Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of three-phase Rayleigh-Taylor instability based on phase field model using lattice Boltzmann method

YANG Xuguang WANG Xin YUAN Xiaolei

Citation:

Numerical simulation of three-phase Rayleigh-Taylor instability based on phase field model using lattice Boltzmann method

YANG Xuguang, WANG Xin, YUAN Xiaolei
cstr: 32037.14.aps.75.20251095
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This paper develops a regularized lattice Boltzmann method for efficiently simulating the flow of N-phase immiscible incompressible fluids based on the phase field model that satisfies conservation and compatibility. By designing auxiliary moments, this method can accurately recover the second-order Allen-Cahn equation and the modified momentum equation. The correctness and effectiveness of the developed N-phase regularized lattice Boltzmann method are validated through numerical simulations of three-phase liquid lens spreading and Kelvin-Helmholtz instability phenomena. Finally, numerical simulations and analyses of three-phase Rayleigh-Taylor instabilities (RTI) are conducted, focusing on the evolution of the phase interface within the Reynolds number range of $ 500 \leqslant Re \leqslant 20000 $ (particularly under high Reynolds number condition of $ Re = 20000 $). Quantitative analyses are performed on the amplitude variations of bubbles and spikes at the two interfaces, as well as the changes in dimensionless velocity. We find that as the Reynolds number increases, the phase interface curls up at multiple locations due to Kelvin-Helmholtz instability, making the fluid more prone to dispersion and fragmentation. This study also simulates the evolutionary processes of RTI under different interface perturbations. These results demonstrate that RTI first develops at the perturbed interface, with its subsequent evolution inducing instability at a secondary interface.
      Corresponding author: YUAN Xiaolei, yuanxl@hbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12202130, 12372286), the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2024RC3228), the Excellent Youth Research Innovation Team of Hebei University, China (Grant No. QNTD202414), the Excellent Youth Foundation of Changsha Scientific Committee, China (Grant No. kq2306023), and the Aeronautical Science Foundation of China (Grant No. 20220054069001).
    [1]

    Barber J L, Kadau K, Germann T C, Alder B J 2008 Eur. Phys. J. B 64 271Google Scholar

    [2]

    Celani A, Mazzino A, Bjorkholm J E, Vozella L 2006 Phys. Rev. Lett. 96 134504Google Scholar

    [3]

    Moin P 1991 Comput. Methods Appl. Mech. Eng. 87 329Google Scholar

    [4]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) (in Chinese) pp156–200 [郭照立, 郑楚光 2009 格子 Boltzmann 方法的原理及应用 (北京: 科学出版社) 第156—200页]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) (in Chinese) pp156–200

    [5]

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) (in Chinese) pp31–55 [何雅玲, 王勇, 李庆 2009 格子 Boltzmann 方法的理论及应用 (北京: 科学出版社) 第31—55页]

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) (in Chinese) pp31–55

    [6]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar

    [7]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320Google Scholar

    [8]

    Liang H, Li Q X, Shi B C, Chai Z H 2016 Phys. Rev. E 93 033113

    [9]

    Liang H, Xia Z H, Huang H W 2021 Phys. Fluids 33 082103Google Scholar

    [10]

    李洋, 苏婷, 梁宏, 徐江荣 2018 物理学报 67 224701

    Li Y, Su T, Liang H, Xu J R 2018 Acta Phys. Sin. 67 224701

    [11]

    马聪, 刘斌, 梁宏 2022 物理学报 71 044701Google Scholar

    Ma C, Liu B, Liang H 2022 Acta Phys. Sin. 71 044701Google Scholar

    [12]

    李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标 2018 物理学报 67 080501Google Scholar

    Li D M, Lai H L, Xu A G, Zhang G C, Lin C D, Gan Y B 2018 Acta Phys. Sin. 67 080501Google Scholar

    [13]

    Zhang R Y, He X Y, Chen S Y 2000 Comput. Phys. Commun. 129 121Google Scholar

    [14]

    胡晓亮, 梁宏, 王会利 2020 物理学报 69 044701Google Scholar

    Hu X L, Liang H, Wang H L 2020 Acta Phys. Sin. 69 044701Google Scholar

    [15]

    Zhan C J, Liu X, Chai Z H, Shi B C 2024 Commun. Comput. Phys. 36 850Google Scholar

    [16]

