498/aps.41.587
    [18] CHEN YAN-PING, ZHANG CHUN-YUAN. THE EFFECT OF PARTICLE ORBIT LOSS ON ION STOCHASTIC HEATING WITH LH WAVES. Acta Physica Sinica, 1984, 33(4): 457-464. doi: 10.7498/aps.33.457
    [19] XU ZHI-ZHAN, LI AN-MING, CHEN SHI-SHEN, LIN LI-HUANG, LIANG XIANG-CHUN, OUYANG BIN, BI WU-JI, HOU SHING-FA, YIN GUANG-YU, ZHANG SHU-GAN, PAN CHENG-MING. INVESTIGATION OF LASER HEATING OF PLASMAS. Acta Physica Sinica, 1981, 30(8): 1077-1084. doi: 10.7498/aps.30.1077
    [20] TAN WEI-HAN, XU ZHI-ZHAN. SINGLE AND DOUBLE FREQUENCY RESONANCE HEATING IN LASER-IRRADIATED PLASMAS. Acta Physica Sinica, 1977, 26(2): 133-148. doi: 10.7498/aps.26.133
Metrics
  • Abstract views:  241
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  24 October 2025
  • Accepted Date:  12 November 2025
  • Available Online:  25 November 2025
  • Published Online:  20 December 2025
  • /

    返回文章
    返回