Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fast Microwave-Induced Thermoacoustic Microscopic Imaging Based on One-Dimensional Galvanometer Scanning

NIE Yinqiang CHI Zihui CHEN Lei MENG Yang JIANG Huabei

Citation:

Fast Microwave-Induced Thermoacoustic Microscopic Imaging Based on One-Dimensional Galvanometer Scanning

NIE Yinqiang, CHI Zihui, CHEN Lei, MENG Yang, JIANG Huabei
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Microwave-induced thermoacoustic imaging, as an emerging biomedical imaging technique, combines the high contrast of microwave imaging with the high spatial resolution of ultrasound imaging. As an important branch of this technology, microwave-induced thermoacoustic microscopy retains these advantages while providing the capability to visualize finer tissue characteristics. However, conventional raster scanning mechanisms introduce interference in microwave field distribution due to mechanical motion, necessitating multiple signal averages to maintain signal-to-noise ratio. Additionally, the idle time during motor movement leads to prolonged single-scan duration, limiting its practical applications. To address these limitations, this paper proposes a rapid imaging system based on one-dimensional galvanometer scanning. The system employs a hybrid galvanometer-translation stage architecture and an optimized scanning strategy to minimize microwave field interference, reduce the number of signal averages, and decrease idle time, ultimately achieving more than a tenfold improvement in imaging speed. A specially designed timing control algorithm ensures precise synchronization of microwave excitation, galvanometer motion, and ultrasound detection, while a reconstruction algorithm adapted to the optimized scanning method effectively corrects distortions generated during the scanning process. System performance was evaluated through phantom and ex vivo tissue experiments. Resolution tests demonstrated hundred-micrometer resolution along all three axes (332 μm × 324 μm × 79 μm), while contrast and depth imaging experiments confirmed its capability to clearly distinguish targets with different conductivities, achieving an effective detection depth of at least 10 mm in tissue. Early tumor mimicking experiments further demonstrated the system's ability to identify lesion boundaries, preliminarily revealing its potential for rapid tumor margin assessment. This approach maintains the imaging quality of microwave-induced thermoacoustic microscopy while enhancing imaging efficiency and system stability, laying a crucial foundation for advancing the technology from laboratory research to clinical applications.
  • [1]

    Bell A G 1880 Am. J. Sci. s3-20 305.

    [2]

    Olsen R G, Lin J C 1983 Bioelectromagnetics 4 397.

    [3]

    Kruger R A, Kopecky K K, Aisen A M, Reinecke D R, Kruger G A, Kiser W L 1999 Radiology 211 275.

    [4]

    Ku G, Wang L V 2000 Med. Phys. 27 1195.

    [5]

    Ku G, Wang L V 2000 Med. Phys. 27 1195.

    [6]

    Kruger R A, Miller K D, Reynolds H E, Kiser W L, Reinecke D R, Kruger G A 2000 Radiology 216 279.

    [7]

    Kruger R A, Miller K D, Reynolds H E, Kiser W L, Reinecke D R, Kruger G A 2000 Radiology 216 279.

    [8]

    Singhvi A, Boyle K C, Fallahpour M, Khuri-Yakub B T, Arbabian A 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 1587.

    [9]

    Singhvi A, Boyle K C, Fallahpour M, Khuri-Yakub B T, Arbabian A 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 1587.

    [10]

    Ren M Y, Cheng Z W, Wu L H, Zhang H M, Zhang S X, Chen X Y 2022 IEEE Trans. Biomed. Eng. 70 175.

    [11]

    Ren M Y, Cheng Z W, Wu L H, Zhang H M, Zhang S X, Chen X Y 2022 IEEE Trans. Biomed. Eng. 70 175.

    [12]

    Wu L H, Cheng Z W, Ma Y Z, Li Y J, Ren M Y, Xing D, Qin H 2021 IEEE Trans. Med. Imaging 41 1080.

    [13]

    Wu L H, Cheng Z W, Ma Y Z, Li Y J, Ren M Y, Xing D, Qin H 2021 IEEE Trans. Med. Imaging 41 1080.

    [14]

    Zhao S X, Wang H H, Li Y J, Nie L M, Zhang S X, Xing D, Qin H 2021 IEEE Trans. Biomed. Eng. 69 725.

    [15]

    Zhao S X, Wang H H, Li Y J, Nie L M, Zhang S X, Xing D, Qin H 2021 IEEE Trans. Biomed. Eng. 69 725.

    [16]

    Liang X, Guo H, Liu Q, Wu C F, Gong Y B, Xi L 2020 Appl. Phys. Lett. 116 013701.

    [17]

    Liang X, Guo H, Liu Q, Wu C F, Gong Y B, Xi L 2020 Appl. Phys. Lett. 116 013701.

    [18]

    Chen Y, Chi Z H, Du S, Fang Q C, Jiang H B 2024 Appl. Phys. Lett. 124 163702.

    [19]

    Chen Y, Chi Z H, Du S, Fang Q C, Jiang H B 2024 Appl. Phys. Lett. 124 163702.

    [20]

    Xu M H, Xu Y, Wang L H V 2003 IEEE Trans. Biomed. Eng. 50 1086.

    [21]

    Xu M H, Xu Y, Wang L H V 2003 IEEE Trans. Biomed. Eng. 50 1086.

    [22]

    Wan P C, Liu S L, Tian R P, Shang X, Peng W T 2023 J. Appl. Phys. 133 103101.

    [23]

    Wan P C, Liu S L, Tian R P, Shang X, Peng W T 2023 J. Appl. Phys. 133 103101.

    [24]

    Liu S L, Zheng Z, Sun X X, Zhao Z Q, Zheng Y J, Jiang H B 2019 IEEE Trans. Biomed. Eng. 67 2206.

    [25]

    Liu S L, Zheng Z, Sun X X, Zhao Z Q, Zheng Y J, Jiang H B 2019 IEEE Trans. Biomed. Eng. 67 2206.

    [26]

    Luo Z X, Li C Z, Liu D T, Wang B S, Zhang L J, Ma Y X 2023 IEEE Trans. Microw. Theory Tech. 71 2652.

    [27]

    Luo Z X, Li C Z, Liu D T, Wang B S, Zhang L J, Ma Y X 2023 IEEE Trans. Microw. Theory Tech. 71 2652.

    [28]

    Evans A L, Ma C, Hagness S C 2022 Biomed. Phys. Eng. Express 8 035020.

    [29]

    Evans A L, Ma C, Hagness S C 2022 Biomed. Phys. Eng. Express 8 035020.

    [30]

    Mast T D, Johnstone D A, Dumoulin C L, Lamba M A, Patch S K 2023 Phys. Med. Biol. 68 025003.

    [31]

    Mast T D, Johnstone D A, Dumoulin C L, Lamba M A, Patch S K 2023 Phys. Med. Biol. 68 025003.

    [32]

    Kruger R A, Kiser W L, Reinecke D R, Kruger G A, Miller K D 2003 Mol. Imaging 2 113.

    [33]

    Kruger R A, Kiser W L, Reinecke D R, Kruger G A, Miller K D 2003 Mol. Imaging 2 113.

    [34]

    Chi Z H, Huang L, Wu D, Long X J, Xu X L, Jiang H B 2022 Med. Phys. 49 84.

    [35]

    Chi Z H, Huang L, Wu D, Long X J, Xu X L, Jiang H B 2022 Med. Phys. 49 84.

    [36]

    Huang L, Zheng Z, Chi Z H, Jiang H B 2021 Med. Phys. 48 4242.

    [37]

    Huang L, Zheng Z, Chi Z H, Jiang H B 2021 Med. Phys. 48 4242.

    [38]

    Xiang H J, Zheng Z, Huang L, Qiu T T, Luo Y, Jiang H B 2021 Med. Phys. 48 1608. Radiographics 26 905.

    [39]

    Xiang H J, Zheng Z, Huang L, Qiu T T, Luo Y, Jiang H B 2021 Med. Phys. 48 1608. Radiology 211 275.

    [40]

    Liang Z, Wang W P, Qiao S Q, Huang L 2022 J. Innov. Opt. Health Sci. 15 2250015.

    [41]

    Niskanen A O, Hassel J, Tikander M, Maijala P, Grönberg L, Helistö P 2009 Appl. Phys. Lett. 95 163701.

    [42]

    Yang X, Huang K 2006 Acta Electron. Sin. 34 356.

    [43]

    Zhang W T, Chen X, Wang Y, Wu L Y, Hu Y D 2010 Res. Explor. Lab. 29 159.

    [44]

    Du S, Qiang T, Chi Z H, Jiang H B 2024 J. Innov. Opt. Health Sci. 17 2450014.

    [45]

    Du J S, Gao Y, Bi X, Qi W Z, Huang L, Rong J 2015 Acta Phys. Sin. 64 034302.

    [46]

    Xie S M, Huang L, Wang X, Chi Z H, Tang Y H, Zheng Z, Jiang H B 2021 J. Mech. Eng. 70 100701.

    [47]

    Cheng Z W, Wu L H, Qiu T S, Duan Y H, Qin H, Hu J 2021 IEEE Trans. Med. Imaging 40 3498.

    [48]

    Zhang Y M, Wang F, Lin L, Ye J 2024 Fenxi Ceshi Xuebao 43 19.

    [49]

    Tang X Y, Fu J, Qin H 2023 J. Innov. Opt. Health Sci. 16 2230014.

    [50]

    Sun M L, Li C Y, Chen R M, Shi J H 2024 Laser Optoelectron. Prog. 61 0618017.

    [51]

    Jeon S, Kim J, Lee D, Baik J W, Kim C 2019 Photoacoustics 15 100141.

    [52]

    Chen Z J, Yang S H, Xing D 2018 Chin. J. Lasers 45 0307008.

    [53]

    Kim J Y, Lee C, Park K, Lim G, Kim C 2015 Sci. Rep. 5 7932.

    [54]

    Qi W Z, Jin T, Rong J, Jiang H B, Xi L 2017 J. Biophotonics 10 1580.

  • [1] Wang Xia-Chun, Zhang Zhi-Rong, Cai Yong-Jun, Sun Peng-Shuai, Pang Tao, Xia Hua, Wu Bian, Guo Qiang. Methane gas spectral imaging method based on dual wedge scanning mirrors. Acta Physica Sinica, doi: 10.7498/aps.73.20231906
    [2] Pan Bin-Xiong, Gong Cheng, Zhang Peng, Liu Zi-Ye, Pi Peng-Jian, Chen Wang, Huang Wen-Qiang, Wang Bao-Ju, Zhan Qiu-Qiang. Advances in high spatiotemporal resolution fluorescence microscopic imaging technique based on point scanning. Acta Physica Sinica, doi: 10.7498/aps.72.20230912
    [3] Wang Yu, Zhang Hui-Min, Qin Huan. Biomedical microwave-induced thermoacoustic imaging. Acta Physica Sinica, doi: 10.7498/aps.72.20230732
    [4] Xu Shou-Zhen, Xie Shi-Meng, Wu Dan, Chi Zi-Hui, Huang Lin. Ultrasound/photoacoustic dual-modality imaging based on acoustic scanning galvanometer. Acta Physica Sinica, doi: 10.7498/aps.71.20211394
    [5] Xie Shi-Meng, Huang Lin, Wang Xue, Chi Zi-Hui, Tang Yong-Hui, Zheng Zhu, Jiang Hua-Bei. Reflection mode photoacoustic/thermoacoustic dual modality imaging based on hollow concave array. Acta Physica Sinica, doi: 10.7498/aps.70.20202012
    [6] Tang Yong-Hui, Zheng Zhu, Xie Shi-Meng, Huang Lin, Jiang Hua-Bei. Thermoacoustic imaging based on noise suppression of multi-channel amplifier and additive circuit. Acta Physica Sinica, doi: 10.7498/aps.69.20201036
    [7] Wang Mei-Chang, Yu Bin, Zhang Wei, Lin Dan-Ying, Qu Jun-Le. Digital line scanning fluorescence microscopy based on digital micromirror device. Acta Physica Sinica, doi: 10.7498/aps.69.20200908
    [8] Zhou Tian-Yi. Optimal microwave imaging with random field illuminations. Acta Physica Sinica, doi: 10.7498/aps.68.20182122
    [9] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, doi: 10.7498/aps.67.20181468
    [10] Zhao Guang-Yuan, Zheng Cheng, Fang Yue, Kuang Cui-Fang, Liu Xu. Progress of point-wise scanning superresolution methods. Acta Physica Sinica, doi: 10.7498/aps.66.148702
    [11] Du Jin-Song, Gao Yang, Bi Xin, Qi Wei-Zhi, Huang Lin, Rong Jian. S-band microwave-Induced thermo-acoustic tomography system. Acta Physica Sinica, doi: 10.7498/aps.64.034301
    [12] Bi Xin, Huang Lin, Du Jing-Song, Qi Wei-Zhi, Gao Yang, Rong Jian, Jiang Hua-Bei. Pulsed microwave energy spatial distribution imaging by means of thermoacoustic tomography. Acta Physica Sinica, doi: 10.7498/aps.64.014301
    [13] Liu Guang-Dong, Zhang Ye-Rong. Three-dimensional microwave-induced thermo-acousticimaging for breast cancer detection. Acta Physica Sinica, doi: 10.7498/aps.60.074303
    [14] Wu Dan, Tao Chao, Liu Xiao-Jun. Study of the resolution of limited-view photoacoustic tomography. Acta Physica Sinica, doi: 10.7498/aps.59.5845
    [15] Xu Xiao-Hui, Li Hui. Scanning photoacoustic mammography with a focused transducer featuring extended focal zone. Acta Physica Sinica, doi: 10.7498/aps.57.4623
    [16] Chen Zhan-Xu, Tang Zhi-Lie, Wan Wei, He Yong-Heng. Photoacoustic tomography imaging based on an acoustic lens imaging system. Acta Physica Sinica, doi: 10.7498/aps.55.4365
    [17] Liu Xue-Rong, Hu Bo, Liu Wen-Han, Gao Chen. The theoretical calibration coefficient in the measurement of nonlinear dielectric constant with a scanning tip microwave near-field microscopy. Acta Physica Sinica, doi: 10.7498/aps.52.34
    [18] Wang Qian, Xu Jin-Qiang, Wu Jin, Li Yong-Gui. The imaging of chemical samples with a scanning near-field infrared microscope. Acta Physica Sinica, doi: 10.7498/aps.52.298
    [19] CAI QUN, WU LEI, ZHU ANG-RU, WANG XUN. STM IMAGES OF NaCI MICROCRYSTAL IN THE AIR. Acta Physica Sinica, doi: 10.7498/aps.42.1266
    [20] ZHANG SHU-YI, YU CHAO, MIAO YONG-ZHI, TANG ZHENG-YAN, GAO DUN-TANG. SCANNING PHOTOACOUSTIC MICROSCOPY. Acta Physica Sinica, doi: 10.7498/aps.31.704
Metrics
  • Abstract views:  19
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  19 November 2025
  • /

    返回文章
    返回