    Kalantarpour R, Ebadi A, Hosseinalipour S M, Liang H 2020 Comput. Fluids 204 104480

    [17]

    Boyer F, Lapuerta C 2006 ESAIM: Math. Model. Numer. Anal. 40 653Google Scholar

    [18]

    Boyer F, Lapuerta C, Minjeaud S, et al. 2010 Transp. Porous Media 82 463Google Scholar

    [19]

    Dong S 2018 J. Comput. Phys. 361 1Google Scholar

    [20]

    Zheng L, Zheng S, Zhai Q L 2020 Phys. Rev. E 101 043302Google Scholar

    [21]

    Mirjalili S, Mani A 2024 J. Comput. Phys. 498 112657Google Scholar

    [22]

    Xia Q, Yang J X, Li Y B 2023 Phys. Fluids 35 012120Google Scholar

    [23]

    Latt J, Chopard B 2006 Math. Comput. Simulat. 72 165Google Scholar

    [24]

    Montessori A, Falcucci G, Prestininzi P, et al. 2014 Phys. Rev. E 89 053317Google Scholar

    [25]

    Liu X, Chen Y, Chai Z H, Shi B C 2024 Phys. Rev. E 109 025301Google Scholar

    [26]

    Huang Y H, Chen X M, Chai Z H, Shi B C 2025 Adv. Appl. Math. Mech. 17 1370Google Scholar

    [27]

    黄皓伟, 梁宏, 徐江荣 2021 物理学报 70 114701Google Scholar

    Huang H W, Liang H, Xu J R 2021 Acta Phys. Sin. 70 114701Google Scholar

    [28]

    李春熠, 郭照立 2025 物理学报 74 064702Google Scholar

    Li C Y, Guo Z L 2025 Acta Phys. Sin. 74 064702Google Scholar

    [29]

    Huang Z Y, Lin G, Ardekani A M 2021 J. Comput. Phys. 434 110229Google Scholar

    [30]

    Mirjalili S, Mani A 2021 J. Comput. Phys. 426 109918Google Scholar

    [31]

    Qian Y H, d'Humières D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [32]

    Yang X F, Zhao J, Wang Q, Shen J 2017 Math. Models Methods Appl. Sci. 27 1993Google Scholar

    [33]

    Hu Y, Li D C, He Q 2020 Int. J. Multiph. Flow 132 103432Google Scholar

    [34]

    Yuan X L, Shi B C, Zhan C J, Chai Z H 2022 Phys. Fluids 34 023311Google Scholar

    [35]

    Wu J W, Yang J X, Tan Z J 2022 Comput. Methods Appl. Mech. Eng. 398 115291Google Scholar

    [36]

    章诗婷, 肖鸿威, 周锦翔, 牛小东 2022 空气动力学学报 40 75

    Zhang S T, Xiao H W, Zhou J X, Niu X D 2022 Acta Aerodyn. Sin. 40 75

    [37]

    Fakhari A, Lee T 2013 Phys. Rev. E 87 023304Google Scholar

    [38]

    Fakhari A, Geier M, Lee T 2016 J. Comput. Phys. 315 434Google Scholar

    [39]

    Zhou X, Dong B, Li W Z 2020 Int. J. Aerosp. Eng. 2020 8885226

    [40]

    Ramaprabhu P, Dimonte G, Young Y N, Calder A C, Fryxell B 2006 Phys. Rev. E 74 066308

  • 图 1  三相液体透镜示意图

    Figure 1.  Schematic of the spreading of a liquid lens.

    图 2  不同界面张力比下的三相液体透镜平衡态 (a) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=1:1:1 $; (b) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=1:\sqrt{2}:1 $; (c) $ \sigma_{12}:\sigma_{13}: $$ \sigma_{23}=1:\sqrt{3}:1 $

    Figure 2.  The equilibrium shapes of liquid by ternary fluids: (a) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=1:1:1 $; (b) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=1:\sqrt{2}:1 $; (c) $ \sigma_{12}:\sigma_{13}:\sigma_{23}=1:\sqrt{3}:1 $.

    图 3  Kelvin-Helmholtz不稳定性示意图

    Figure 3.  Schematic of the spreading of Kelvin-Helmholtz instability.

    图 4  不同时刻下的密度分布 (a) $ t=2000 $; (b) $ t=3000 $; (c) $ t=5000 $; (d) $ t=9000 $

    Figure 4.  Density distribution at different times: (a) $ t=2000 $; (b) $ t=3000 $; (c) $ t=5000 $; (d) $ t=9000 $.

    图 5  不同时刻下的涡场图 (a) $ t=2000 $; (b) $ t=3000 $; (c) $ t=5000 $; (d) $ t=9000 $

    Figure 5.  Vorticity field at different times: (a) $ t=2000 $; (b) $ t=3000 $; (c) $ t=5000 $; (d) $ t=9000 $.

    图 6  Rayleigh-Taylor不稳定性示意图

    Figure 6.  Schematic of the Rayleigh-Taylor instability.

    图 7  两相情况相界面扰动演化过程 (a) $ Re = 30 $; (b) $ Re = 150 $; (c) $ Re = 3000 $; (d) $ Re = 30 $[7]; (e) $ Re = 150 $[7]; (f)$ Re = 3000 $[7]

    Figure 7.  Phase interface disturbance evolution process in two-phase situation: (a) $ Re=30 $; (b)$ Re=150 $; (c) $ Re=3000 $; (d) $ Re= $$ 30 $[7]; (e) $ Re=150 $[7]; (f) $ Re=3000 $[7].

    图 8  两相情况尖钉与气泡振幅随时间的变化 (a) 尖钉振幅; (b) 气泡振幅

    Figure 8.  Variation of spike and bubble amplitudes with time in two-phase situation: (a)$ H_{{\rm{s}}} $; (b)$ H_{{\rm{b}}} $.

    图 9  较低雷诺数对R-T不稳定性中相界面演化过程的影响 (a) $ Re=500 $; (b) $ Re=1000 $; (c) $ Re=2000 $

    Figure 9.  The effect of lower Reynolds numbers on the evolution of the phase interface in RTI: (a) $ Re=500 $; (b) $ Re=1000 $; (c) $ Re=2000 $.

    图 10  较高雷诺数对R-T不稳定性中相界面演化过程的影响 (a) $ Re=5000 $; (b)$ Re=10000 $; (c) $ Re=20000 $

    Figure 10.  The effect of higher Reynolds numbers on the evolution of the phase interface in RTI: (a) $ Re=5000 $; (b)$ Re=10000 $; (c) $ Re=20000 $.

    图 11  雷诺数对气泡与尖钉振幅随时间演化的影响 (a) 界面一尖钉振幅; (b) 界面二尖钉振幅; (c) 界面一气泡振幅; (d) 界面二气泡振幅

    Figure 11.  Effect of Reynolds number on the temporal evolution of bubble and spike amplitudes: (a)$ H_{{\rm{s1}}} $; (b)$ H_{{\rm{s2}}} $; (c)$ H_{{\rm{b1}}} $; (d)$ H_{{\rm{b2}}} $.

    图 12  雷诺数对无量纲化的气泡和尖钉演化速度的影响 (a) 界面一尖钉; (b) 界面二尖钉; (c) 界面一气泡; (d)界面二气泡

    Figure 12.  Effect of Reynolds number on the normalized growth rate of bubbles and spikes: (a)$ Fr_{{\rm{s1}}} $; (b)$ Fr_{{\rm{s2}}} $; (c)$ Fr_{{\rm{b1}}} $; (d)$ Fr_{{\rm{b2}}} $.

    图 13  上层相界面扰动相界面演化过程 (a) $ Re=500 $; (b) $ Re=1000 $; (c) $ Re=5000 $; (d) $ Re=20000 $

    Figure 13.  Upper interfacial perturbation and evolution: (a) $ Re=500 $; (b) $ Re=1000 $; (c) $ Re=5000 $; (d) $ Re=20000 $.

    图 14  上层相界面扰动时气泡与尖钉振幅随时间的变化 (a) 界面一尖钉振幅; (b) 界面二尖钉振幅; (c) 界面一气泡振幅; (d) 界面二气泡振幅

    Figure 14.  Bubble and spike amplitude evolution during upper interface perturbation: (a) $ H_{{\rm{s1}}} $; (b) $ H_{{\rm{s2}}} $; (c) $ H_{{\rm{b1}}} $; (d) $ H_{{\rm{b2}}} $.

    图 15  下层相界面扰动相界面演化过程 (a) $ Re=500 $; (b) $ Re=1000 $; (c) $ Re=5000 $; (d) $ Re=20000 $

    Figure 15.  Lower interfacial perturbation and evolution: (a) $ Re=500 $; (b)$ Re=1000 $; (c) $ Re=5000 $; (d) $ Re=20000 $.

    图 16  下层相界面扰动时气泡与尖钉振幅随时间的变化 (a) 界面一尖钉振幅; (b) 界面二尖钉振幅; (c) 界面一气泡振幅; (d) 界面二气泡振幅

    Figure 16.  Bubble and spike amplitude evolution during lower interface perturbation: (a) $ H_{{\rm{s1}}} $; (b) $ H_{{\rm{s2}}} $; (c) $ H_{{\rm{b1}}} $; (d) $ H_{{\rm{b2}}} $.

    表 1  不同表面张力比下液体透镜的长度d和高度$ h_1 $, $ h_2 $

    Table 1.  The length d, and height $ h_1 $, $ h_2 $ at equilibrium state with different surface tension ratios.

    $ \sigma_{12}:\sigma_{13}:\sigma_{23} $ 解析解 数值解 相对误差
    d $ h_1 $ $ h_2 $ d $ h_1 $ $ h_2 $ d $ h_1 $ $ h_2 $
    $ 1:1:1 $ 83.10 23.99 23.99 84.26 24.45 24.42 1.40% 1.92% 1.80%
    $ 1:\sqrt{2}:1 $ 72.67 36.34 15.05 74.02 37.03 15.34 1.86% 1.90% 1.93%
    $ 1:\sqrt{3}:1 $ 55.05 47.67 7.38 55.83 48.42 7.48 1.42% 1.57% 1.36%
    DownLoad: CSV
  • [1]

    Barber J L, Kadau K, Germann T C, Alder B J 2008 Eur. Phys. J. B 64 271Google Scholar

    [2]

    Celani A, Mazzino A, Bjorkholm J E, Vozella L 2006 Phys. Rev. Lett. 96 134504Google Scholar

    [3]

    Moin P 1991 Comput. Methods Appl. Mech. Eng. 87 329Google Scholar

    [4]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) (in Chinese) pp156–200 [郭照立, 郑楚光 2009 格子 Boltzmann 方法的原理及应用 (北京: 科学出版社) 第156—200页]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) (in Chinese) pp156–200

    [5]

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) (in Chinese) pp31–55 [何雅玲, 王勇, 李庆 2009 格子 Boltzmann 方法的理论及应用 (北京: 科学出版社) 第31—55页]

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) (in Chinese) pp31–55

    [6]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar

    [7]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320Google Scholar

    [8]

    Liang H, Li Q X, Shi B C, Chai Z H 2016 Phys. Rev. E 93 033113

    [9]

    Liang H, Xia Z H, Huang H W 2021 Phys. Fluids 33 082103Google Scholar

    [10]

    李洋, 苏婷, 梁宏, 徐江荣 2018 物理学报 67 224701

    Li Y, Su T, Liang H, Xu J R 2018 Acta Phys. Sin. 67 224701

    [11]

    马聪, 刘斌, 梁宏 2022 物理学报 71 044701Google Scholar

    Ma C, Liu B, Liang H 2022 Acta Phys. Sin. 71 044701Google Scholar

    [12]

    李德梅, 赖惠林, 许爱国, 张广财, 林传栋, 甘延标 2018 物理学报 67 080501Google Scholar

    Li D M, Lai H L, Xu A G, Zhang G C, Lin C D, Gan Y B 2018 Acta Phys. Sin. 67 080501Google Scholar

    [13]

    Zhang R Y, He X Y, Chen S Y 2000 Comput. Phys. Commun. 129 121Google Scholar

    [14]

    胡晓亮, 梁宏, 王会利 2020 物理学报 69 044701Google Scholar

    Hu X L, Liang H, Wang H L 2020 Acta Phys. Sin. 69 044701Google Scholar

    [15]

    Zhan C J, Liu X, Chai Z H, Shi B C 2024 Commun. Comput. Phys. 36 850Google Scholar

    [16]

    Kalantarpour R, Ebadi A, Hosseinalipour S M, Liang H 2020 Comput. Fluids 204 104480

    [17]

    Boyer F, Lapuerta C 2006 ESAIM: Math. Model. Numer. Anal. 40 653Google Scholar

    [18]

    Boyer F, Lapuerta C, Minjeaud S, et al. 2010 Transp. Porous Media 82 463Google Scholar

    [19]

    Dong S 2018 J. Comput. Phys. 361 1Google Scholar

    [20]

    Zheng L, Zheng S, Zhai Q L 2020 Phys. Rev. E 101 043302Google Scholar

    [21]

    Mirjalili S, Mani A 2024 J. Comput. Phys. 498 112657Google Scholar

    [22]

    Xia Q, Yang J X, Li Y B 2023 Phys. Fluids 35 012120Google Scholar

    [23]

    Latt J, Chopard B 2006 Math. Comput. Simulat. 72 165Google Scholar

    [24]

    Montessori A, Falcucci G, Prestininzi P, et al. 2014 Phys. Rev. E 89 053317Google Scholar

    [25]

    Liu X, Chen Y, Chai Z H, Shi B C 2024 Phys. Rev. E 109 025301Google Scholar

    [26]

    Huang Y H, Chen X M, Chai Z H, Shi B C 2025 Adv. Appl. Math. Mech. 17 1370Google Scholar

    [27]

    黄皓伟, 梁宏, 徐江荣 2021 物理学报 70 114701Google Scholar

    Huang H W, Liang H, Xu J R 2021 Acta Phys. Sin. 70 114701Google Scholar

    [28]

    李春熠, 郭照立 2025 物理学报 74 064702Google Scholar

    Li C Y, Guo Z L 2025 Acta Phys. Sin. 74 064702Google Scholar

    [29]

    Huang Z Y, Lin G, Ardekani A M 2021 J. Comput. Phys. 434 110229Google Scholar

    [30]

    Mirjalili S, Mani A 2021 J. Comput. Phys. 426 109918Google Scholar

    [31]

    Qian Y H, d'Humières D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [32]

    Yang X F, Zhao J, Wang Q, Shen J 2017 Math. Models Methods Appl. Sci. 27 1993Google Scholar

    [33]

    Hu Y, Li D C, He Q 2020 Int. J. Multiph. Flow 132 103432Google Scholar

    [34]

    Yuan X L, Shi B C, Zhan C J, Chai Z H 2022 Phys. Fluids 34 023311Google Scholar

    [35]

    Wu J W, Yang J X, Tan Z J 2022 Comput. Methods Appl. Mech. Eng. 398 115291Google Scholar

    [36]

    章诗婷, 肖鸿威, 周锦翔, 牛小东 2022 空气动力学学报 40 75

    Zhang S T, Xiao H W, Zhou J X, Niu X D 2022 Acta Aerodyn. Sin. 40 75

    [37]

    Fakhari A, Lee T 2013 Phys. Rev. E 87 023304Google Scholar

    [38]

    Fakhari A, Geier M, Lee T 2016 J. Comput. Phys. 315 434Google Scholar

    [39]

    Zhou X, Dong B, Li W Z 2020 Int. J. Aerosp. Eng. 2020 8885226

    [40]

    Ramaprabhu P, Dimonte G, Young Y N, Calder A C, Fryxell B 2006 Phys. Rev. E 74 066308

