-
Microwave-induced thermoacoustic imaging, as an emerging biomedical imaging technique, combines the high contrast of microwave imaging with the high spatial resolution of ultrasound imaging. As an important branch of this technology, microwave-induced thermoacoustic microscopy retains these advantages while providing the capability to visualize finer tissue characteristics. However, conventional raster scanning mechanisms introduce interference in microwave field distribution due to mechanical motion, necessitating multiple signal averages to maintain signal-to-noise ratio. Additionally, the idle time during motor movement leads to prolonged single-scan duration, limiting its practical applications. To address these limitations, this paper proposes a rapid imaging system based on one-dimensional galvanometer scanning. The system employs a hybrid galvanometer-translation stage architecture and an optimized scanning strategy to minimize microwave field interference, reduce the number of signal averages, and decrease idle time, ultimately achieving more than a tenfold improvement in imaging speed. A specially designed timing control algorithm ensures precise synchronization of microwave excitation, galvanometer motion, and ultrasound detection, while a reconstruction algorithm adapted to the optimized scanning method effectively corrects distortions generated during the scanning process. System performance was evaluated through phantom and ex vivo tissue experiments. Resolution tests demonstrated hundred-micrometer resolution along all three axes (332 μm × 324 μm × 79 μm), while contrast and depth imaging experiments confirmed its capability to clearly distinguish targets with different conductivities, achieving an effective detection depth of at least 10 mm in tissue. Early tumor mimicking experiments further demonstrated the system's ability to identify lesion boundaries, preliminarily revealing its potential for rapid tumor margin assessment. This approach maintains the imaging quality of microwave-induced thermoacoustic microscopy while enhancing imaging efficiency and system stability, laying a crucial foundation for advancing the technology from laboratory research to clinical applications.
-
Keywords:
- Microwave-induced thermoacoustic imaging /
- microwave-induced thermoacoustic microscopy /
- galvanometer scanning /
- imaging speed
-
[1] Bell A G 1880 Am. J. Sci. s3-20 305.
[2] Olsen R G, Lin J C 1983 Bioelectromagnetics 4 397.
[3] Kruger R A, Kopecky K K, Aisen A M, Reinecke D R, Kruger G A, Kiser W L 1999 Radiology 211 275.
[4] Ku G, Wang L V 2000 Med. Phys. 27 1195.
[5] Ku G, Wang L V 2000 Med. Phys. 27 1195.
[6] Kruger R A, Miller K D, Reynolds H E, Kiser W L, Reinecke D R, Kruger G A 2000 Radiology 216 279.
[7] Kruger R A, Miller K D, Reynolds H E, Kiser W L, Reinecke D R, Kruger G A 2000 Radiology 216 279.
[8] Singhvi A, Boyle K C, Fallahpour M, Khuri-Yakub B T, Arbabian A 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 1587.
[9] Singhvi A, Boyle K C, Fallahpour M, Khuri-Yakub B T, Arbabian A 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 1587.
[10] Ren M Y, Cheng Z W, Wu L H, Zhang H M, Zhang S X, Chen X Y 2022 IEEE Trans. Biomed. Eng. 70 175.
[11] Ren M Y, Cheng Z W, Wu L H, Zhang H M, Zhang S X, Chen X Y 2022 IEEE Trans. Biomed. Eng. 70 175.
[12] Wu L H, Cheng Z W, Ma Y Z, Li Y J, Ren M Y, Xing D, Qin H 2021 IEEE Trans. Med. Imaging 41 1080.
[13] Wu L H, Cheng Z W, Ma Y Z, Li Y J, Ren M Y, Xing D, Qin H 2021 IEEE Trans. Med. Imaging 41 1080.
[14] Zhao S X, Wang H H, Li Y J, Nie L M, Zhang S X, Xing D, Qin H 2021 IEEE Trans. Biomed. Eng. 69 725.
[15] Zhao S X, Wang H H, Li Y J, Nie L M, Zhang S X, Xing D, Qin H 2021 IEEE Trans. Biomed. Eng. 69 725.
[16] Liang X, Guo H, Liu Q, Wu C F, Gong Y B, Xi L 2020 Appl. Phys. Lett. 116 013701.
[17] Liang X, Guo H, Liu Q, Wu C F, Gong Y B, Xi L 2020 Appl. Phys. Lett. 116 013701.
[18] Chen Y, Chi Z H, Du S, Fang Q C, Jiang H B 2024 Appl. Phys. Lett. 124 163702.
[19] Chen Y, Chi Z H, Du S, Fang Q C, Jiang H B 2024 Appl. Phys. Lett. 124 163702.
[20] Xu M H, Xu Y, Wang L H V 2003 IEEE Trans. Biomed. Eng. 50 1086.
[21] Xu M H, Xu Y, Wang L H V 2003 IEEE Trans. Biomed. Eng. 50 1086.