  • [1] HOU Pengyang, XIE Jiamiao, LI Jingyang, ZHANG Peng, LI Zhaokai, HAO Wenqian, TIAN Jia, WANG Zhe, LI Fuzheng. Phase field simulation of dendrite growth in solid-state lithium batteries based on mechaincal-thermo-electrochemical coupling. Acta Physica Sinica, 2025, 74(7): 070201. doi: 10.7498/aps.74.20241727
    [2] LI Chunyi, GUO Zhaoli. A well-balanced lattice Boltzmann method based on quasi-incompressible phase-field theory. Acta Physica Sinica, 2025, 74(6): 064702. doi: 10.7498/aps.74.20241513
    [3] Liu Dong-Kun, Wang Qing-Yu, Zhang Tian, Zhou Yu, Wang Xiang. Phase-field simulation on fission gas release behavior of large grain UO2 fuel. Acta Physica Sinica, 2024, 73(6): 066102. doi: 10.7498/aps.73.20231773
    [4] Geng Xiao-Bin, Li Ding-Gen, Xu Bo. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta Physica Sinica, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [5] Liu Cheng, Liang Hong. Axisymmetric lattice Boltzmann model for three-phase fluids and its application to the Rayleigh-Plateau instability. Acta Physica Sinica, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [6] Ma Cong, Liu Bin, Liang Hong. Lattice Boltzmann simulation of three-dimensional fluid interfacial instability coupled with surface tension. Acta Physica Sinica, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [7] Huang Hao-Wei, Liang Hong, Xu Jiang-Rong. Effect of surface tension on late-time growth of high-Reynolds-number Rayleigh-Taylor instability. Acta Physica Sinica, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [8] Li Bi-Yong, Peng Jian-Xiang, Gu Yan, He Hong-Liang. Experimental research on Rayleigh-Taylor instability of oxygen-free high conductivity copper under explosive loading. Acta Physica Sinica, 2020, 69(9): 094701. doi: 10.7498/aps.69.20191999
    [9] Zhang Geng, Wang Qiao, Sha Li-Ting, Li Ya-Jie, Wang Da, Shi Si-Qi. Phase-field model and its application in electrochemical energy storage materials. Acta Physica Sinica, 2020, 69(22): 226401. doi: 10.7498/aps.69.20201411
    [10] Hu Xiao-Liang, Liang Hong, Wang Hui-Li. Lattice Boltzmann method simulations of the immiscible Rayleigh-Taylor instability with high Reynolds numbers. Acta Physica Sinica, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [11] Hu Jia-Yi, Zhang Wen-Huan, Chai Zhen-Hua, Shi Bao-Chang, Wang Yi-Hang. Three-dimensional 12-velocity multiple-relaxation-time lattice Boltzmann model of incompressible flows. Acta Physica Sinica, 2019, 68(23): 234701. doi: 10.7498/aps.68.20190984
    [12] Zhao Kai-Ge, Xue Chuang, Wang Li-Feng, Ye Wen-Hua, Wu Jun-Feng, Ding Yong-Kun, Zhang Wei-Yan, He Xian-Tu. Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface. Acta Physica Sinica, 2018, 67(9): 094701. doi: 10.7498/aps.67.20172613
    [13] Li Yang, Su Ting, Liang Hong, Xu Jiang-Rong. Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [14] Li De-Mei, Lai Hui-Lin, Xu Ai-Guo, Zhang Guang-Cai, Lin Chuan-Dong, Gan Yan-Biao. Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows. Acta Physica Sinica, 2018, 67(8): 080501. doi: 10.7498/aps.67.20171952
    [15] Yuan Yong-Teng, Wang Li-Feng, Tu Shao-Yong, Wu Jun-Feng, Cao Zhu-Rong, Zhan Xia-Yu, Ye Wen-Hua, Liu Shen-Ye, Jiang Shao-En, Ding Yong-Kun, Miao Wen-Yong. Experimental investigation on the influence of the dopant ratio on ablative Rayleigh-Taylor instability growth. Acta Physica Sinica, 2014, 63(23): 235203. doi: 10.7498/aps.63.235203
    [16] Xia Tong-Jun, Dong Yong-Qiang, Cao Yi-Gang. Effects of surface tension on Rayleigh-Taylor instability. Acta Physica Sinica, 2013, 62(21): 214702. doi: 10.7498/aps.62.214702
    [17] Huo Xin-He, Wang Li-Feng, Tao Ye-Sheng, Li Ying-Jun. Bubble velocities in the nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities in non-ideal fluids. Acta Physica Sinica, 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [18] Tao Ye-Sheng, Wang Li-Feng, Ye Wen-Hua, Zhang Guang-Cai, Zhang Jian-Cheng, Li Ying-Jun. The bubble velocity research of Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Acta Physica Sinica, 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [19] Su Jin, Ouyang Jie, Wang Xiao-Dong. Lattice Boltzmann method for an advective transport equation coupled with incompressible flow field. Acta Physica Sinica, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [20] Zhao Da-Wen, Li Jin-Fu. Phase-field modeling of the effect of liquid-solid interface anisotropies on free dendritic growth. Acta Physica Sinica, 2009, 58(10): 7094-7100. doi: 10.7498/aps.58.7094
Metrics
  • Abstract views:  621
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2025
  • Accepted Date:  25 September 2025
  • Available Online:  20 October 2025
  • Published Online:  05 January 2026
  • /

    返回文章
    返回