[22] Wan P C, Liu S L, Tian R P, Shang X, Peng W T 2023 J. Appl. Phys. 133 103101.
[23] Wan P C, Liu S L, Tian R P, Shang X, Peng W T 2023 J. Appl. Phys. 133 103101.
[24] Liu S L, Zheng Z, Sun X X, Zhao Z Q, Zheng Y J, Jiang H B 2019 IEEE Trans. Biomed. Eng. 67 2206.
[25] Liu S L, Zheng Z, Sun X X, Zhao Z Q, Zheng Y J, Jiang H B 2019 IEEE Trans. Biomed. Eng. 67 2206.
[26] Luo Z X, Li C Z, Liu D T, Wang B S, Zhang L J, Ma Y X 2023 IEEE Trans. Microw. Theory Tech. 71 2652.
[27] Luo Z X, Li C Z, Liu D T, Wang B S, Zhang L J, Ma Y X 2023 IEEE Trans. Microw. Theory Tech. 71 2652.
[28] Evans A L, Ma C, Hagness S C 2022 Biomed. Phys. Eng. Express 8 035020.
[29] Evans A L, Ma C, Hagness S C 2022 Biomed. Phys. Eng. Express 8 035020.
[30] Mast T D, Johnstone D A, Dumoulin C L, Lamba M A, Patch S K 2023 Phys. Med. Biol. 68 025003.
[31] Mast T D, Johnstone D A, Dumoulin C L, Lamba M A, Patch S K 2023 Phys. Med. Biol. 68 025003.
[32] Kruger R A, Kiser W L, Reinecke D R, Kruger G A, Miller K D 2003 Mol. Imaging 2 113.
[33] Kruger R A, Kiser W L, Reinecke D R, Kruger G A, Miller K D 2003 Mol. Imaging 2 113.
[34] Chi Z H, Huang L, Wu D, Long X J, Xu X L, Jiang H B 2022 Med. Phys. 49 84.
[35] Chi Z H, Huang L, Wu D, Long X J, Xu X L, Jiang H B 2022 Med. Phys. 49 84.
[36] Huang L, Zheng Z, Chi Z H, Jiang H B 2021 Med. Phys. 48 4242.
[37] Huang L, Zheng Z, Chi Z H, Jiang H B 2021 Med. Phys. 48 4242.
[38] Xiang H J, Zheng Z, Huang L, Qiu T T, Luo Y, Jiang H B 2021 Med. Phys. 48 1608. Radiographics 26 905.
[39] Xiang H J, Zheng Z, Huang L, Qiu T T, Luo Y, Jiang H B 2021 Med. Phys. 48 1608. Radiology 211 275.
[40] Liang Z, Wang W P, Qiao S Q, Huang L 2022 J. Innov. Opt. Health Sci. 15 2250015.
[41] Niskanen A O, Hassel J, Tikander M, Maijala P, Grönberg L, Helistö P 2009 Appl. Phys. Lett. 95 163701.
[42] Yang X, Huang K 2006 Acta Electron. Sin. 34 356.
[43] Zhang W T, Chen X, Wang Y, Wu L Y, Hu Y D 2010 Res. Explor. Lab. 29 159.
[44] Du S, Qiang T, Chi Z H, Jiang H B 2024 J. Innov. Opt. Health Sci. 17 2450014.
[45] Du J S, Gao Y, Bi X, Qi W Z, Huang L, Rong J 2015 Acta Phys. Sin. 64 034302.
[46] Xie S M, Huang L, Wang X, Chi Z H, Tang Y H, Zheng Z, Jiang H B 2021 J. Mech. Eng. 70 100701.
[47] Cheng Z W, Wu L H, Qiu T S, Duan Y H, Qin H, Hu J 2021 IEEE Trans. Med. Imaging 40 3498.
[48] Zhang Y M, Wang F, Lin L, Ye J 2024 Fenxi Ceshi Xuebao 43 19.
[49] Tang X Y, Fu J, Qin H 2023 J. Innov. Opt. Health Sci. 16 2230014.
[50] Sun M L, Li C Y, Chen R M, Shi J H 2024 Laser Optoelectron. Prog. 61 0618017.
[51] Jeon S, Kim J, Lee D, Baik J W, Kim C 2019 Photoacoustics 15 100141.
[52] Chen Z J, Yang S H, Xing D 2018 Chin. J. Lasers 45 0307008.
[53] Kim J Y, Lee C, Park K, Lim G, Kim C 2015 Sci. Rep. 5 7932.
[54] Qi W Z, Jin T, Rong J, Jiang H B, Xi L 2017 J. Biophotonics 10 1580.
Metrics
- Abstract views: 19
- PDF Downloads: 2
- Cited By: 0









下载: